Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High efficiency green perovskite light-emitting diodes based on exciton blocking layer

Wang Run Jia Ya-Lan Zhang Yue Ma Xing-Juan Xu Qiang Zhu Zhi-Xin Deng Yan-Hong Xiong Zu-Hong Gao Chun-Hong

Citation:

High efficiency green perovskite light-emitting diodes based on exciton blocking layer

Wang Run, Jia Ya-Lan, Zhang Yue, Ma Xing-Juan, Xu Qiang, Zhu Zhi-Xin, Deng Yan-Hong, Xiong Zu-Hong, Gao Chun-Hong
PDF
HTML
Get Citation
  • In recent years, metal halide perovskite materials, owing to their excellent photoelectric properties including high photoluminescence quantum yield, high color purity, tunable band gap, etc., have been regarded as new-generation lighting sources and are widely used to fabricate perovskite light-emitting diodes (PeLEDs). Though great progresses have been made in recent years, neither the efficiency nor stability has not yet reached the requirements of commercialization. Thus, further improvement is needed. In this work, a small organic molecule material, namely 4,4'-cyclohexylidenebis[N,N-bis(p-tolyl)aniline] (TAPC) with a wide bandgap and a good hole transport ability, is used as an exciton blocking layer by utilizing the spin-coating method to improve the stability and efficiency of PeLEDs. Highly efficient and stable CsPbBr3 PeLEDs are finally realized. The physical mechanism related to the improved electroluminescence performance is investigated thoroughly. Firstly, the stepped energy level alignment is formed, since the highest occupied molecular orbital energy level (HOMO) of TAPC is located between the HOMO of (3,4-ethylenedioxythiophene):poly(p-styrene sulfonate) (PEDOT: PSS) and the valence band of CsPbBr3, which is beneficial to hole injection and transport. Meanwhile, the lowest unoccupied molecular orbital level of TAPC is high enough to prevent electrons from leaking into the anode effectively and confine electrons and excitons well in the emitting layer. Secondly, the introduction of the TAPC layer can avoid the direct contact between the perovskite light emitting layer and the strong acidic layer of PEDOT:PSS, thereby eliminating the related excitons quenching, which can further increase the radiative recombination.
      Corresponding author: Gao Chun-Hong, gch0122@swu.edu.cn
    • Funds: Project supported by the Postgraduate Science Research Innovation Program of Chongqing, China (Grant No. CYS190950), the Open Fund of Applied Basic Research Base of Optoelectronic Information Technology of Hunan Province, China (Grant No. GD19K01), the Fundamental Research Funds for the Central Universities (Grant No. XDJK2018C082), the Special Program for Talent Training in West China funded by National Study Abroad Fund, China (Grant No. [2018]10006), the Innovation and Entrepreneurship Training Program for College Students of Southwest University, China (Grant No. X201910635332), the Young Scientists Fund of the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3010), and the Program for Excellent Talents of Hengyang Normal University, China
    [1]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar

    [2]

    Huang H, Raith J, Kershaw S V, Kalytchuk S, Tomanec O, Jing L H, Susha A S, Zboril R, Rogach A L 2017 Nat. Commun. 8 996Google Scholar

    [3]

    Wang H R, Zhang X, Wu Q Q, Cao F, Yang D W, Shang Y Q, Ning Z J, Zhang W, Zheng W T, Yan Y F, Kershaw S V, Zhang L J, Rogach A L, Yang X Y 2019 Nat. Commun. 10 665Google Scholar

    [4]

    de Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [5]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [6]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [7]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [8]

    Wang N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi Chang, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nature Photon. 10 699Google Scholar

    [9]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [10]

    Lin K, Xing J, Quan L N, de Arquer F G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E. H., Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [11]

    Cao Y, Wang N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, J in Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [12]

    Xu W, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kaweck M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photon. 13 418Google Scholar

    [13]

    Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517

    [14]

