Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Broadband reconfigurable reflective polarization convertor

Yu Hui-Cun Cao Xiang-Yu Gao Jun Yang Huan-Huan Han Jiang-Feng Zhu Xue-Wen Li Tong

Citation:

Broadband reconfigurable reflective polarization convertor

Yu Hui-Cun, Cao Xiang-Yu, Gao Jun, Yang Huan-Huan, Han Jiang-Feng, Zhu Xue-Wen, Li Tong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • With the rapid evolution of radar technology and mobile communication systems, polarization conversion has received much attention from academia and industry in recent years, which has the advantages of improving system performance through eliminating multipath fading. In this paper, a novel broadband reconfigurable reflective polarization convertor is designed, which combines the idea of metamaterial and the technology of micro-electro-mechanical system (MEMS) switches. The proposed structure consists of three layers: an upper metallic patches layer, a middle dielectric layer with a thickness of 2 mm, and a bottom metal plate. There are through-holes of metal connecting the upper and bottom layers. According to the simulation using HFSS software, when the MEMS switch is on, the device works with a relative bandwidth of 57.77% from 7.78 GHz to 14.10 GHz, of which the polarization conversion ratio is larger than 80%. In addition, at 7.62 GHz and 12.56 GHz, the reflected wave is a right-hand circularly polarized wave and a left-hand circularly polarized wave, respectively. When the MEMS switch is off, the reflected wave is in the same polarization, which means the device does not convert the polarization of electromagnetic wave anymore. The electromagnetic wave are decomposed into the u-v coordinate system to further understand the wideband polarization rotation. The reflection phase and the surface current distributions of the convertor are analyzed. Then, the working principle of polarization rotation is explained by analyzing the current distributions and explaining the theory from three different viewpoints. Finally, a 1225-cell (35×35) prototype is fabricated to verify the simulation results. The measured curve has three resonant frequencies and shifts towards the lower frequency slightly. The discrepancy between simulations and measurements is mainly attributed to the restriction of fabrication and measurement condition. In general, experimental results are in agreement with the simulations: when linear polarized wave is incident, the reflected wave realizes the transition from co-polarization to cross-polarization as the switch is switched from off to on. The proposed reconfigurable polarization rotation surface has advantages of broadband, low loss and ease of fabrication, which has great potential applications in antenna radiation, reducing the radar cross section and other territories in controlling electromagnetic wave dynamically.
      Corresponding author: Cao Xiang-Yu, xiangyucaokdy@163.com;gjgj9694@163.com ; Gao Jun, xiangyucaokdy@163.com;gjgj9694@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471389, 61671464, 61701523, 61801508), the Postdoctoral Innovative Talents Support Program of China (Grant No. BX20180375), and the Natural Science Foundation of Shannxi Province, China (Grant No. 2018JM6040).
    [1]

    Ji L Y, Qin P Y, Guo Y J, Ding C, Fu G, Gong S X 2016 IEEE Trans. Antennas Propag. 64 4534

    [2]

    Hu J, Luo G Q, Hao Z C 2018 IEEE Access 6 6130

    [3]

    Cai L P, Cheng Y F, Cheng K K M 2017 IEEE Asia Pacific Microwave Conference Kuala Lumpur, Malaysia, November 13-16, 2017 p112

    [4]

    Zhang M T, Gao S, Jiao Y C, Wan J X, Tian B N, Wu C B, Farrall A J 2016 IEEE Trans. Antennas Propag. 64 1634

    [5]

    Fartookzadeh M 2017 Appl. Phys. B 123 115

    [6]

    Su P, Zhao Y, Jia S, Shi W, Wang H 2016 Sci. Rep. 6 20387

    [7]

    Sui S, Ma H, Wang J, Feng M, Pang Y, Xia S, Xu Z, Qu S 2016 Appl. Phys. Lett. 109 063908

    [8]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201 (in Chinese) [韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201]

    [9]

    Cheng H, Chen S Q, Yu P, Li J X, Deng L, Tian J G 2013 Opt. Lett. 38 1567

    [10]

    Doumanis E, Goussetis G, Dickie R, Cahill R, Baine P, Bain M, Fusco V, Encinar J A, Toso G 2014 IEEE Trans. Antennas Propag. 62 2302

    [11]

    Wu P C, Yan L B, Song Q H, Zhu W M, Zhang W, Tsai D P, Capasso F, Liu A Q 2015 Conference on Lasers and Electro-Optics San Jose, California United States, May 10-15, 2015 STh1M.6

    [12]

    Li W T, Gao S, Cai Y M, Luo Q, Sobhy M, Wei G, Xu J D, Li J Z, Wu C Y, Cheng Z Q 2017 IEEE Trans. Antennas Propag. 65 4470

    [13]

