Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of crystalline silicon solar cells with dopant-free asymmetric heterocontacts

Zhao Sheng-Sheng Xu Yu-Zeng Chen Jun-Fan Zhang Li Hou Guo-Fu Zhang Xiao-Dan Zhao Ying

Citation:

Research progress of crystalline silicon solar cells with dopant-free asymmetric heterocontacts

Zhao Sheng-Sheng, Xu Yu-Zeng, Chen Jun-Fan, Zhang Li, Hou Guo-Fu, Zhang Xiao-Dan, Zhao Ying
PDF
HTML
Get Citation
  • Due to the rapid development of dopant free asymmetric heterogeneous contacts in recent years, the theoretical conversion efficiency can reach 28%, which has large room for development and has attracted one’s attention. With the expectation of low cost and green pollution-free solar cell, the traditional crystalline silicon solar cell has many limitations due to its high equipment cost and flammable and explosive raw materials. It greatly increases the necessity of research and development of new solar cells with no doping and asymmetric heterogeneous contacts. The new solar cell is safe and environmental friendly due to the multi-faceted advantages of dopant-free asymmetric heterogeneous contact (DASH) solar cells constructed by transition metal oxide (TMO): the TMO has been widely studied as an alternative option, because of its wide band gap, little parasitic absorption, as well as repressed auger recombination, and conducing to the increase of the short-circuit current density of the solar cells; the DASH solar cell has high efficiency potential, its theoretical efficiency has reached 28%, and it can be produced by low-cost technology such as thermal evaporation or solution method; it always avoids using flammable, explosive and toxic gases in the manufacturing process. Our group proposed using MoOx as a hole selective contact and ZnO as an electron selective contact to construct a new and efficient DASH solar cell. It has achieved a conversion efficiency of 16.6%. Another device, in which MoOx is used as the hole selective contact and n-nc-Si:H as the electron selective, was fabricated, and its efficiency has reached 14.4%. In order to further speed up the research progress of the dopant-free asymmetric heterogeneous contact crystalline silicon solar cell, the development status is reviewed, and the basic principle and preparation technology of selective transport of transition metal oxide (TMO) carriers are discussed. And the effect of the hole transport layer, the electron transport layer and the passivation layer on the performance of the TMO dopant-free asymmetric heterogeneous contact (DASH) solar cells are discussed in order to have an in-depth understanding of the working mechanism and material selection of the battery, thereby providing guidance in preparing new and efficient DASH solar cells.
      Corresponding author: Hou Guo-Fu, gfhou@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61474066, 61504069), the Natural Science Foundation of Tianjin, China (Grant No. 15JCYBJC21200), the Key Laboratory of Optical Information Technical Science, Ministry of Education of China (Grant No. 2017KFKT015), and the Fundamental Research Fund for the Central Universities, China.
    [1]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社)第2—4页

    Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) pp2–4 (in Chinese)

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nature Energy 2 17032Google Scholar

    [3]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar

    [4]

    Feldmann F, Simon M, Bivour M, Reichel C 2014 Appl. Phys. Lett. 104 1184

    [5]

    Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2019 Sol. Energy Mater. Sol. Cells (in Press)

    [6]

    Gao P, Yang Z, He J, Yu J, Liu P, Zhu J, Ge Z, Ye J 2018 Adv. Sci. 5

    [7]

    Melskens J, Loo B W H V D, Macco B, Black L E, Smit S, Kessels W M M 2018 IEEE J. Photovoltaics 8 373Google Scholar

    [8]

    Bullock J, Hettick M, Geissbühler J, Ong A J, Allen T, Sutterfella C M, Chen T, Ota H, Schaler E W, Wolf S D 2016 Nature Energy 1 15031Google Scholar

    [9]

    Imran H, Abdolkader T M, Butt N Z 2016 IEEE Trans. Electron Devices 63 3584Google Scholar

    [10]

    Um H D, Kim N, Lee K, Hwang I, Seo J H, Seo K 2016 Nano Lett. 16 981Google Scholar

    [11]

    Wu W, Lin W, Bao J, Liu Z, Liu B, Qiu K, Chen Y, Shen H 2017 RSC Adv. 7 23851Google Scholar

    [12]