    Turkevych I, Kazaoui S, Belich N A, Grishko A Y, Fateev S A, Petrov A A, Urano T, Aramaki S, Kosar S, Kondo M, Goodilin E A, Graetzel M, Tarasov A B 2019 Nat. Nanotechnol. 14 57Google Scholar

    [15]

    Tavakoli M M, Yadav P, Prochowicz D, Sponspeller M, Osheov A, Bulovic V, Kong J 2019 Adv. Energy Mater. 9 1803587Google Scholar

    [16]

    Brenner P, Stulz M, Kapp D, Abzieher T, Paetzold U W, Quintilla A, Howard I A, Kalt H, Lemmer H 2016 Appl. Phys. Lett. 109 141106Google Scholar

    [17]

    Wang Y C, Li H, Hong Y H, Hong K B, Chen F C, Hsu C H, Lee R K, Conti C, Kao T S, Lu T C 2019 ACS Nano 13 5421Google Scholar

    [18]

    Ji L, Hsu H Y, Lee J C, Bard A J, Yu E T 2018 Nano Lett. 18 994Google Scholar

    [19]

    Tian C C, Wang F, Wang Y P, Yang Z, Chen X J, Mei J J, Liu H Z, Zhao D X 2019 ACS Appl. Mater. Interfaces 11 15804Google Scholar

    [20]

    Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar

    [21]

    Gao C H, Yu F X, Xiong Z Y, Dong Y J, Ma X J, Zhang Y, Jia Y L, Wang R, Chen P, Zhou D Y, Xiong Z H 2019 Org. Electron. 70 264Google Scholar

    [22]

    Zhao L F, Lee K M, Roh K D, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836Google Scholar

    [23]

    Braly I L, deQuilettes D W, Pazos-Outón L M, Burke S, Ziffer M E, Ginger D S, Hillhouse H W 2018 Nat. Photon. 12 355Google Scholar

    [24]

    Zhang X, Xu B, Zhang J B, Gao Y, Zheng Y J, Wang K, Sun X W 2016 Adv. Funct. Mater. 26 4595Google Scholar

    [25]

    Gangishetty M K, Sanders S N, Congreve D N 2019 ACS Photonics 6 1111Google Scholar

    [26]

    Zhang X L, Liu H, Wang W G, Zhang J B, Xu B, Karen K L, Zheng Y J, Liu S, Cheng S M, Wang K, Sun X W 2017 Adv. Mater. 29 1606405Google Scholar

    [27]

    Chen P, Xiong Z Y, Wu X Y, Shao M, Ma X J, Xiong Z H, Gao C H 2017 J. Phys. Chem. Lett. 8 1810Google Scholar

    [28]

    Yu J C, Kim D W, Kim D B, Jung E D, Lee K S, Lee S B, Nuzzo D D, Kim J S, Song M H 2017 Nanoscale 9 2088Google Scholar

    [29]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Chen L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [30]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chen Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [31]

    黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 物理学报 68 158505Google Scholar

    Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar

    [32]

    楼浩然, 叶志镇, 何海平, 2019 物理学报 68 157102Google Scholar

    Lou H R, Ye Z Z, He H P 2019 Acta. Phys. Sin. 68 157102Google Scholar

    [33]

    Lu B Y, Yuk H, Lin S T, Jian N N, Qu K, Xu J K, Zhao X H 2019 Nat. Commun. 10 1043Google Scholar

    [34]

    Kim Y H, Cho H C, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [35]

    Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar

    [36]

    Wang Z J, Li Z R, Zhou D L, Yu J S 2017 Appl. Phys. Lett. 111 233304Google Scholar

    [37]

    Lin C Y, Chen P, Xiong Z Y, Liu D B, Wang G, Meng Y, Song Q L 2018 Nanotechnology 29 075203Google Scholar

    [38]

    Zou Y T, Ban M Y, Yang Y G, Bai S, Wu C, Han Y J, Wu T, Tan Y S, Huang Q, Gao X Y, Song T, Zhao Q, Sun B Q 2018 ACS Appl. Mater. Interfaces 10 24320Google Scholar

    [39]

