Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimized linear wavenumber spectrometer based spectral-domain optical coherence tomography system

Wu Tong Sun Shuai-Shuai Wang Xu-Hui Wang Ji-Ming He Chong-Jun Gu Xiao-Rong Liu You-Wen

Citation:

Optimized linear wavenumber spectrometer based spectral-domain optical coherence tomography system

Wu Tong, Sun Shuai-Shuai, Wang Xu-Hui, Wang Ji-Ming, He Chong-Jun, Gu Xiao-Rong, Liu You-Wen
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In spectraldomain optical coherence tomography the sample is illuminated by a broadband light source, and the spectrum of the interference light between the light returned from the sample and a reference mirror is detected by a grating spectrometer. Conventionally, the grating spectrometer is comprised of a diffraction grating, a focusing lens, and a line-scan camera. According to the grating equation the diffraction angle from the grating is approximately linearly related to the optical wavelength. Thus the distribution function of the light spectrum at the line-scan camera is nonlinearly dependent on wavenumber. For the high-quality image reconstruction, the numerical resampling of the spectral interference data from wavelength-space to wavenumber-space is commonly required prior to the Fourier Transformation. The nonlinear detection of the spectral interferograms in wavenumber space also degrades the depth-dependent signal sensitivity in conventional linear-wavelength spectrometer based spectraldomain optical coherence tomography. Recently reported spectraldomain optical coherence tomography based on a linearwavenumber spectrometer does not need the resampling or interpolating of the nonlinearwavenumber interference spectral data, which greatly reduces the cost of computation and improves the imaging sensitivity. Various methods based on the different evaluation protocols for optimizing the design of the linear-wavenumber spectrometer have been reported. Here we report an effective optimization method for linear-wavenumber spectrometer used in a high-resolution spectral domain optical coherence tomography system. We take the reciprocal of the fullwidthhalfmaximum of the simulated point spread function as an evaluating criterion to optimize the structure parameters of the linearwavenumber spectrometer, including the refractive index and the vertex angle of the dispersive prism and the rotation angle between the diffraction grating and the dispersive prism. According to the optimization, an F2 equilateral dispersive prism is used to construct the optimized linearwavenumber spectrometer with a rotation angle of 21.8°. We construct an optimized linearwavenumber spectrometer and implement the spectrometer in a developed spectraldomain optical coherence tomography system as a detection unit. We evaluate the performances of the linear-wavenumber spectrometer both theoretically and experimentally. The experimentally measured axial resolution of the spectraldomain optical coherence tomography system based on the linear-wavenumber spectrometer is 8.52 μm, and the sensitivity is measured to be 91 dB with -6 dB sensitivity roll-off within a depth range of 1.2 mm. The experimentally measured sensitivity roll-off curve accords well with the theoretical sensitivity roll-off curve. Utilizing the general parallel computing capability of a GPU card, the highquality spectraldomain optical coherence tomography images of the human finger skin can be reconstructed in real time without any resampling or interpolating process.
      Corresponding author: Wu Tong, wutong@nuaa.edu.cn;ywliu@nuaa.edu.cn ; Liu You-Wen, wutong@nuaa.edu.cn;ywliu@nuaa.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. NZ2015104).
    [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Fercher F A, Hitzenberger C K, Kamp G, Elzaiat S Y 1995 Opt. Commun. 117 43

    [3]

    Hausler G, Lindner M W 1998 J. Biomed. Opt. 3 21

    [4]

    Cho H S, Jang S J, Kim K, Dan A V, Shishkov M, Bouma B E, Oh W Y 2013 Biomed. Opt. Express 5 223

    [5]

    Wang R K, Zhang A Q, Choi W J, Zhang Q Q, Chen C L, Miller A, Gregori G, Rosenfeld P J 2016 Opt. Lett. 41 2330

    [6]