    Masmitjà G, Gerling L G, Ortega P, Puigdollers J, Martín I, Voz C, Alcubilla R 2017 J. Mater. Chem. A 5 9182Google Scholar

    [13]

    Cuevas A, Allen T, Bullock J, Wan Y, Zhang X 2014 Photovoltaic Specialist Conference pp1–6

    [14]

    Würfel U, Cuevas A, Würfel P 2014 IEEE J. Photovoltaics 5 461

    [15]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109Google Scholar

    [16]

    Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, Mcdonnell S, Azcatl A, Carraro C, Ma B, Maboudian R 2014 Nano Lett. 14 967Google Scholar

    [17]

    Battaglia C, Nicolás S M D, Wolf S D, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 1

    [18]

    Sun T, Wang R, Liu R, Wu C, Zhong Y, Liu Y, Wang Y, Han Y, Xia Z, Zou Y 2017 Phys. Status Solidi RRL 1700107

    [19]

    Yang X, Bi Q, Ali H, Davis K, Schoenfeld W V, Weber K 2016 Adv. Mater. 28 5891Google Scholar

    [20]

    Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nature Mater. 11 76Google Scholar

    [21]

    Vijayan R A, Essig S, Wolf S D, Ramanathan B G, Löper P, Ballif C, Varadharajaperumal M 2018 IEEE J. Photovoltaics 8 473Google Scholar

    [22]

    Messmer C, Bivour M, Schön J, Glunz S W, Hermle M 2018 IEEE J. Photovoltaics 1

    [23]

    Neusel L, Bivour M, Hermle M 2017 Energy Procedia 124 425Google Scholar

    [24]

    Bivour M, Zähringer F, Ndione P, Hermle M, Bivour M, Zähringer F, Ndione P, Hermle M 2017 Energy Procedia 124 400Google Scholar

    [25]

    Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34Google Scholar

    [26]

    Geissbühler J, Werner J, Nicolas S M D, Barraud L, Hesslerwyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, Wolf S D 2015 Appl. Phys. Lett. 107 1433

    [27]

    Wu W, Bao J, Jia X, Liu Z, Cai L, Liu B, Song J, Shen H 2016 Phys. Status Solidi RRL 10 662Google Scholar

    [28]

    Menchini F, Grilli M L, Dikonimos T, Mittiga A, Serenelli L, Salza E, Chierchia R, Tucci M 2016 Phys. Status Solidi 13

    [29]

    Yin X, Yao Z, Luo Q, Dai X, Zhou Y, Zhang Y, Zhou Y, Luo S, Li J, Wang N 2017 ACS Appl. Mater. Interfaces 9 2439Google Scholar

    [30]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M 2015 Science 350 944Google Scholar

    [31]

    Yang X, Weber K, Hameiri Z, De Wolf S 2017 Prog. Photovoltaics Res. Appl. 25

    [32]

    Bullock J, Wan Y, Xu Z, Essig S, Hettick M, Wang H, Ji W, Boccard M, Cuevas A, Ballif C 2018 ACS Energy Lett. 3

    [33]

    Liu Y, Zhang J, Wu H, Cui W, Wang R, Ding K, Lee S T, Sun B 2017 Nano Energy 34 257Google Scholar

    [34]

    Khan F, Baek S H, Kim J H 2015 Nanoscale 8 1007

    [35]

    Tong J, Wan Y, Cui J, Lim S, Song N, Lennon A 2017 Appl. Surface Science 423

    [36]

    Vosgueritchian M, Lipomi D J, Bao Z 2012 Adv. Funct. Mater. 22 421Google Scholar

    [37]

    Zhang C, Zhang Y, Guo H, Jiang Q, Dong P, Zhang C 2018 Energies 11

    [38]

    He L, Jiang C, Wang H, Lai D, Rusli 2012 Appl. Phys. Lett. 100 12344

    [39]

    Zielke D, Niehaves C, Lövenich W, Elschner A, Hörteis M, Schmidt J 2015 Energy Procedia 77 331Google Scholar

    [40]

    Ling Z, He J, He X, Liao M, Liu P, Yang Z, Ye J, Gao P 2017 IEEE J. Photovoltaics 1

    [41]