    Meng Y, Ahmadi M, Wu X Y, Xu T F, Xu L, Xiong Z H, Chen P 2019 Org. Electron. 64 47Google Scholar

    [40]

    Kim S Y, Jeong W, Mayr C, Park Y S, Kim K H, Lee J H, Moon C K 2013 Adv. Funct. Mater. 23 3896Google Scholar

    [41]

    Cui L S, Liu Y, Yuan X D, Li Q, Jiang Z Q, Liao L S 2013 J. Mater. Chem. C 1 8177Google Scholar

    [42]

    Yu F X, Zhang Y, Xiong Z Y, Ma X J, Chen P, Xiong Z H, Gao C H 2017 Org. Electron. 50 480Google Scholar

    [43]

    Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [44]

    Ban M Y, Zou Y T, Pivett J P.H., Yang Y G, Thomas T H, Tan Y, Song T, Gao X Y, Credington D, Deschler F, Sirringhaus H, Sun B Q 2018 Nat. Commun. 9 3892Google Scholar

    [45]

    Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar

    [46]

    Wu T, Yang Y G, Zou Y T, Wang Y S, Wu C, Han Y J, Song T, Zhang Q, Gao X Y, Sun B Q 2018 Nanoscale 10 19322Google Scholar

    [47]

    Kim Y H, Wolf C, Kim Y T, Cho H C, Kwon W S, Do S G, Sadhanala A, Park C G, Rhee S W, Im S H, Friend H F, Lee T W 2017 ACS Nano 11 6586Google Scholar

    [48]

    Zheng K B, Zidek K, Abdellah M, Messing M E, Al-Marri M J, Pullerits T 2016 J. Phys. Chem. C 120 3077

    [49]

    Liu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 29 1902008

  • 图 1  (a) PeLEDs的器件结构; (b) PeLEDs的能级图

    Figure 1.  (a) Device structure of PeLEDs; (b) schematic energy level diagram of PeLEDs.

    图 2  PeLEDs的EL性能表征 (a)电流密度-电压; (b)亮度-电压; (c)电流效率-电压-外量子效率; (d) PeLEDs (TAPC浓度为5 mg/mL)在不同电压下的EL光谱, 内插图是不同TAPC浓度的PeLEDs在电压为5 V时的归一化EL谱

    Figure 2.  EL performance of PeLEDs: (a) Current density-voltage (J-V); (b) luminance-voltage (L-V); (c) current-efficiency-voltage-external quantum efficiency (CE-V-EQE); (d) EL spectra of PeLEDs with 5 mg/mL TAPC at different applied voltages; the inset is normalized EL spectra of PeLEDs with different concentrations of TAPC at the same applied voltage of 5 V.

    图 3  PeLEDs的稳定性表征

    Figure 3.  The EL stability of PeLEDs.

    图 4  (a) ITO/PEDOT:PSS/CsPbBr3和(b) ITO/PEDOT:PSS/TAPC/CsPbBr3样品的SEM图; (c) ITO/PEDOT:PSS/CsPbBr3和(d) ITO/PEDOT:PSS/TAPC/CsPbBr3样品的CsPbBr3颗粒尺寸统计分布

    Figure 4.  SEM images of (a) ITO/PEDOT:PSS/CsPbBr3 and (b) ITO/PEDOT:PSS/TAPC/CsPbBr3; the size distribution of CsPbBr3 grain on (c) ITO/PEDOT:PSS/CsPbBr3 and (d) ITO/PEDOT:PSS/TAPC/CsPbBr3.

    图 5  在PEDOT:PSS和PEDOT:PSS/TAPC衬底上的CsPbBr3薄膜的表征 (a)晶体结构(XRD); (b)紫外吸收, 内插图是在500−518 nm波长范围吸收的放大图; (c) PL光谱, 内插图是在520−535 nm波长范围PL的放大图; (d) TRPL曲线

    Figure 5.  Characteristics of CsPbBr3 film on PEDOT:PSS and PEDOT:PSS/TAPC: (a) XRD; (b) absorption, and the inset is a large image of normalized PL spectra from 500 to 518 nm; (c) normalized PL spectra, and the inset is a large image of normalized PL spectra from 520 to 535 nm; (d) TRPL decay curves.