    Yi G W, Huang C, Ma X L, Pan W B, Luo X G 2014 Microwave Opt. Technol. Lett. 56 1281

    [14]

    Ma X L, Pan W B, Huang C, Pu M B, Wang Y Q, Zhao B, Cui J H, Wang C T, Luo X G 2015 Adv. Opt. Mater. 2 945

    [15]

    Cui J H, Huang C, Pan W B, Pu M B, Guo Y H, Luo X G 2016 Sci. Rep. 6 30771

    [16]

    Tao Z, Wan X, Pan B C, Cui T J 2017 Appl. Phys. Lett. 110 121901

    [17]

    Zhang M, Zhang W, Liu A Q, Li F C, Lan C F 2017 Sci. Rep. 7 12068

    [18]

    Wang F W, Guo L X, Gong S X 2018 J. Xidian Univ. 45 80 (in Chinese) [王夫蔚, 郭立新, 龚书喜 2018 西安电子科技大学学报(自然科学版) 45 80]

    [19]

    Sun H Y, Gu C Q, Chen X L, Li Z, Liu L L 2017 Appl. Phys. 121 174902

    [20]

    Jiang H Y N, Lei W, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616

    [21]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M K, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692

    [22]

    Jia Y T, Liu Y, Zhang W B, Gong S X 2016 Appl. Phys. Lett. 109 051901

  • [1]

    Ji L Y, Qin P Y, Guo Y J, Ding C, Fu G, Gong S X 2016 IEEE Trans. Antennas Propag. 64 4534

    [2]

    Hu J, Luo G Q, Hao Z C 2018 IEEE Access 6 6130

    [3]

    Cai L P, Cheng Y F, Cheng K K M 2017 IEEE Asia Pacific Microwave Conference Kuala Lumpur, Malaysia, November 13-16, 2017 p112

    [4]

    Zhang M T, Gao S, Jiao Y C, Wan J X, Tian B N, Wu C B, Farrall A J 2016 IEEE Trans. Antennas Propag. 64 1634

    [5]

    Fartookzadeh M 2017 Appl. Phys. B 123 115

    [6]

    Su P, Zhao Y, Jia S, Shi W, Wang H 2016 Sci. Rep. 6 20387

    [7]

    Sui S, Ma H, Wang J, Feng M, Pang Y, Xia S, Xu Z, Qu S 2016 Appl. Phys. Lett. 109 063908

    [8]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201 (in Chinese) [韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201]

    [9]

    Cheng H, Chen S Q, Yu P, Li J X, Deng L, Tian J G 2013 Opt. Lett. 38 1567

    [10]

    Doumanis E, Goussetis G, Dickie R, Cahill R, Baine P, Bain M, Fusco V, Encinar J A, Toso G 2014 IEEE Trans. Antennas Propag. 62 2302

    [11]

    Wu P C, Yan L B, Song Q H, Zhu W M, Zhang W, Tsai D P, Capasso F, Liu A Q 2015 Conference on Lasers and Electro-Optics San Jose, California United States, May 10-15, 2015 STh1M.6

    [12]

    Li W T, Gao S, Cai Y M, Luo Q, Sobhy M, Wei G, Xu J D, Li J Z, Wu C Y, Cheng Z Q 2017 IEEE Trans. Antennas Propag. 65 4470

    [13]

    Yi G W, Huang C, Ma X L, Pan W B, Luo X G 2014 Microwave Opt. Technol. Lett. 56 1281

    [14]

    Ma X L, Pan W B, Huang C, Pu M B, Wang Y Q, Zhao B, Cui J H, Wang C T, Luo X G 2015 Adv. Opt. Mater. 2 945

    [15]

    Cui J H, Huang C, Pan W B, Pu M B, Guo Y H, Luo X G 2016 Sci. Rep. 6 30771

    [16]

    Tao Z, Wan X, Pan B C, Cui T J 2017 Appl. Phys. Lett. 110 121901

    [17]

    Zhang M, Zhang W, Liu A Q, Li F C, Lan C F 2017 Sci. Rep. 7 12068

    [18]

    Wang F W, Guo L X, Gong S X 2018 J. Xidian Univ. 45 80 (in Chinese) [王夫蔚, 郭立新, 龚书喜 2018 西安电子科技大学学报(自然科学版) 45 80]

    [19]

    Sun H Y, Gu C Q, Chen X L, Li Z, Liu L L 2017 Appl. Phys. 121 174902

    [20]

    Jiang H Y N, Lei W, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616

    [21]

    Yang H H, Cao X Y, Yang F, Gao J, Xu S H, Li M K, Chen X B, Zhao Y, Zheng Y J, Li S J 2016 Sci. Rep. 6 35692

    [22]

