Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of low-dimensional ferroelectric materials

Hu Ting Kan Er-Jun

Citation:

Research progress of low-dimensional ferroelectric materials

Hu Ting, Kan Er-Jun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Ferroelectricity, which exhibits a spontaneous electrical polarization under Curie temperature, is of potential value for sensors, photonics and energy-efficient memories, solar cell, and photoelectrochemical applications. With the rapid development of high-density electronic devices, miniaturized and integrated ferroelectric devices have been a development tendency for ferroelectric materials. However, the size effect and surface effect restrict the applications of traditional bulk ferroelectric materials on a nanometer scale. Therefore the ferroelectric properties of low-dimensional nanomaterials have become an extensively studying subject in the field of material science. In this article, we review the theoretical and experimental researches of low-dimensional ferroelectric materials in recent years, including two-dimensional van der Waals layered ferroelectric materials, covalent functionalized ferroelectric materials, low-dimensional perovskite materials, external regulation and two-dimensional hyperferroelectric metal. We first give a concise outline of the basic theory, which relates to the existence of ferroelectricity. And then, we introduce the intrinsic ferroelectricity into two-dimensional materials. Many samples have been predicted, and the origin of ferroelectricity can be attributed to the soft modes of phonon, which leads to the ion displacements. Further, we discuss the ferroelectricity in covalent-modified two-dimensional materials. In such structures, the modified groups produce spontaneous electric dipoles, and lead to the macroscopical ferroelectricity. Therefore, we focus on how to design such structures, and the consequent ferreoelectricity. Considering the big potential of perovskite structures in ferroelectric family, we also discuss the recently reported low-dimensional perovskite structures, indicating several competitive mechanisms in such complex compounds. Additionally, we also introduce the research progress of other aspects in this field, including charge-polar induced ferroelectricity, two-dimensional ferromagnetic ferroelectrics, and hyperferroelectric metal. The reported new physical mechanisms are also provided to explain the low-dimensional ferroelectrics. Thus, such results not only mark the research of low-dimensional materials entering into a new stage, but also provide abundant physics in this area. Finally, the development prospects for low-dimensional ferroelectrics are also discussed.
      Corresponding author: Kan Er-Jun, ekan@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604146, 51522206, 11574151, 11774173), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130031), and the New Century Excellent Talents in University, China (Grant No. NCET-12-0628).
    [1]

    Lu H, Bark C W, de los Esque Ojos D, Alcala J, Eom C B, Catalan G, Gruverman A 2012 Science 336 59

    [2]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [3]

    Scott J F 2007 Science 315 954

    [4]

    Wen Z, Li C, Wu D, Li A, Ming N 2013 Nat. Mater. 12 617

    [5]

    Efremov D V, van den Brink J, Khomskii D I 2004 Nat. Mater. 3 853

    [6]

    Rado G T, Ferrari J M 1975 Phys. Rev. B 12 5166

    [7]

    Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kit H 2005 Nature 436 1136

    [8]

    Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083

    [9]

    Junquera J, Ghosez P 2003 Nature 422 506

    [10]

    Spaldin N A 2004 Science 304 1606

    [11]

    Fong D, Stephenson G, Streiffer S, Eastman J, Auciello O, Fuoss P, Thompson C 2004 Science 304 1650

    [12]

    Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666

    [13]

    Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197

    [14]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [15]

    Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q 2013 J. Am. Chem. Soc. 135 1213

    [16]

    Liu H, Neal A T, Zhu Z, Tomanek D, Ye P D 2014 ACS Nano 8 4033

    [17]

    Topsakal M, Akturk E, Ciraci S 2009 Phys. Rev. B 79 115442

    [18]

    Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626

    [19]

    Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854

    [20]

    Kou L, Chen C, Smith S C 2015 J. Phys. Chem. Lett. 6 2794

    [21]

    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393

    [22]

    Ginzburg V L 1949 Zh. Eksp. Teor. Fiz. 19 36

    [23]

    Devonshire A F 1954 Adv. Phys. 3 85

    [24]

    Cochran W 1960 Adv. Phys. 9 387

    [25]

    Anderson P W 1960 Fizika Dielektrikov (Moscow: Akad. Nauk. SSSR)

    [26]

    De Gennes P G 1963 Solid State Commun. 1 132

    [27]

