Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study on influence of photon reabsorption on photocarrier radiometric characteristics of silicon wafers

Wang Qian Liu Wei-Guo Gong Lei Wang Li-Guo Li Ya-Qing Liu Rong

Citation:

Theoretical study on influence of photon reabsorption on photocarrier radiometric characteristics of silicon wafers

Wang Qian, Liu Wei-Guo, Gong Lei, Wang Li-Guo, Li Ya-Qing, Liu Rong
cstr: 32037.14.aps.68.20181889
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In microelectronic and photovoltaic industry, semiconductors are the base materials in which impurities or defects have a serious influence on the properties of semiconductor-based devices. The determination of the electronic transport properties, i.e., the carrier bulk lifetime ($\tau $), diffusion coefficient (D) and front surface recombination velocity (S1), is important in the evaluation of semiconductor materials. In this paper, the influence of reabsorption of spontaneously emitted photons within silicon wafers on conventional frequency domain photocarrier radiometric (PCR) is theoretically analyzed. The model with photon reabsorption, proposed by our previous paper, in which both band-to-band absorption and free carrier absorption are taken into account, is used. It is shown that the influence strongly depends on not only the doping level, but also the excess carrier density and its distribution, which are sensitive to the electronic transport properties. The influences of photon reabsorption on PCR amplitude and phase increase with doping level and carrier lifetime increasing. While, as the diffusion coefficient and the front surface recombination velocity increase, the influence of photon reabsorption on PCR amplitude decreases but on PCR phase increases. If photon reabsorption is ignored in the determination of the electronic transport parameters for high-doping silicon wafers via multi-parameter fitting, there are large errors for the fitted results. For a sample with $\tau $ = 50 μs, D = 20 cm2/s, and S1 = 10 m/s, if the effect of photon reabsorption is ignored, the fitting results with conventional PCR model are 55.66 μs, 19.98 cm2/s, and 11.94 m/s, and the corresponding deviations from the true value are 11.33%, 0.10%, and 19.40%, respectively. In addition, simulation results show the effect of photon reabsorption can be greatly reduced with a suitable filter in front of the detector, while still enabling the majority of the emitted signal to be captured. For example, with a 1100 nm long-pass filter, the fitted results for the same sample above are 51.43 μs, 20.19 cm2/s, and 9.88 m/s with the relative errors of 2.86%, 0.95%, and 1.23%, respectively. It should be pointed out that an infinitely steep cut-on edge of the long-pass filter is assumed in our simulations, while in fact the influences of the filter on PCR signal and the fitted results should be further considered.
      Corresponding author: Wang Qian, qian_wang521@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61704132, 61501363), Xi'an Intelligent Visiting Perception Key Laboratory Project (Grant No. 201805061ZD12CG45), and Principal Fund from Xi'an Technological University (Grant Nos. XAGDXJJ16007, XAGDXJJ18001).
    [1]

    Schroder D K 2006 Semiconductor Material and Device Characterization Third Edition (New York: Wiley) pp 389-390

    [2]

    Drummond P J, Bhatia D, Kshirsagar A, Ramani S, Ruzyllo J 2011 Thin Solid Films 519 7621Google Scholar

    [3]

    Guidotti D, Batchelder J S, Finkel A, Gerber P D 1989 J. Appl. Phys. 66 2542Google Scholar

    [4]

    Wang K, Kampwerth H 2014 J. Appl. Phys. 115 173103Google Scholar

    [5]

    Ikari T, Salnick A, Mandelis A 1999 J. Appl. Phys. 85 7392Google Scholar

    [6]

    Cheng J, Zhang S 1991 J. Appl. Phys. 70 6999Google Scholar

    [7]

    Zhang X, Li B, Gao C 2006 Appl. Phys. Lett. 89 112120Google Scholar

    [8]

    王谦, 刘卫国, 巩蕾, 王利国, 李亚清 2018 物理学报 67 217201Google Scholar

    Wang Q, Liu W G, Gong L, Wang L G, Li Y Q 2018 Acta Phys. Sin. 67 217201Google Scholar

    [9]

    Mandelis A, Batista J, Shaughnessy D 2003 Phys. Rev. B 67 205208Google Scholar

    [10]

    Li B C, Shaughnessy D, Mandelis A 2005 J. Appl. Phys. 97 023701Google Scholar

    [11]

    Sun Q M, Melnikov A, Mandelis A, Pagliar R H 2018 Appl. Phys. Lett. 112 012105Google Scholar

    [12]

    刘俊岩, 宋鹏, 秦雷, 王飞, 王扬 2015 物理学报 64 087804

    Liu J Y, Song P, Qin L, Wang F, Wang Y 2015 Acta Phys. Sin. 64 087804

    [13]

    Wang Q, Li B C 2015 J. Appl.Phys. 118 215707Google Scholar

    [14]

    Li B C, Shaughnessy D, Mandelis A, Batista J 2004 J. Appl. Phys. 95 7832Google Scholar

    [15]

    Wang Q, Li B C, Ren S D, Wang Q 2015 Int. J. Thermophys. 36 1173Google Scholar

    [16]