    Liang Y M, Zhou D C, Meng F Y, Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese)[梁艳梅, 周大川, 孟凡勇, 王明伟 2007 物理学报 56 3246]

    [7]

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861 (in Chinese)[贾亚青, 梁艳梅, 朱晓农 2007 物理学报 56 3861]

    [8]

    Huang L M, Ding Z H, Hong W, Wang C 2011 Acta Phys. Sin. 60 023401 (in Chinese)[黄良敏, 丁志华, 洪威, 王川 2011 物理学报 60 023401]

    [9]

    Leitgeb R, Hitzenberger C K, Fercher A F 2003 Opt. Expresss 11 889

    [10]

    Choma M A, Sarunic M V, Yang C, Izatt J A 2003 Opt. Express 11 2183

    [11]

    Brauer B, Murdoch S G, Vanholsbeeck F 2016 Opt. Lett. 41 5732

    [12]

    Zhang M, Hwang T S, Campbell J P, Bailey S T, Wilson J D, Huang D, Jia Y 2016 Biomed. Opt. Express 7 816

    [13]

    Photiou C, Bousi E, Zouvani I, Pitris C 2017 Biomed. Opt. Express 8 2528

    [14]

    Chen J B, Zeng Y G, Yuan Z L, Tang Z L 2018 Acta Opt. Sin. 38 0111001 (in Chinese)[陈俊波, 曾亚光, 袁治灵, 唐志列 2018 光学学报 38 0111001]

    [15]

    Gao W R, Chen Y D, Liu C, Zhang T Q, Zhu Y 2016 Acta Opt. Sin. 45 0611001 (in Chinese)[高万荣, 陈一丹, 刘畅, 张秋庭, 朱越 2016 光学学报 45 0611001]

    [16]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. Sin. 62 114202 (in Chinese)[鲍文, 丁志华, 王川, 梅胜涛 2013 物理学报 62 114202]

    [17]

    Hu Z L, Pan Y S, Rollins A M 2007 Appl. Opt. 46 8499

    [18]

    Dorrer C, Belabas N, Likforman J P, Joffre M 2000 J. Opt. Soc. Am. B 17 1795

    [19]

    Hu Z L, Rollins A M 2007 Phys. Opt. Lett. 32 3525

    [20]

    Gelikonov V M, Gelikonov G V, Shilyagin P A 2009 Opt. Spectrosc. 106 459

    [21]

    Watanabe Y, Itagaki T 2009 J. Biomed. Opt. 14 48

    [22]

    Lee S W, Kam H, Joo H P, Tae G L, Eun S L, Jae Y L 2015 J. Opt. Soc. Korea 19 55

    [23]

    Lan G P, Li G Q 2017 Sci. Rep. 7 75

  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Fercher F A, Hitzenberger C K, Kamp G, Elzaiat S Y 1995 Opt. Commun. 117 43

    [3]

    Hausler G, Lindner M W 1998 J. Biomed. Opt. 3 21

    [4]

    Cho H S, Jang S J, Kim K, Dan A V, Shishkov M, Bouma B E, Oh W Y 2013 Biomed. Opt. Express 5 223

    [5]

    Wang R K, Zhang A Q, Choi W J, Zhang Q Q, Chen C L, Miller A, Gregori G, Rosenfeld P J 2016 Opt. Lett. 41 2330

    [6]

    Liang Y M, Zhou D C, Meng F Y, Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese)[梁艳梅, 周大川, 孟凡勇, 王明伟 2007 物理学报 56 3246]

    [7]

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861 (in Chinese)[贾亚青, 梁艳梅, 朱晓农 2007 物理学报 56 3861]

    [8]

    Huang L M, Ding Z H, Hong W, Wang C 2011 Acta Phys. Sin. 60 023401 (in Chinese)[黄良敏, 丁志华, 洪威, 王川 2011 物理学报 60 023401]

    [9]

    Leitgeb R, Hitzenberger C K, Fercher A F 2003 Opt. Expresss 11 889

    [10]