    Brout R, Mller K A, Thomas H 1966 Adv. Phys. 4 507

    [28]

    Zhou J H, Yang C Z 1997 Solid State Commun. 101 639

    [29]

    Onsager L 1944 Phys. Rev. 65 117

    [30]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601

    [31]

    Sante D D, Stroppa A, Barone P, Whangbo M H, Picozzi S 2015 Phys. Rev. B 91 161401

    [32]

    Guan S, Liu C, Lu Y, Yao Y, Yang S A 2017 arXiv:171204265v2 [cond-mat.mtrl-sci]

    [33]

    von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P, Cava R J 2017 J. Am. Chem. Soc. 139 2771

    [34]

    Xiao C, Wang F, Yang S A, Lu Y 2017 arXiv:1706.05629 [cond-mat.mtrl-sci]

    [35]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274

    [36]

    Kooi B J, Noheda B 2016 Science 353 221

    [37]

    Wan W, Liu C, Xiao W, Yao Y 2017 Appl. Phys. Lett. 111 132904

    [38]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956

    [39]

    Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H, Lai K 2017 Nano Lett. 17 5508

    [40]

    Wu M, Zeng X C 2016 Nano Lett. 16 3236

    [41]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601

    [42]

    Wang H, Qian X 2017 2D Mater. 4 015042

    [43]

    Li L, Wu M 2017 ACS Nano 11 6382

    [44]

    Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena P 2012 J. Am. Chem. Soc. 134 14423

    [45]

    Tu Z, Wu M, Zeng X C 2017 J. Phys. Chem. Lett. 8 1973

    [46]

    Maisonneuve V, Cajipe V B, Simon A, von der Muhll R, Ravez J 1997 Phys. Rev. B 56 10860

    [47]

    Studenyak I P, Mitrovcij V V, Kovacs G S, Gurzan M I, Mykajlo O A, Vysochanskii Y M, Cajipe V B 2003 Phys. Status Solidi B 236 678

    [48]

    Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808

    [49]

    Chyasnavichyus M, Susner M A, Ievlev A V, Eliseev E A, Kalinin S V, Balke N, Morozovska A N, McGuire M A 2016 Appl. Phys. Lett. 109 172901

    [50]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357

    [51]

    Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427

    [52]

    Song W, Fei R, Yang L 2017 Phys. Rev. B 96 235420

    [53]

    Kan E, Wu F, Deng K, Tang W 2013 Appl. Phys. Lett. 103 193103

    [54]

    Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena1 P 2013 Phys. Rev. B 87 081406

    [55]

    Wu M, Dong S, Yao K, Liu J, Zeng X C 2016 Nano Lett. 16 7309

    [56]

    Yang Q, Xiong W, Zhu L, Gao G, Wu M 2017 J. Am. Chem. Soc. 139 11506

    [57]

    Chandrasekaran A, Mishra A, Singh A K 2017 Nano Lett. 17 3290

    [58]

    Lu J, Luo W, Feng J, Xiang H 2018 Nano Lett. 18 595

    [59]

    Zhang X, Yang Z, Chen Y 2017 J. Appl. Phys. 122 064101

    [60]

    Hu T, Wu H, Zeng H, Deng K, Kan E 2016 Nano Lett. 16 8015

    [61]

    Huang C, Du Y, Wu H, Xiang H, Deng K, Kan E 2018 Phys. Rev. Lett. 120 147601

    [62]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 217

    [63]

    Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024

    [64]

    Luo W, Xu K, Xiang H 2017 Phys. Rev. B 96 235415

  • [1]

    Lu H, Bark C W, de los Esque Ojos D, Alcala J, Eom C B, Catalan G, Gruverman A 2012 Science 336 59

    [2]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63

    [3]

    Scott J F 2007 Science 315 954

    [4]

    Wen Z, Li C, Wu D, Li A, Ming N 2013 Nat. Mater. 12 617

    [5]

    Efremov D V, van den Brink J, Khomskii D I 2004 Nat. Mater. 3 853

    [6]

    Rado G T, Ferrari J M 1975 Phys. Rev. B 12 5166

    [7]

    Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y, Kit H 2005 Nature 436 1136

    [8]

    Dawber M, Rabe K M, Scott J F 2005 Rev. Mod. Phys. 77 1083

    [9]

    Junquera J, Ghosez P 2003 Nature 422 506

    [10]