    Tong H, Yang Z, Wang X, Liu Z, Chen Z, Ke X, Sui M, Tang J, Yu T, Ge Z 2018 Adv. Energy Mater. 1702921

    [42]

    Bao J, Wu W, Liu Z, Shen H 2016 AIP Adv. 6 96

    [43]

    Bullock J, Yan D, Cuevas A, Wan Y, Samundsett C 2015 Energy Procedia 77 446Google Scholar

    [44]

    Yang X, Weber K Photovoltaic Specialist Conference pp1-4

    [45]

    Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. ar Cells 150 32Google Scholar

    [46]

    Wan Y, Samundsett C, Bullock J, Hettick M, Allen T, Yan D, Peng J, Wu Y, Cui J, Javey A 2017 Adv. Energy Mater. 7

    [47]

    Wang F, Zhao S, Liu B, Li Y, Ren Q, Du R, Wang N, Wei C, Chen X, Wang G 2017 Nano Energy 39

    [48]

    Kamei K, Miyachi M, Tanaka K 2015 Phys. Chem. Chem. Phys. 17 27409Google Scholar

    [49]

    Macco B 2016 Ph. D. Dissertation (Eindhoven: Eindhoven University of Technology)

    [50]

    Greiner M T, Chai L, Helander M G, Tang W M, Lu Z H 2012 Adv. Funct. Mater. 22 4557Google Scholar

    [51]

    Boccard M, Ding L, Koswatta P, Bertoni M, Holman Z Photovoltaic Specialist Conference pp1-3

    [52]

    Xie F, Choy W C, Wang C, Li X, Zhang S, Hou J 2013 Adv. Mater. 25 2051Google Scholar

    [53]

    Soultati A, Douvas A M, Georgiadou D G, Palilis L C, Bein T, Feckl J M, Gardelis S, Fakis M, Kennou S, Falaras P 2014 Adv. Energy Mater. 4 1441

    [54]

    Mews M, Lemaire A, Korte L 2017 IEEE J. Photovoltaics 1

    [55]

    Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar

    [56]

    Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265Google Scholar

    [57]

    Liu R, Tan M, Zhang X, Xu L, Chen J, Chen Y, Tang X, Wan L 2018 Sol. Energy Mater. Sol. Cells 174 584Google Scholar

    [58]

    Kim A, Won Y, Woo K, Jeong S, Moon J 2014 Adv. Funct. Mater. 24 2462Google Scholar

    [59]

    De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J, Coleman J N 2009 ACS Nano 3 1767Google Scholar

    [60]

    Stegemann B, Gad K M, Balamou P, Sixtensson D, Vössing D, Kasemann M, Angermann H 2017 Appl. Surface Science 395 78Google Scholar

    [61]

    Feldmann F, Reichel C, Müller R, Hermle M 2017 Sol. Energy Mater. Sol. Cells 159 265Google Scholar

    [62]

    Tong J, Wang X, Ouyang Z, Lennon A 2015 Energy Procedia 77 840Google Scholar

    [63]

    Jiang S, Jia R, Tao K, Hou C X, Sun H C, Yu Z Y, Li Y T 2017 Chin. Phys. B 26 481

    [64]

    Yang J H, Kang S J, Hong Y, Lim K S 2014 IEEE Electron Device Lett. 35 96Google Scholar

    [65]

    Hu J, Cheng Q, Fan R, Zhou H 2017 Solar RRL 1

    [66]

    Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, Mcmeekin D P, Hoye R L Z, Bailie C D, Leijtens T 2017 Nature Energy 2 17009Google Scholar

    [67]

    Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L 2015 Energy & Environ. Sci. 9 81

    [68]

    Zhu S, Yao X, Ren Q, Zheng C C, Li S, Tong Y, Shi B, Guo S, Fan L, Ren H 2017 Nano Energy 45

  • 图 1  钝化接触太阳电池结构及载流子输运方式[13]

    Figure 1.  Passivated contact solar cell structure and carrier transport mode[13].

    图 2  能带结构示意图

    Figure 2.  energy band structure diagram.

    图 3  NiO/c-Si/TiO2结构太阳电池示意图[9]

    Figure 3.  Schematics of the NiO/c-Si/TiO2 solar cell structure[9].