    Tai R, Wang C, Hu J, Mandelis A 2014 J. Appl. Phys. 116 033706Google Scholar

    [17]

    Melnikov A, Mandelis A, Tolev J, Chen P, Huq S 2010 J. Appl. Phys. 107 114513Google Scholar

    [18]

    Liu J Y, Song P, Wang F, Wang Y 2015 Chin. Phys. B 24 97801Google Scholar

    [19]

    Liu J Y, Mandelis A 2010 J. Phys. Conf. Ser. 214 012107Google Scholar

    [20]

    Wang J, Mandelis A, Melnikov A, Hoogland S, Sargent E H 2013 J. Phys. Chem. C 117 23333Google Scholar

    [21]

    Hu, L L, Liu M X, Mandelis A, Sun Q M, Melnikov A, Sargent E H 2018 Sol. Energy Mater. Sol. Cells 174 405Google Scholar

    [22]

    Trupke T 2006 J. Appl. Phys. 100 063531Google Scholar

    [23]

    Schinke C, Hinken D, Schmidt J, Bothe K, Brendel R 2013 IEEE J. Photovoltaics 3 1038Google Scholar

    [24]

    Nguyen H T, Rougieux F E, Baker-Finch S C, Macdonald D 2015 IEEE J. Photovoltaics 5 77Google Scholar

    [25]

    Diab H, Arnold C, Lédée F, Trippé-Allard G, Delport G, Vilar C, Bretenaker F, Barjon J, Lauret J, Deleporte E, Garrot D 2017 J. Phys. Chem. Lett. 8 2977Google Scholar

    [26]

    Giesecke J A, Kasemann M, Schubert M C, Würfel P, Warta W 2010 Prog. Photovoltaics Res. Appl. 18 10Google Scholar

    [27]

    Mitchell B, Trupke T, Weber J W, Nyhus J 2011 J. Appl. Phys. 109 083111Google Scholar

    [28]

    Pazos-Outón L M, Szumilo M, Lamboll R, Richter J M, Crespo-Quesada M, Abdi-Jalebi M, Beeson H J, Vrućinić M, Alsari M, Snaith H J, Ehrler B, Friend R H, Deschler F 2016 Science 351 1430Google Scholar

    [29]

    Xu Y, Tennyson E M, Kim J, Barik S, Murray J, Waks E, Leite M S, Munday J N 2018 Adv. Optical Mater. 6 1701323Google Scholar

    [30]

    Wang Q, Liu W G 2017 J. Appl. Phys. 122 165702Google Scholar

    [31]

    Zhang X R, Li B C, Liu X M 2008 J. Appl. Phys. 104 103705Google Scholar

  • 图 1  PCR技术原理示意图

    Figure 1.  Schematic diagram of PCR technique.

    图 2  单晶硅样品的带间吸收系数和自由载流子吸收系数及仿真的未考虑PR效应的PL谱

    Figure 2.  Absorption coefficients ${\rm{\alpha }}$BB and ${\rm{\alpha }}$FCA for a silicon wafer and a simulated PL without PR.

    图 4  重吸收对PL谱的影响 (a)振幅; (b)相位

    Figure 4.  Influence of PR on PL spectrum: (a) Amplitude; (b) phase.

    图 3  PR对PCR信号的影响 (a)振幅; (b)相位; (c)相对误差

    Figure 3.  Influence of PR on PCR signal: (a) Amplitude; (b) phase; (c) relative error.

    图 5  r = 0 μm时 (a) 过剩载流子浓度纵向分布; (b)平均深度与调制频率的关系

    Figure 5.  (a) Vertical excess carrier density distribution and (b) mean depth as a function of the modulation frequency at r = 0 μm.

    图 6  载流子寿命变化时, PR效应对PCR信号的影响

    Figure 6.  Influence of PR on PCR signal for silicon wafers with different carrier lifetimes.

    图 7  载流子扩散系数变化时, PR效应对PCR信号的影响

    Figure 7.  Influence of PR on PCR signal for silicon wafers with different diffusion coefficients.

    图 8  前表面复合速率变化时, PR效应对PCR信号的影响

    Figure 8.  Influence of PR on PCR signal for silicon wafers with different front surface recombination velocities.

    图 9  掺杂浓度变化时, PR效应对PCR信号的影响

    Figure 9.  Influence of PR on PCR signal for silicon wafers with different doping densities.

    图 10  p型单晶硅中PR对拟合的电子输运参数的影响 (a) $\tau $; (b) D; (c) S1

    Figure 10.  Influence of PR on the fitted electronic transport parameters for p-type silicon wafers: (a) $\tau $; (b) D; (c) S1.

    图 11  n型单晶硅中PR对拟合的电子输运参数的影响 (a) $\tau $; (b) D; (c) S1

    Figure 11.  Influence of PR on the fitted electronic transport parameters for n-type silicon wafers: (a) $\tau $; (b) D; (c) S1.

    图 12  加入滤光片前后PR对PCR信号的影响

    Figure 12.  Influence of PR on PCR signal with and without the filter.