    Spaldin N A 2004 Science 304 1606

    [11]

    Fong D, Stephenson G, Streiffer S, Eastman J, Auciello O, Fuoss P, Thompson C 2004 Science 304 1650

    [12]

    Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva I, Firsov A 2004 Science 306 666

    [13]

    Novoselov K, Geim A, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A 2005 Nature 438 197

    [14]

    Yoon Y, Ganapathi K, Salahuddin S 2011 Nano Lett. 11 3768

    [15]

    Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q 2013 J. Am. Chem. Soc. 135 1213

    [16]

    Liu H, Neal A T, Zhu Z, Tomanek D, Ye P D 2014 ACS Nano 8 4033

    [17]

    Topsakal M, Akturk E, Ciraci S 2009 Phys. Rev. B 79 115442

    [18]

    Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626

    [19]

    Qin G, Yan Q B, Qin Z, Yue S Y, Hu M, Su G 2015 Phys. Chem. Chem. Phys. 17 4854

    [20]

    Kou L, Chen C, Smith S C 2015 J. Phys. Chem. Lett. 6 2794

    [21]

    Fei R, Faghaninia A, Soklaski R, Yan J A, Lo C, Yang L 2014 Nano Lett. 14 6393

    [22]

    Ginzburg V L 1949 Zh. Eksp. Teor. Fiz. 19 36

    [23]

    Devonshire A F 1954 Adv. Phys. 3 85

    [24]

    Cochran W 1960 Adv. Phys. 9 387

    [25]

    Anderson P W 1960 Fizika Dielektrikov (Moscow: Akad. Nauk. SSSR)

    [26]

    De Gennes P G 1963 Solid State Commun. 1 132

    [27]

    Brout R, Mller K A, Thomas H 1966 Adv. Phys. 4 507

    [28]

    Zhou J H, Yang C Z 1997 Solid State Commun. 101 639

    [29]

    Onsager L 1944 Phys. Rev. 65 117

    [30]

    Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112 157601

    [31]

    Sante D D, Stroppa A, Barone P, Whangbo M H, Picozzi S 2015 Phys. Rev. B 91 161401

    [32]

    Guan S, Liu C, Lu Y, Yao Y, Yang S A 2017 arXiv:171204265v2 [cond-mat.mtrl-sci]

    [33]

    von Rohr F O, Ji H, Cevallos F A, Gao T, Ong N P, Cava R J 2017 J. Am. Chem. Soc. 139 2771

    [34]

    Xiao C, Wang F, Yang S A, Lu Y 2017 arXiv:1706.05629 [cond-mat.mtrl-sci]

    [35]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274

    [36]

    Kooi B J, Noheda B 2016 Science 353 221

    [37]

    Wan W, Liu C, Xiao W, Yao Y 2017 Appl. Phys. Lett. 111 132904

    [38]

    Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956

    [39]

    Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H, Lai K 2017 Nano Lett. 17 5508

    [40]

    Wu M, Zeng X C 2016 Nano Lett. 16 3236

    [41]

    Fei R, Kang W, Yang L 2016 Phys. Rev. Lett. 117 097601

    [42]

    Wang H, Qian X 2017 2D Mater. 4 015042

    [43]

    Li L, Wu M 2017 ACS Nano 11 6382

    [44]

    Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena P 2012 J. Am. Chem. Soc. 134 14423

    [45]

    Tu Z, Wu M, Zeng X C 2017 J. Phys. Chem. Lett. 8 1973

    [46]

    Maisonneuve V, Cajipe V B, Simon A, von der Muhll R, Ravez J 1997 Phys. Rev. B 56 10860

    [47]

    Studenyak I P, Mitrovcij V V, Kovacs G S, Gurzan M I, Mykajlo O A, Vysochanskii Y M, Cajipe V B 2003 Phys. Status Solidi B 236 678

    [48]

    Belianinov A, He Q, Dziaugys A, Maksymovych P, Eliseev E, Borisevich A, Morozovska A, Banys J, Vysochanskii Y, Kalinin S V 2015 Nano Lett. 15 3808

    [49]

    Chyasnavichyus M, Susner M A, Ievlev A V, Eliseev E A, Kalinin S V, Balke N, Morozovska A N, McGuire M A 2016 Appl. Phys. Lett. 109 172901

    [50]

    Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357

    [51]

    Xu B, Xiang H, Xia Y, Jiang K, Wan X, He J, Yin J, Liu Z 2017 Nanoscale 9 8427

    [52]

    Song W, Fei R, Yang L 2017 Phys. Rev. B 96 235420

    [53]

    Kan E, Wu F, Deng K, Tang W 2013 Appl. Phys. Lett. 103 193103

    [54]

    Wu M, Burton J D, Tsymbal E Y, Zeng X C, Jena1 P 2013 Phys. Rev. B 87 081406

    [55]

    Wu M, Dong S, Yao K, Liu J, Zeng X C 2016 Nano Lett. 16 7309

    [56]

    Yang Q, Xiong W, Zhu L, Gao G, Wu M 2017 J. Am. Chem. Soc. 139 11506

    [57]

    Chandrasekaran A, Mishra A, Singh A K 2017 Nano Lett. 17 3290

    [58]

    Lu J, Luo W, Feng J, Xiang H 2018 Nano Lett. 18 595

    [59]

    Zhang X, Yang Z, Chen Y 2017 J. Appl. Phys. 122 064101

    [60]

    Hu T, Wu H, Zeng H, Deng K, Kan E 2016 Nano Lett. 16 8015

    [61]

    Huang C, Du Y, Wu H, Xiang H, Deng K, Kan E 2018 Phys. Rev. Lett. 120 147601

    [62]

    Anderson P W, Blount E I 1965 Phys. Rev. Lett. 14 217

    [63]

    Shi Y, Guo Y, Wang X, Princep A J, Khalyavin D, Manuel P, Michiue Y, Sato A, Tsuda K, Yu S, Arai M, Shirako Y, Akaogi M, Wang N, Yamaura K, Boothroyd A T 2013 Nat. Mater. 12 1024

    [64]