    图 4  (a) MoOx/c-Si异质结太阳电池结构的示意图; (b)通过扫描电子显微镜成像的横截面图[16]

    Figure 4.  (a) Schematics of the MoOx/n-Si heterojunction solar cell structure; (b) cross section imaged by scanning electron microscopy[16].

    图 5  全背接触结构的太阳电池示意图[10]

    Figure 5.  Schematics of the full back contact solar cell structure[10].

    图 6  (a)BackPEDOT太阳电池正面; (b)BackPEDOT太阳电池横截面示意图[39]

    Figure 6.  (a)BackPEDOT solar cell front; (b) schematic cross-section of the BackPEDOT solar cell[39].

    图 7  MLBC太阳电池结构[11]

    Figure 7.  The structure of MLBC solar cell[11].

    图 8  使用MoOx作为空穴选择性接触的硅异质结电池结构 (a)n-a-Si:H作为电子选择性接触; (b)ZnO:B作为电子选择性接触[47]

    Figure 8.  Silicon heterojunction cell structure using MoOx as hole selective contact; (a) n-a-Si:H as electron selective contact; (b) ZnO:B as electron selectivecontact[47].

    图 9  采用MoOx作为空穴选择性接触, 分别n+-a-Si:H和ZnO:B作为电子选择性接触的硅异质结电池特性 (a)J-V曲线; (b)EQE曲线[47]

    Figure 9.  Characteristics of silicon heterojunction cells with MoOx as hole selective contact, n+-a-Si:H and ZnO:B as electron selective contact respectively: (a) J-V curve; (b) EQE curve[47].

    图 10  (a)在c-Si上沉积MoOx薄膜的横截面图像; (b)MoOx和c-Si的交界处图像; (c)EDS线扫描区域的横截面STEM图像; (d)使用EDS线测量每个元素的组成分布, 显示在MoOx和c-Si之间形成薄的SiOx[35]

    Figure 10.  (a) The image of an as-deposited MoOx film on c-Si; (b) the image of the MoOx and c-Si interface; (c) cross-sectional STEM image for the region of the EDS line scan; (d) compositional distribution of each element measured using the EDS line scan showing a thinSiOx layer formed between the MoOx and the c-Si[35].

    表 1  基于TMO载流子选择性接触的硅异质结太阳电池研究现状

    Table 1.  Summary of Silicon Heterojunction Solar Cells Based on TMO Carrier Selective Contact.

    Device ArchitectureJsc/mA·cm-2Voc/mVFFEfficiency/%Reference(Year)
    MoOx/nc-Si/n a-Si:H37.85806514.3Battaglia et al.[16](2014)
    MoOx/i a-Si:H/c-Si/i a-Si:H/n a-Si:H38.6725.480.3622.5Jonas et al.[26](2015)
    p+-Si/p-c-Si/MoOx376167216.4Bullock et al.[43](2015)
    p+-Si/n-c-Si/TiO239.263979.119.8Yang et al.[44](2015)
    MoOx/a-Si:H(i)/c-Si/a-Si:H(i)/LiFx37.07716.473.1519.42Bullock et al.[8](2016)
    MoOx/ia-Si:H/nc-Si/ia-Si:H/n a-Si:H39.471167.218.8Battaglia et al.[17](2016)
    V2Ox/c-Si/ n a-Si:H34.460675.315.7Gerling et al.[15](2016)
    MoOx/c-Si/ n a-Si:H34.158168.813.6Gerling et al.[15](2016)
    WOx/c-Si/ n a-Si:H33.35776512.5Gerling et al.[15](2016)
    p+-Si/n-c-Si/SiO2/TiO239.56508020.5Yang et al.[45](2016)
    V2Ox /Au /V2Ox38.765175.4919.02Wu et al.[11](2017)
    p+-Si/n-c-Si/MgOx39.562880.620Wan et al.[46](2017)
    MoOx/i a-Si:H/c-Si/i a-Si:H/BZO38.159972.716.6Wang et al.[47](2017)
    MoOx/a-Si:H(i)/c-Si/a-Si:H(i)/TiOx/LiF38.470676.220.7Bullock et al.[32](2018)
    DownLoad: CSV
  • [1]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件 (北京: 科学出版社)第2—4页

    Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) pp2–4 (in Chinese)

    [2]