    图 6  单空穴器件的电流密度-电压特性曲线

    Figure 6.  Current density-voltage characteristics of hole-dominated devices.

    图 7  激子界面复合效应 (a) PEDOT:PSS/CsPbBr3; (b) PEDOT:PSS/TAPC/CsPbBr3

    Figure 7.  Exciton recombination interface effects: (a) PEDOT: PSS/TAPC/CsPbBr3; (b) PEDOT:PSS/CsPbBr3.

    表 1  PeLEDs性能

    Table 1.  List of EL performance of PeLEDs.

    器件TAPC浓度/mg·mL–1最大亮度/cd·m–2最大电流效率/cd·A–1外量子效率/%色坐标(x, y)
    A023961.810.47(0.13, 0.80)
    B260814.521.17(0.13, 0.80)
    C5131986.841.77(0.13, 0.80)
    D836781.130.29(0.13, 0.80)
    DownLoad: CSV

    表 2  瞬态荧光寿命参数统计列表

    Table 2.  List of TRPL parameters.

    FilmsB1/%B2/%τ1/nsτ2/nsτave/ns
    PEDOT:PSS/CsPbBr379214.86210.4547.44
    PEDOT:PSS/TAPC/CsPbBr375255.72212.6557.64
    DownLoad: CSV
  • [1]

    Abdi-Jalebi M, Andaji-Garmaroudi Z, Cacovich S, Stavrakas C, Philippe B, Richter J M, Alsari M, Booker E P, Hutter E M, Pearson A J, Lilliu S, Savenije T J, Rensmo H, Divitini G, Ducati C, Friend R H, Stranks S D 2018 Nature 555 497Google Scholar

    [2]

    Huang H, Raith J, Kershaw S V, Kalytchuk S, Tomanec O, Jing L H, Susha A S, Zboril R, Rogach A L 2017 Nat. Commun. 8 996Google Scholar

    [3]

    Wang H R, Zhang X, Wu Q Q, Cao F, Yang D W, Shang Y Q, Ning Z J, Zhang W, Zheng W T, Yan Y F, Kershaw S V, Zhang L J, Rogach A L, Yang X Y 2019 Nat. Commun. 10 665Google Scholar

    [4]

    de Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar

    [5]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar

    [6]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [7]

    Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar

    [8]

    Wang N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi Chang, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nature Photon. 10 699Google Scholar

    [9]

    Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar

    [10]

    Lin K, Xing J, Quan L N, de Arquer F G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E. H., Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar

    [11]

    Cao Y, Wang N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, J in Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar

    [12]

    Xu W, Hu Q, Bai S, Bao C X, Miao Y F, Yuan Z C, Borzda T, Barker A J, Tyukalova E, Hu Z J, Kaweck M, Wang H Y, Yan Z B, Liu X J, Shi X B, Uvdal K, Fahlman M, Zhang W J, Duchamp M, Liu J M, Petrozza A, Wang J P, Liu L M, Huang W, Gao F 2019 Nat. Photon. 13 418Google Scholar

    [13]

    Shen Y, Cheng L P, Li Y Q, Li W, Chen J D, Lee S T, Tang J X 2019 Adv. Mater. 31 1901517

    [14]

    Turkevych I, Kazaoui S, Belich N A, Grishko A Y, Fateev S A, Petrov A A, Urano T, Aramaki S, Kosar S, Kondo M, Goodilin E A, Graetzel M, Tarasov A B 2019 Nat. Nanotechnol. 14 57Google Scholar

    [15]

    Tavakoli M M, Yadav P, Prochowicz D, Sponspeller M, Osheov A, Bulovic V, Kong J 2019 Adv. Energy Mater. 9 1803587Google Scholar

    [16]