  • [1]

    Schroder D K 2006 Semiconductor Material and Device Characterization Third Edition (New York: Wiley) pp 389-390

    [2]

    Drummond P J, Bhatia D, Kshirsagar A, Ramani S, Ruzyllo J 2011 Thin Solid Films 519 7621Google Scholar

    [3]

    Guidotti D, Batchelder J S, Finkel A, Gerber P D 1989 J. Appl. Phys. 66 2542Google Scholar

    [4]

    Wang K, Kampwerth H 2014 J. Appl. Phys. 115 173103Google Scholar

    [5]

    Ikari T, Salnick A, Mandelis A 1999 J. Appl. Phys. 85 7392Google Scholar

    [6]

    Cheng J, Zhang S 1991 J. Appl. Phys. 70 6999Google Scholar

    [7]

    Zhang X, Li B, Gao C 2006 Appl. Phys. Lett. 89 112120Google Scholar

    [8]

    王谦, 刘卫国, 巩蕾, 王利国, 李亚清 2018 物理学报 67 217201Google Scholar

    Wang Q, Liu W G, Gong L, Wang L G, Li Y Q 2018 Acta Phys. Sin. 67 217201Google Scholar

    [9]

    Mandelis A, Batista J, Shaughnessy D 2003 Phys. Rev. B 67 205208Google Scholar

    [10]

    Li B C, Shaughnessy D, Mandelis A 2005 J. Appl. Phys. 97 023701Google Scholar

    [11]

    Sun Q M, Melnikov A, Mandelis A, Pagliar R H 2018 Appl. Phys. Lett. 112 012105Google Scholar

    [12]

    刘俊岩, 宋鹏, 秦雷, 王飞, 王扬 2015 物理学报 64 087804

    Liu J Y, Song P, Qin L, Wang F, Wang Y 2015 Acta Phys. Sin. 64 087804

    [13]

    Wang Q, Li B C 2015 J. Appl.Phys. 118 215707Google Scholar

    [14]

    Li B C, Shaughnessy D, Mandelis A, Batista J 2004 J. Appl. Phys. 95 7832Google Scholar

    [15]

    Wang Q, Li B C, Ren S D, Wang Q 2015 Int. J. Thermophys. 36 1173Google Scholar

    [16]

    Tai R, Wang C, Hu J, Mandelis A 2014 J. Appl. Phys. 116 033706Google Scholar

    [17]

    Melnikov A, Mandelis A, Tolev J, Chen P, Huq S 2010 J. Appl. Phys. 107 114513Google Scholar

    [18]

    Liu J Y, Song P, Wang F, Wang Y 2015 Chin. Phys. B 24 97801Google Scholar

    [19]

    Liu J Y, Mandelis A 2010 J. Phys. Conf. Ser. 214 012107Google Scholar

    [20]

    Wang J, Mandelis A, Melnikov A, Hoogland S, Sargent E H 2013 J. Phys. Chem. C 117 23333Google Scholar

    [21]

    Hu, L L, Liu M X, Mandelis A, Sun Q M, Melnikov A, Sargent E H 2018 Sol. Energy Mater. Sol. Cells 174 405Google Scholar

    [22]

    Trupke T 2006 J. Appl. Phys. 100 063531Google Scholar

    [23]

    Schinke C, Hinken D, Schmidt J, Bothe K, Brendel R 2013 IEEE J. Photovoltaics 3 1038Google Scholar

    [24]

    Nguyen H T, Rougieux F E, Baker-Finch S C, Macdonald D 2015 IEEE J. Photovoltaics 5 77Google Scholar

    [25]

    Diab H, Arnold C, Lédée F, Trippé-Allard G, Delport G, Vilar C, Bretenaker F, Barjon J, Lauret J, Deleporte E, Garrot D 2017 J. Phys. Chem. Lett. 8 2977Google Scholar

    [26]

    Giesecke J A, Kasemann M, Schubert M C, Würfel P, Warta W 2010 Prog. Photovoltaics Res. Appl. 18 10Google Scholar

    [27]

    Mitchell B, Trupke T, Weber J W, Nyhus J 2011 J. Appl. Phys. 109 083111Google Scholar

    [28]

    Pazos-Outón L M, Szumilo M, Lamboll R, Richter J M, Crespo-Quesada M, Abdi-Jalebi M, Beeson H J, Vrućinić M, Alsari M, Snaith H J, Ehrler B, Friend R H, Deschler F 2016 Science 351 1430Google Scholar

    [29]

    Xu Y, Tennyson E M, Kim J, Barik S, Murray J, Waks E, Leite M S, Munday J N 2018 Adv. Optical Mater. 6 1701323Google Scholar

    [30]

    Wang Q, Liu W G 2017 J. Appl. Phys. 122 165702Google Scholar

    [31]

    Zhang X R, Li B C, Liu X M 2008 J. Appl. Phys. 104 103705Google Scholar

Metrics
  • Abstract views:  12898
  • PDF Downloads:  105
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2018
  • Accepted Date:  19 December 2018
  • Available Online:  01 February 2019
  • Published Online:  20 February 2019
  • /

    返回文章
    返回