    Jia Y T, Liu Y, Zhang W B, Gong S X 2016 Appl. Phys. Lett. 109 051901

  • [1] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [2] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [3] Xu Qiang-Rong, Shen Cheng, Han Feng, Lu Tian-Jian. Broadband low-frequency sound insulation performance of quasi-zero stiffness local resonant acoustic metamaterial plate. Acta Physica Sinica, 2021, 70(24): 244302. doi: 10.7498/aps.70.20211203
    [4] Zhou Shi-Hao, Fang Xin-Yu, Li Meng-Meng, Yu Ye-Feng, Chen Ru-Shan. S/X dual-band real-time modulated frequency selective surface based absorber. Acta Physica Sinica, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [5] Chen Jun, Yang Mao-Sheng, Li Ya-Di, Cheng Deng-Ke, Guo Geng-Liang, Jiang Lin, Zhang Hai-Ting, Song Xiao-Xian, Ye Yun-Xia, Ren Yun-Peng, Ren Xu-Dong, Zhang Ya-Ting, Yao Jian-Quan. Tunable terahertz wave broadband absorber based on metamaterial. Acta Physica Sinica, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [6] Han Jiang-Feng, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zhang Chen. Design of broadband reflective 90 polarization rotator based on metamaterial. Acta Physica Sinica, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [7] Wu Liang-Wei, Zhang Zheng-Ping. Broadband and low-loss left-handed materials based on multi-opening cross shape structures. Acta Physica Sinica, 2016, 65(16): 164101. doi: 10.7498/aps.65.164101
    [8] He Zheng-Rui, Geng You-Lin. Design and analysis of a new type of wideband low-loss and small size left-handed materials. Acta Physica Sinica, 2016, 65(9): 094101. doi: 10.7498/aps.65.094101
    [9] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [10] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [11] Wang Cong-Yi, Xu Cheng, Wu Rui-Xin. Wideband and large incident angle wave transparent material based on frequency selective surface with miniaturized elements. Acta Physica Sinica, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [12] Lu Lei, Qu Shao-Bo, Shi Hong-Yu, Zhang An-Xue, Zhang Jie-Que, Ma Hua. A miniaturized low-frequency polarization-insensitive metamaterial absorber based on broadside-coupled spiral structures. Acta Physica Sinica, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [13] Liu Ya-Hong, Fang Shi-Lei, Gu Shuai, Zhao Xiao-Peng. Multiband and broadband metamterial absorbers. Acta Physica Sinica, 2013, 62(13): 134102. doi: 10.7498/aps.62.134102
    [14] Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou, Zheng Dong-Hao, Fan Yue-Nong, Xiong Xuan, Wang Xian. Design of a thin wide-band absorber based on metamaterials and resistance frequency selective surface. Acta Physica Sinica, 2012, 61(13): 134101. doi: 10.7498/aps.61.134101
    [15] Wu Xiang, Pei Zhi-Bin, Qu Shao-Bo, Xu Zhuo, Bai Peng, Wang Jia-Fu, Wang Xin-Hua, Zhou Hang. Design of metamaterial frequency selective surface with polarization selectivity. Acta Physica Sinica, 2011, 60(11): 114201. doi: 10.7498/aps.60.114201
    [16] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Lin Bao-Qin, Zhou Hang, Bai Peng, Gu Wei, Peng Wei-Dong, Ma Hua. Design of a wide-band metamaterial absorber based on resistance films. Acta Physica Sinica, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [17] Gu Chao, Qu Shao-Bo, Pei Zhi-Bin, Xu Zhuo, Bai Peng, Peng Wei-Dong, Lin Bao-Qin. Design of a wide-band metamaterial absorber based on loaded magnetic resonators. Acta Physica Sinica, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [18] Wang Jia-Fu, Qu Shao-Bo, Xu Zhuo, Zhang Jie-Qiu, Ma Hua, Yang Yi-Ming, Wu Xiang, Lu Lei. Design and experimental verification of left-handed metamaterials based on inter-unit-cell coupling. Acta Physica Sinica, 2010, 59(6): 4018-4022. doi: 10.7498/aps.59.4018
    [19] Fan Jing, Cai Guang-Yu. Tunability in metamaterials with mechanical rotation. Acta Physica Sinica, 2010, 59(12): 8574-8578. doi: 10.7498/aps.59.8574
    [20] Meng Fan-Yi, Wu Qun, Wu Jian. Design and modeling for 1.7—2.7 GHz broad-band left-handed material with miniaturized unit cell and its characterization. Acta Physica Sinica, 2006, 55(5): 2194-2199. doi: 10.7498/aps.55.2194
Metrics
  • Abstract views:  7284
  • PDF Downloads:  170
  • Cited By: 0
Publishing process
  • Received Date:  28 May 2018
  • Accepted Date:  12 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回