    Choma M A, Sarunic M V, Yang C, Izatt J A 2003 Opt. Express 11 2183

    [11]

    Brauer B, Murdoch S G, Vanholsbeeck F 2016 Opt. Lett. 41 5732

    [12]

    Zhang M, Hwang T S, Campbell J P, Bailey S T, Wilson J D, Huang D, Jia Y 2016 Biomed. Opt. Express 7 816

    [13]

    Photiou C, Bousi E, Zouvani I, Pitris C 2017 Biomed. Opt. Express 8 2528

    [14]

    Chen J B, Zeng Y G, Yuan Z L, Tang Z L 2018 Acta Opt. Sin. 38 0111001 (in Chinese)[陈俊波, 曾亚光, 袁治灵, 唐志列 2018 光学学报 38 0111001]

    [15]

    Gao W R, Chen Y D, Liu C, Zhang T Q, Zhu Y 2016 Acta Opt. Sin. 45 0611001 (in Chinese)[高万荣, 陈一丹, 刘畅, 张秋庭, 朱越 2016 光学学报 45 0611001]

    [16]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. Sin. 62 114202 (in Chinese)[鲍文, 丁志华, 王川, 梅胜涛 2013 物理学报 62 114202]

    [17]

    Hu Z L, Pan Y S, Rollins A M 2007 Appl. Opt. 46 8499

    [18]

    Dorrer C, Belabas N, Likforman J P, Joffre M 2000 J. Opt. Soc. Am. B 17 1795

    [19]

    Hu Z L, Rollins A M 2007 Phys. Opt. Lett. 32 3525

    [20]

    Gelikonov V M, Gelikonov G V, Shilyagin P A 2009 Opt. Spectrosc. 106 459

    [21]

    Watanabe Y, Itagaki T 2009 J. Biomed. Opt. 14 48

    [22]

    Lee S W, Kam H, Joo H P, Tae G L, Eun S L, Jae Y L 2015 J. Opt. Soc. Korea 19 55

    [23]