    Brenner P, Stulz M, Kapp D, Abzieher T, Paetzold U W, Quintilla A, Howard I A, Kalt H, Lemmer H 2016 Appl. Phys. Lett. 109 141106Google Scholar

    [17]

    Wang Y C, Li H, Hong Y H, Hong K B, Chen F C, Hsu C H, Lee R K, Conti C, Kao T S, Lu T C 2019 ACS Nano 13 5421Google Scholar

    [18]

    Ji L, Hsu H Y, Lee J C, Bard A J, Yu E T 2018 Nano Lett. 18 994Google Scholar

    [19]

    Tian C C, Wang F, Wang Y P, Yang Z, Chen X J, Mei J J, Liu H Z, Zhao D X 2019 ACS Appl. Mater. Interfaces 11 15804Google Scholar

    [20]

    Han D B, Imran M, Zhang M J, Chang S, Wu X G, Zhang X, Tang J L, Wang M S, Ali S S, Li X G, Yu G, Han J B, Wang L X, Zou B S, Zhong H Z 2018 ACS Nano 12 8808Google Scholar

    [21]

    Gao C H, Yu F X, Xiong Z Y, Dong Y J, Ma X J, Zhang Y, Jia Y L, Wang R, Chen P, Zhou D Y, Xiong Z H 2019 Org. Electron. 70 264Google Scholar

    [22]

    Zhao L F, Lee K M, Roh K D, Khan S U Z, Rand B P 2019 Adv. Mater. 31 1805836Google Scholar

    [23]

    Braly I L, deQuilettes D W, Pazos-Outón L M, Burke S, Ziffer M E, Ginger D S, Hillhouse H W 2018 Nat. Photon. 12 355Google Scholar

    [24]

    Zhang X, Xu B, Zhang J B, Gao Y, Zheng Y J, Wang K, Sun X W 2016 Adv. Funct. Mater. 26 4595Google Scholar

    [25]

    Gangishetty M K, Sanders S N, Congreve D N 2019 ACS Photonics 6 1111Google Scholar

    [26]

    Zhang X L, Liu H, Wang W G, Zhang J B, Xu B, Karen K L, Zheng Y J, Liu S, Cheng S M, Wang K, Sun X W 2017 Adv. Mater. 29 1606405Google Scholar

    [27]

    Chen P, Xiong Z Y, Wu X Y, Shao M, Ma X J, Xiong Z H, Gao C H 2017 J. Phys. Chem. Lett. 8 1810Google Scholar

    [28]

    Yu J C, Kim D W, Kim D B, Jung E D, Lee K S, Lee S B, Nuzzo D D, Kim J S, Song M H 2017 Nanoscale 9 2088Google Scholar

    [29]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Chen L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [30]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chen Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [31]

    黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 物理学报 68 158505Google Scholar

    Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar

    [32]

    楼浩然, 叶志镇, 何海平, 2019 物理学报 68 157102Google Scholar

    Lou H R, Ye Z Z, He H P 2019 Acta. Phys. Sin. 68 157102Google Scholar

    [33]

    Lu B Y, Yuk H, Lin S T, Jian N N, Qu K, Xu J K, Zhao X H 2019 Nat. Commun. 10 1043Google Scholar

    [34]

    Kim Y H, Cho H C, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar

    [35]

    Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar

    [36]

    Wang Z J, Li Z R, Zhou D L, Yu J S 2017 Appl. Phys. Lett. 111 233304Google Scholar

    [37]

    Lin C Y, Chen P, Xiong Z Y, Liu D B, Wang G, Meng Y, Song Q L 2018 Nanotechnology 29 075203Google Scholar

    [38]

    Zou Y T, Ban M Y, Yang Y G, Bai S, Wu C, Han Y J, Wu T, Tan Y S, Huang Q, Gao X Y, Song T, Zhao Q, Sun B Q 2018 ACS Appl. Mater. Interfaces 10 24320Google Scholar

    [39]

    Meng Y, Ahmadi M, Wu X Y, Xu T F, Xu L, Xiong Z H, Chen P 2019 Org. Electron. 64 47Google Scholar

    [40]