    Yoshikawa K, Kawasaki H, Yoshida W, Irie T, Konishi K, Nakano K, Uto T, Adachi D, Kanematsu M, Uzu H 2017 Nature Energy 2 17032Google Scholar

    [3]

    肖友鹏, 高超, 王涛, 周浪 2017 物理学报 66 158801Google Scholar

    Xiao Y P, Gao C, Wang T, Zhou L 2017 Acta Phys. Sin. 66 158801Google Scholar

    [4]

    Feldmann F, Simon M, Bivour M, Reichel C 2014 Appl. Phys. Lett. 104 1184

    [5]

    Richter A, Benick J, Feldmann F, Fell A, Hermle M, Glunz S W 2019 Sol. Energy Mater. Sol. Cells (in Press)

    [6]

    Gao P, Yang Z, He J, Yu J, Liu P, Zhu J, Ge Z, Ye J 2018 Adv. Sci. 5

    [7]

    Melskens J, Loo B W H V D, Macco B, Black L E, Smit S, Kessels W M M 2018 IEEE J. Photovoltaics 8 373Google Scholar

    [8]

    Bullock J, Hettick M, Geissbühler J, Ong A J, Allen T, Sutterfella C M, Chen T, Ota H, Schaler E W, Wolf S D 2016 Nature Energy 1 15031Google Scholar

    [9]

    Imran H, Abdolkader T M, Butt N Z 2016 IEEE Trans. Electron Devices 63 3584Google Scholar

    [10]

    Um H D, Kim N, Lee K, Hwang I, Seo J H, Seo K 2016 Nano Lett. 16 981Google Scholar

    [11]

    Wu W, Lin W, Bao J, Liu Z, Liu B, Qiu K, Chen Y, Shen H 2017 RSC Adv. 7 23851Google Scholar

    [12]

    Masmitjà G, Gerling L G, Ortega P, Puigdollers J, Martín I, Voz C, Alcubilla R 2017 J. Mater. Chem. A 5 9182Google Scholar

    [13]

    Cuevas A, Allen T, Bullock J, Wan Y, Zhang X 2014 Photovoltaic Specialist Conference pp1–6

    [14]

    Würfel U, Cuevas A, Würfel P 2014 IEEE J. Photovoltaics 5 461

    [15]

    Gerling L G, Mahato S, Morales-Vilches A, Masmitja G, Ortega P, Voz C, Alcubilla R, Puigdollers J 2016 Sol. Energy Mater. Sol. Cells 145 109Google Scholar

    [16]

    Battaglia C, Yin X, Zheng M, Sharp I D, Chen T, Mcdonnell S, Azcatl A, Carraro C, Ma B, Maboudian R 2014 Nano Lett. 14 967Google Scholar

    [17]

    Battaglia C, Nicolás S M D, Wolf S D, Yin X, Zheng M, Ballif C, Javey A 2014 Appl. Phys. Lett. 104 1

    [18]

    Sun T, Wang R, Liu R, Wu C, Zhong Y, Liu Y, Wang Y, Han Y, Xia Z, Zou Y 2017 Phys. Status Solidi RRL 1700107

    [19]

    Yang X, Bi Q, Ali H, Davis K, Schoenfeld W V, Weber K 2016 Adv. Mater. 28 5891Google Scholar

    [20]

    Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J, Lu Z H 2012 Nature Mater. 11 76Google Scholar

    [21]

    Vijayan R A, Essig S, Wolf S D, Ramanathan B G, Löper P, Ballif C, Varadharajaperumal M 2018 IEEE J. Photovoltaics 8 473Google Scholar

    [22]

    Messmer C, Bivour M, Schön J, Glunz S W, Hermle M 2018 IEEE J. Photovoltaics 1

    [23]

    Neusel L, Bivour M, Hermle M 2017 Energy Procedia 124 425Google Scholar

    [24]

    Bivour M, Zähringer F, Ndione P, Hermle M, Bivour M, Zähringer F, Ndione P, Hermle M 2017 Energy Procedia 124 400Google Scholar

    [25]

    Bivour M, Temmler J, Steinkemper H, Hermle M 2015 Sol. Energy Mater. Sol. Cells 142 34Google Scholar

    [26]