    Luo W, Xu K, Xiang H 2017 Phys. Rev. B 96 235415

  • [1] Deng Lin-Mei, Si Jun-Shan, Wu Xu-Cai, Zhang Wei-Bing. Study of transition metal dichalcogenides/chromium trihalides van der Waals heterostructure by band unfolding method. Acta Physica Sinica, 2022, 71(14): 147101. doi: 10.7498/aps.71.20220326
    [2] Huang Hong-Fei, Yao Yang, Yao Cheng-Jun, Hao Xiang, Wu Yin-Zhong. Doping effect and ferroelectricity of nanoribbons of In2Se3 monolayer. Acta Physica Sinica, 2022, 71(19): 197701. doi: 10.7498/aps.71.20220654
    [3] Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan. Research progress of novel properties in several van der Waals ferroelectric materials. Acta Physica Sinica, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [4] Wu Tian, Yao Meng-Li, Long Meng-Qiu. First principle calculations of interface interactions and photoelectric properties of perovskite CsPbX3 (X=Cl, Br, I) and penta-graphene van der Waals heterostructures. Acta Physica Sinica, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [5] Yang Ru-Xia, Lu Yu-Ming, Zeng Li-Zhu, Zhang Lu-Jia, Li Guan-Nan. Effect of Gd doping on the structure, dielectric and multiferroic properties of 0.7BiFe0.95Ga0.05O3-0.3BaTiO3 ceramics. Acta Physica Sinica, 2020, 69(10): 107701. doi: 10.7498/aps.69.20200175
    [6] Pei Ming-Hui, Tian Yu, Zhang Jin-Xing. Control of surface structures and functionalities in perovskite-type ferroelectric oxides and their potential applications. Acta Physica Sinica, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [7] Hu Hai-Yang, Chen Ji-Kun, Shao Fei, Wu Yong, Meng Kang-Kang, Li Zhi-Peng, Miao Jun, Xu Xiao-Guang, Wang Jia-Ou, Jiang Yong. Electrical conductivity and infrared ray photoconductivity for lattice distorted SmNiO3 perovskite oxide film. Acta Physica Sinica, 2019, 68(2): 026701. doi: 10.7498/aps.68.20181513
    [8] Li Min, Shi Xin-Na, Zhang Ze-Lin, Ji Yan-Da, Fan Ji-Yu, Yang Hao. Ferroelectricity of flexible Pb(Zr0.53Ti0.47)O3 thin film at high temperature. Acta Physica Sinica, 2019, 68(8): 087302. doi: 10.7498/aps.68.20181967
    [9] Shi Yu-Jun, Zhang Xu, Qin Lei, Jin Kui, Yuan Jie, Zhu Bei-Yi, Zhu Yun. Rapid preparations of Bi1-xLaxFeO3± δ thin films and their ferroelectric properties. Acta Physica Sinica, 2016, 65(5): 058101. doi: 10.7498/aps.65.058101
    [10] Zhang Run-Lan, Xing Hui, Chen Chang-Le, Duan Meng-Meng, Luo Bing-Cheng, Jin Ke-Xin. Study on ferroelectric behaviors and ferroelectric nanodomains of YMnO3 thin film. Acta Physica Sinica, 2014, 63(18): 187701. doi: 10.7498/aps.63.187701
    [11] He Jian-Ping, Lü Wen-Zhong, Wang Xiao-Hong. First-principles study of ordered structures in Ba0.5Sr0.5TiO3. Acta Physica Sinica, 2011, 60(9): 097102. doi: 10.7498/aps.60.097102
    [12] Gu Jian-Jun, Liu Li-Hu, Qi Yun-Kai, Xu Qin, Zhang Hui-Min, Sun Hui-Yuan. Magnetoelectric coupling in NiFe2 O4-BiFeO3 composite films. Acta Physica Sinica, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [13] Zhao Qing-Xun, Ma Ji-Kui, Geng Bo, Wei Da-Yong, Guan Li, Liu Bao-Ting. Effect of hydrogen on ferroelectric properties of Bi4Ti3O12 during forming gas annealing. Acta Physica Sinica, 2010, 59(11): 8042-8047. doi: 10.7498/aps.59.8042
    [14] Sun Yuan, Huang Zu-Fei, Fan Hou-Gang, Ming Xing, Wang Chun-Zhong, Chen Gang. First-principles investigation on the role of ions in ferroelectric transition of BiFeO3. Acta Physica Sinica, 2009, 58(1): 193-200. doi: 10.7498/aps.58.193.1
    [15] Sun Yuan, Ming Xing, Meng Xing, Sun Zheng-Hao, Xiang Peng, Lan Min, Chen Gang. First-principles investigation of the electronic properties of multiferroic BaCoF4. Acta Physica Sinica, 2009, 58(8): 5653-5660. doi: 10.7498/aps.58.5653
    [16] Wang Xiu-Zhang, Liu Hong-Ri. Enhanced ferroelectricity of Pb(Zr0.5Ti0.5)O3 film by the introduction of La0.3Sr0.7TiO3 template layer. Acta Physica Sinica, 2007, 56(3): 1735-1740. doi: 10.7498/aps.56.1735
    [17] Xue Wei-Dong, Chen Zhao-Yong, Yang Chun, Li Yan-Rong. First-principles study on tetragonal BaTiO3 ferroelectric. Acta Physica Sinica, 2005, 54(2): 857-862. doi: 10.7498/aps.54.857
    [18] Li Zheng-Fa, Zhong Wei-Lie, Qiu Zhong-Ping, Ge Hong-Liang, Zhang Pei-Lin, Wang Chun-Lei. Dielectric and ferroelectric properties of BaBi4Ti4O15 ceramics and their dependence on lattice structure. Acta Physica Sinica, 2004, 53(9): 3200-3204. doi: 10.7498/aps.53.3200
    [19] ZHANG LEI, ZHONG WEI-LIE. FERROELECTRIC BEHAVIORS OF BaTiO3 IN TRANSVERSE-FIELD ISING MODEL. Acta Physica Sinica, 2000, 49(11): 2296-2299. doi: 10.7498/aps.49.2296
    [20] ZHANG LEI, ZHONG WEI-LIE, PENG YI-PING, WANG YU-GUO. A CORRELATION BETWEEN THE FERROELECTRIC PHASE TRANSITION AND THE CELL VOLUME IN BARIUM STRONTIUM TITANATE. Acta Physica Sinica, 2000, 49(7): 1371-1376. doi: 10.7498/aps.49.1371
Metrics
  • Abstract views:  12728
  • PDF Downloads:  1409
  • Cited By: 0
Publishing process
  • Received Date:  19 March 2018
  • Accepted Date:  30 April 2018
  • Published Online:  05 August 2018

/

返回文章
返回