    Lan G P, Li G Q 2017 Sci. Rep. 7 75

  • [1] Zhou Fei, Chen Qi, Liu Hao, Dai Yue, Wei Chen, Yuan Hang, Wang Hao, Tu Xue-Cou, Kang Lin, Jia Xiao-Qing, Zhao Qing-Yuan, Chen Jian, Zhang La-Bao, Wu Pei-Heng. Noise characteristics analysis and suppression of optical system based on infrared superconducting single-photon detector. Acta Physica Sinica, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] Kou Ke, Wang Cuo, Wang Xian, Lian Tian-Hong, Jiao Ming-Xing, Fan Yu-Zhen. Sensitivity enhancement in laser self-mixing nano-particle sizer with linear current tuning based frequency shifting method. Acta Physica Sinica, 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [3] Chen Da-Yong, Miao Pei-Xian, Shi Yan-Chao, Cui Jing-Zhong, Liu Zhi-Dong, Chen Jiang, Wang Kuan. Measurement of noise of current source by pump-probe atomic magnetometer. Acta Physica Sinica, 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [4] Measurement of the Noise of Current Source by Pump-probe Atomic Magnetometer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211122
    [5] Liu Xu-Yang, Zhang He-Qiu, Li Bing-Bing, Liu Jun, Xue Dong-Yang, Wang Heng-Shan, Liang Hong-Wei, Xia Xiao-Chuan. Characteristics of AlGaN/GaN high electron mobility transistor temperature sensor. Acta Physica Sinica, 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] Zhang Wen-Jie, Liu Yu-Song, Guo Hao, Han Xing-Cheng, Cai An-Jiang, Li Sheng-Kun, Zhao Peng-Fei, Liu Jun. Methodology of improving sensitivity of silicon vacancy spin-based sensors based on double spiral coil RF resonance structure. Acta Physica Sinica, 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [7] Zuo Xiao-Jie, Sun Ying-Rong, Yan Zhi-Hui, Jia Xiao-Jun. High sensitivity quantum Michelson interferometer. Acta Physica Sinica, 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [8] Miao Pei-Xian, Yang Shi-Yu, Wang Jian-Xiang, Lian Ji-Qing, Tu Jian-Hui, Yang Wei, Cui Jing-Zhong. Rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. Acta Physica Sinica, 2017, 66(16): 160701. doi: 10.7498/aps.66.160701
    [9] Hu Ze-Hua, Ye Tao, Liu Xiong-Guo, Wang Jia. Uncertainty quantification in the calculation of keff using sensitity and stochastic sampling method. Acta Physica Sinica, 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [10] Wang Zhi-Guo, Luo Hui, Fan Zhen-Fang, Xie Yuan-Ping. Research on an pump-probe rubidium magnetometer. Acta Physica Sinica, 2016, 65(21): 210702. doi: 10.7498/aps.65.210702
    [11] Liu Jian-Hua, Tang Jun, Shang Cheng-Long, Zhang Wei, Bi Yu, Zhai Chen-Ting, Guo Ze-Bin, Wang Ming-Huan, Guo Hao, Qian Kun, Liu Jun, Xue Chen-Yang. Optimization of microsphere’s DQ product based on resonant micro-optical gyro. Acta Physica Sinica, 2015, 64(15): 154206. doi: 10.7498/aps.64.154206
    [12] Shi Sheng-Cai, Li Jing, Zhang Wen, Miao Wei. Terahertz high-sensitivity superconducting detectors. Acta Physica Sinica, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [13] Wang Jun-Ping, Qi Su-Yang, Liu Shi-Gang. Net sensitivity for open and short model based on layout optimization. Acta Physica Sinica, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [14] Xu Jin, Xie Pin-Hua, Si Fu-Qi, Li Ang, Zhou Hai-Jin, Wu Feng-Cheng, Wang Yang, Liu Jian-Guo, Liu Wen-Qing. The sensitivity study of NO2 vertical profile retrieval by airborne platform. Acta Physica Sinica, 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [15] Tian Hui-Juan, Niu Ping-Juan. Sensitivity of delta-P1 approximation model to the reduced scattering parameter. Acta Physica Sinica, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [16] Jiang Ying, Liang Da-Kai, Zeng Jie, Ni Xiao-Yu. Influence of monitoring point wavelength on axial strain sensitivity of high-birefringence fiber loop mirror. Acta Physica Sinica, 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [17] Gong Yuan, Guo Yu, Rao Yun-Jiang, Zhao Tian, Wu Yu, Ran Zeng-Ling. Sensitivity analysis of hybrid fiber Fabry-Pérot refractive-index sensor. Acta Physica Sinica, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [18] Hou Jian-Ping, Ning Tao, Gai Shuang-Long, Li Peng, Hao Jian-Ping, Zhao Jian-Lin. Sensitivity analysis of refractive index measurement based on intermodal interference in photonic crystal fiber. Acta Physica Sinica, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [19] Ren Li-Chun, Zhou Lin, Li Run-Bing, Liu Min, Wang Jin, Zhan Ming-Sheng. Dependence of sensitivity of atom interferometer gravimeters on the Raman laser pulse sequences. Acta Physica Sinica, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [20] Liu Ying, Wang Li-Jun, Guo Yun-Feng, Zhang Xiao-Juan, Gao Zong-Hui, Tian Hui-Juan. Sensitivity of spatially-resolved diffuse reflectance to high-order optical parameters. Acta Physica Sinica, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
Metrics
  • Abstract views:  7603
  • PDF Downloads:  163
  • Cited By: 0
Publishing process
  • Received Date:  07 December 2017
  • Accepted Date:  15 March 2018
  • Published Online:  20 May 2019

/

返回文章
返回