    Geissbühler J, Werner J, Nicolas S M D, Barraud L, Hesslerwyser A, Despeisse M, Nicolay S, Tomasi A, Niesen B, Wolf S D 2015 Appl. Phys. Lett. 107 1433

    [27]

    Wu W, Bao J, Jia X, Liu Z, Cai L, Liu B, Song J, Shen H 2016 Phys. Status Solidi RRL 10 662Google Scholar

    [28]

    Menchini F, Grilli M L, Dikonimos T, Mittiga A, Serenelli L, Salza E, Chierchia R, Tucci M 2016 Phys. Status Solidi 13

    [29]

    Yin X, Yao Z, Luo Q, Dai X, Zhou Y, Zhang Y, Zhou Y, Luo S, Li J, Wang N 2017 ACS Appl. Mater. Interfaces 9 2439Google Scholar

    [30]

    Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M 2015 Science 350 944Google Scholar

    [31]

    Yang X, Weber K, Hameiri Z, De Wolf S 2017 Prog. Photovoltaics Res. Appl. 25

    [32]

    Bullock J, Wan Y, Xu Z, Essig S, Hettick M, Wang H, Ji W, Boccard M, Cuevas A, Ballif C 2018 ACS Energy Lett. 3

    [33]

    Liu Y, Zhang J, Wu H, Cui W, Wang R, Ding K, Lee S T, Sun B 2017 Nano Energy 34 257Google Scholar

    [34]

    Khan F, Baek S H, Kim J H 2015 Nanoscale 8 1007

    [35]

    Tong J, Wan Y, Cui J, Lim S, Song N, Lennon A 2017 Appl. Surface Science 423

    [36]

    Vosgueritchian M, Lipomi D J, Bao Z 2012 Adv. Funct. Mater. 22 421Google Scholar

    [37]

    Zhang C, Zhang Y, Guo H, Jiang Q, Dong P, Zhang C 2018 Energies 11

    [38]

    He L, Jiang C, Wang H, Lai D, Rusli 2012 Appl. Phys. Lett. 100 12344

    [39]

    Zielke D, Niehaves C, Lövenich W, Elschner A, Hörteis M, Schmidt J 2015 Energy Procedia 77 331Google Scholar

    [40]

    Ling Z, He J, He X, Liao M, Liu P, Yang Z, Ye J, Gao P 2017 IEEE J. Photovoltaics 1

    [41]

    Tong H, Yang Z, Wang X, Liu Z, Chen Z, Ke X, Sui M, Tang J, Yu T, Ge Z 2018 Adv. Energy Mater. 1702921

    [42]

    Bao J, Wu W, Liu Z, Shen H 2016 AIP Adv. 6 96

    [43]

    Bullock J, Yan D, Cuevas A, Wan Y, Samundsett C 2015 Energy Procedia 77 446Google Scholar

    [44]

    Yang X, Weber K Photovoltaic Specialist Conference pp1-4

    [45]

    Yang X, Zheng P, Bi Q, Weber K 2016 Sol. Energy Mater. Sol. ar Cells 150 32Google Scholar

    [46]

    Wan Y, Samundsett C, Bullock J, Hettick M, Allen T, Yan D, Peng J, Wu Y, Cui J, Javey A 2017 Adv. Energy Mater. 7

    [47]

    Wang F, Zhao S, Liu B, Li Y, Ren Q, Du R, Wang N, Wei C, Chen X, Wang G 2017 Nano Energy 39

    [48]

    Kamei K, Miyachi M, Tanaka K 2015 Phys. Chem. Chem. Phys. 17 27409Google Scholar

    [49]

    Macco B 2016 Ph. D. Dissertation (Eindhoven: Eindhoven University of Technology)

    [50]

    Greiner M T, Chai L, Helander M G, Tang W M, Lu Z H 2012 Adv. Funct. Mater. 22 4557Google Scholar

    [51]

    Boccard M, Ding L, Koswatta P, Bertoni M, Holman Z Photovoltaic Specialist Conference pp1-3

    [52]

    Xie F, Choy W C, Wang C, Li X, Zhang S, Hou J 2013 Adv. Mater. 25 2051Google Scholar

    [53]