    Kim S Y, Jeong W, Mayr C, Park Y S, Kim K H, Lee J H, Moon C K 2013 Adv. Funct. Mater. 23 3896Google Scholar

    [41]

    Cui L S, Liu Y, Yuan X D, Li Q, Jiang Z Q, Liao L S 2013 J. Mater. Chem. C 1 8177Google Scholar

    [42]

    Yu F X, Zhang Y, Xiong Z Y, Ma X J, Chen P, Xiong Z H, Gao C H 2017 Org. Electron. 50 480Google Scholar

    [43]

    Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar

    [44]

    Ban M Y, Zou Y T, Pivett J P.H., Yang Y G, Thomas T H, Tan Y, Song T, Gao X Y, Credington D, Deschler F, Sirringhaus H, Sun B Q 2018 Nat. Commun. 9 3892Google Scholar

    [45]

    Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar

    [46]

    Wu T, Yang Y G, Zou Y T, Wang Y S, Wu C, Han Y J, Song T, Zhang Q, Gao X Y, Sun B Q 2018 Nanoscale 10 19322Google Scholar

    [47]

    Kim Y H, Wolf C, Kim Y T, Cho H C, Kwon W S, Do S G, Sadhanala A, Park C G, Rhee S W, Im S H, Friend H F, Lee T W 2017 ACS Nano 11 6586Google Scholar

    [48]

    Zheng K B, Zidek K, Abdellah M, Messing M E, Al-Marri M J, Pullerits T 2016 J. Phys. Chem. C 120 3077

    [49]

    Liu M, Zhang Y, Wang S X, Guo J, Yu W W, Rogach A L 2019 Adv. Funct. Mater. 29 1902008