    Soultati A, Douvas A M, Georgiadou D G, Palilis L C, Bein T, Feckl J M, Gardelis S, Fakis M, Kennou S, Falaras P 2014 Adv. Energy Mater. 4 1441

    [54]

    Mews M, Lemaire A, Korte L 2017 IEEE J. Photovoltaics 1

    [55]

    Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A 2012 Adv. Mater. 24 5408Google Scholar

    [56]

    Mcdonnell S, Azcatl A, Addou R, Gong C, Battaglia C, Chuang S, Cho K, Javey A, Wallace R M 2014 ACS Nano 8 6265Google Scholar

    [57]

    Liu R, Tan M, Zhang X, Xu L, Chen J, Chen Y, Tang X, Wan L 2018 Sol. Energy Mater. Sol. Cells 174 584Google Scholar

    [58]

    Kim A, Won Y, Woo K, Jeong S, Moon J 2014 Adv. Funct. Mater. 24 2462Google Scholar

    [59]

    De S, Higgins T M, Lyons P E, Doherty E M, Nirmalraj P N, Blau W J, Boland J J, Coleman J N 2009 ACS Nano 3 1767Google Scholar

    [60]

    Stegemann B, Gad K M, Balamou P, Sixtensson D, Vössing D, Kasemann M, Angermann H 2017 Appl. Surface Science 395 78Google Scholar

    [61]

    Feldmann F, Reichel C, Müller R, Hermle M 2017 Sol. Energy Mater. Sol. Cells 159 265Google Scholar

    [62]

    Tong J, Wang X, Ouyang Z, Lennon A 2015 Energy Procedia 77 840Google Scholar

    [63]

    Jiang S, Jia R, Tao K, Hou C X, Sun H C, Yu Z Y, Li Y T 2017 Chin. Phys. B 26 481

    [64]

    Yang J H, Kang S J, Hong Y, Lim K S 2014 IEEE Electron Device Lett. 35 96Google Scholar

    [65]

    Hu J, Cheng Q, Fan R, Zhou H 2017 Solar RRL 1

    [66]

    Bush K A, Palmstrom A F, Yu Z J, Boccard M, Cheacharoen R, Mailoa J P, Mcmeekin D P, Hoye R L Z, Bailie C D, Leijtens T 2017 Nature Energy 2 17009Google Scholar

    [67]

    Albrecht S, Saliba M, Baena J P C, Lang F, Kegelmann L, Mews M, Steier L, Abate A, Rappich J, Korte L 2015 Energy & Environ. Sci. 9 81

    [68]

    Zhu S, Yao X, Ren Q, Zheng C C, Li S, Tong Y, Shi B, Guo S, Fan L, Ren H 2017 Nano Energy 45

  • [1] Zhao Ke-Nan, Li Sheng, Lu Zeng-Xing, Lao Bin, Zheng Xuan, Li Run-Wei, Wang Zhi-Ming. Crystal orientation regulation of spin-orbit torque efficiency and magnetization switching in SrRuO3 thin films. Acta Physica Sinica, 2024, 73(11): 117701. doi: 10.7498/aps.73.20240367
    [2] Liu Bing-Xin, Li Zong-Liang. CrO2 monolayer: a two-dimensional ferromagnet with high Curie temperature and half-metallicity. Acta Physica Sinica, 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [3] Lao Bin, Zheng Xuan, Li Sheng, Wang Zhi-Ming. Research progress of novel quantum states and charge-spin interconversion in transition metal oxides. Acta Physica Sinica, 2023, 72(9): 097702. doi: 10.7498/aps.72.20222219
    [4] Wang Run, Jia Ya-Lan, Zhang Yue, Ma Xing-Juan, Xu Qiang, Zhu Zhi-Xin, Deng Yan-Hong, Xiong Zu-Hong, Gao Chun-Hong. High efficiency green perovskite light-emitting diodes based on exciton blocking layer. Acta Physica Sinica, 2020, 69(3): 038501. doi: 10.7498/aps.69.20191263
    [5] Du Xiang, Chen Si, Lin Dong-Xu, Xie Fang-Yan, Chen Jian, Xie Wei-Guang, Liu Peng-Yi. Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer. Acta Physica Sinica, 2018, 67(9): 098801. doi: 10.7498/aps.67.20172779
    [6] Liu Hong-Mei, Yang Chun-Hua, Liu Xin, Zhang Jian-Qi, Shi Yun-Long. Noise characterization of quantum dot infrared photodetectors. Acta Physica Sinica, 2013, 62(21): 218501. doi: 10.7498/aps.62.218501
    [7] Jian Lei, Tan Ying-Xiong, Li Quan, Zhao Ke-Qing. Charge transport properties of truxene derivatives molecules. Acta Physica Sinica, 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [8] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [9] Zhao Geng, Cheng Xiao-Man, Tian Hai-Jun, Du Bo-Qun, Liang Xiao-Yu, Wu Feng. The influence of modified electrodes by V2O5 film on the performance of ambipolar organic field-effect transistors based on C60/Pentacene. Acta Physica Sinica, 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [10] Liu Wei-Qing, Kou Dong-Xing, Hu Lin-Hua, Dai Song-Yuan. Effect of light path folding on the properties of electron transport in dyesensitized solar cell. Acta Physica Sinica, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [11] Zhao Li, Liu Dong-Yang, Liu Dong-Mei, Chen Ping, Zhao Yi, Liu Shi-Yong. Analysis of organic photovoltaic devices with MoOx doped 4,4,4-tris(N-(3-methylphenyl)-N- phenylamin) triphenylamine as hole transport layer. Acta Physica Sinica, 2012, 61(8): 088802. doi: 10.7498/aps.61.088802
    [12] Hari Bala, Shi Lan, Jiang Lei, Guo Jin-Yu, Yuan Guang-Yu, Wang Li-Bo, Liu Zong-Rui. Preparation of lamina-shape TiO2 nanoarray electrode and its electron transport in dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(8): 088101. doi: 10.7498/aps.60.088101
    [13] Xi Xiao-Wang, Hu Lin-Hua, Xu Wei-Wei, Dai Song-Yuan. Influence of TiCl4 nanoporous TiO2 films on the performance of dye-sensitized solar cells. Acta Physica Sinica, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [14] Huo Xin-Xia, Wang Chang, Zhang Xiu-Mei, Wang Li-Guang. Electron structure and electron conductance of fullerene C32 with Au electrodes. Acta Physica Sinica, 2010, 59(7): 4955-4960. doi: 10.7498/aps.59.4955
    [15] Yin Li-Qin, Peng Jun-Biao. Hole transport in polymer P3HT with different annealing temperatures. Acta Physica Sinica, 2009, 58(5): 3456-3460. doi: 10.7498/aps.58.3456
    [16] Liang Lin-Yun, Dai Song-Yuan, Hu Lin-Hua, Dai Jun, Liu Wei-Qing. Effect of TiO2 particle size on the properties of electron transport and back-reaction in dye-sensitized solar cells. Acta Physica Sinica, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [17] Wang Li-Guang, Chen Lei, Yu Ding-Wen, Li Yong, Terence K. S. W.. Dependence of electronic-transport sensitivity on the coupling between single molecule and atomic-chain electrode. Acta Physica Sinica, 2007, 56(11): 6526-6530. doi: 10.7498/aps.56.6526
    [18] Tao Xiang-Ming, Xu Xian-Jun, Tan Ming-Qiu. . Acta Physica Sinica, 2002, 51(11): 2602-2605. doi: 10.7498/aps.51.2602
    [19] TAN MING-QIU, TAO XIANG-MING, HE JUN-HUI. FIRST-PRINCIPLES STUDY ON THE ELECTRONIC AND MAGNETIC PROPERTIES OF PEROVSKITE RUTHENATE SrRuO3. Acta Physica Sinica, 2001, 50(11): 2203-2207. doi: 10.7498/aps.50.2203
    [20] Hu Wei-Ying, Zeng Zhi, Zheng Qing-Qi, Huang Mei-Chun. . Acta Physica Sinica, 1995, 44(2): 273-279. doi: 10.7498/aps.44.273
Metrics
  • Abstract views:  11498
  • PDF Downloads:  205
  • Cited By: 0
Publishing process
  • Received Date:  08 November 2018
  • Accepted Date:  06 December 2018
  • Available Online:  01 February 2019
  • Published Online:  20 February 2019

/

返回文章
返回