  • [1] Liu Ju, Cao Yi-Wei, Lv Quan-Jiang, Yang Tian-Peng, Mi Ting-Ting, Wang Xiao-Wen, Liu Jun-Lin. Influence of period number of superlattice electron barrier layer on the performance of AlGaN-based deep ultraviolet LED. Acta Physica Sinica, 2024, 73(12): 128503. doi: 10.7498/aps.73.20231969
    [2] Bao Xi, Guan Yun-Xia, Li Wan-Jiao, Song Jia-Yi, Chen Li-Jia, Xu Shuang, Peng Ke-Ao, Niu Lian-Bin. Carrier ladder effect regulated dissociation and scattering of triplet excitons in OLED. Acta Physica Sinica, 2023, 72(21): 217101. doi: 10.7498/aps.72.20230851
    [3] Huang Xin-Mei, He Xiao-Li, Xu Qiang, Chen Ping, Zhang Yong, Gao Chun-Hong. Ionic-compound based high performance perovskite light emitting diodes. Acta Physica Sinica, 2022, 71(20): 208502. doi: 10.7498/aps.71.20220858
    [4] Yu Yi, An Zhi-Dong, Cai Xiao-Yi, Guo Ming-Lei, Jing Cheng-Bin, Li Yan-Qing. Recent progress of tin-based perovskites and their applications in light-emitting diodes. Acta Physica Sinica, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [5] Li Xue, Cao Bao-Long, Wang Ming-Hao, Feng Zeng-Qin, Chen Shu-Fen. Perovskite light-emitting diode based on combination of modified hole-injection layer and polymer composite emission layer. Acta Physica Sinica, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [6] Wu Hai-Yan, Tang Jian-Xin, Li Yan-Qing. Efficient and stable blue perovskite light emitting diodes based on defect passivation. Acta Physica Sinica, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [7] Chen Jia-Mei, Su Hang, Li Wan, Zhang Li-Lai, Suo Xin-Lei, Qin Jing, Zhu Kun, Li Guo-Long. Research progress of enhancing perovskite light emitting diodes with light extraction. Acta Physica Sinica, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [8] Yu Peng, Cao Sheng, Zeng Ruo-Sheng, Zou Bing-Suo, Zhao Jia-Long. Advances in improved photoluminescence properties of all inorganic perovskite nanocrystals via metal-ion doping. Acta Physica Sinica, 2020, 69(18): 187801. doi: 10.7498/aps.69.20200795
    [9] Guan Sheng-Jie, Zhou Lin-Jian, Shen Cheng-Mei, Zhang Yong. Exciton-polaron interaction in blue fluorescent organic light-emitting diodes. Acta Physica Sinica, 2020, 69(16): 167101. doi: 10.7498/aps.69.20191930
    [10] Wu Jia-Long, Dou Yong-Jiang, Zhang Jian-Feng, Wang Hao-Ran, Yang Xu-Yong. Perovskite light-emitting diodes based on solution-processed metal-doped nickel oxide hole injection layer. Acta Physica Sinica, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [11] Duan Cong-Cong, Cheng Lu, Yin Yao, Zhu Lin. Blue perovskite light-emitting diodes: opportunities and challenges. Acta Physica Sinica, 2019, 68(15): 158503. doi: 10.7498/aps.68.20190745
    [12] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [13] Huang Wei, Li Yue-Long, Ren Hui-Zhi, Wang Peng-Yang, Wei Chang-Chun, Hou Guo-Fu, Zhang De-Kun, Xu Sheng-Zhi, Wang Guang-Cai, Zhao Ying, Yuan Ming-Jian, Zhang Xiao-Dan. Perovskite light-emitting diodes based on n-type nanocrystalline silicon oxide electron injection layer. Acta Physica Sinica, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [14] Zhao Sheng-Sheng, Xu Yu-Zeng, Chen Jun-Fan, Zhang Li, Hou Guo-Fu, Zhang Xiao-Dan, Zhao Ying. Research progress of crystalline silicon solar cells with dopant-free asymmetric heterocontacts. Acta Physica Sinica, 2019, 68(4): 048801. doi: 10.7498/aps.68.20181991
    [15] Liu Bo-Zhi, Li Rui-Feng, Song Ling-Yun, Hu Lian, Zhang Bing-Po, Chen Yong-Yue, Wu Jian-Zhong, Bi Gang, Wang Miao, Wu Hui-Zhen. QD-LED devices using ZnSnO as an electron-transporting layer. Acta Physica Sinica, 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [16] Liu Bai-Quan, Lan Lin-Feng, Zou Jian-Hua, Peng Jun-Biao. A novel organic light-emitting diode by utilizing double hole injection layer. Acta Physica Sinica, 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [17] Jian Lei, Tan Ying-Xiong, Li Quan, Zhao Ke-Qing. Charge transport properties of truxene derivatives molecules. Acta Physica Sinica, 2013, 62(18): 183101. doi: 10.7498/aps.62.183101
    [18] Zhao Li, Liu Dong-Yang, Liu Dong-Mei, Chen Ping, Zhao Yi, Liu Shi-Yong. Analysis of organic photovoltaic devices with MoOx doped 4,4,4-tris(N-(3-methylphenyl)-N- phenylamin) triphenylamine as hole transport layer. Acta Physica Sinica, 2012, 61(8): 088802. doi: 10.7498/aps.61.088802
    [19] Zhang Li-Juan, Hua Yu-Lin, Wu Xiao-Ming, Zhang Guo-Hui, Wang Yu, Yin Shou-Gen. A novel white organic electroluminescent device with both phosphorescent and fluorescent dopants. Acta Physica Sinica, 2008, 57(3): 1913-1917. doi: 10.7498/aps.57.1913
    [20] Wang Zhen, He Zheng-Hong, Tan Xing-Wen, Tao Min-Long, Li Guo-Qing, Xiong Zu-Hong. Magnetic field effects on organic electroluminescence. Acta Physica Sinica, 2007, 56(5): 2979-2985. doi: 10.7498/aps.56.2979
Metrics
  • Abstract views:  14788
  • PDF Downloads:  192
  • Cited By: 0
Publishing process
  • Received Date:  21 August 2019
  • Accepted Date:  19 November 2019
  • Published Online:  05 February 2020

/

返回文章
返回