Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study of effect of pressure gradient on boundary-layer receptivity under localized wall blowing/suction

Lu Chang-Gen Shen Lu-Yu Zhu Xiao-Qing

Citation:

Numerical study of effect of pressure gradient on boundary-layer receptivity under localized wall blowing/suction

Lu Chang-Gen, Shen Lu-Yu, Zhu Xiao-Qing
PDF
HTML
Get Citation
  • Boundary-layer receptivity is the initial stage of the laminar-turbulent transition process, and plays a key role in predicting and controlling the transition. The present researches indicate that the boundary-layer receptivity is affected not only by the different sorts of free-stream disturbances or the size, shape and position of the wall localized roughness and blowing/suction, but also by the pressure gradient. Therefore, the local receptivity under the interaction between the free-stream turbulence and localized wall blowing/suction in the pressure-gradient boundary layer is studied in the present work, thus revealing the effect of the pressure gradient on the receptive process and the group speeds of the excited T-S wave packets under the interaction of the free-stream turbulence with localized wall blowing/suction in the boundary layer. High-order finite difference scheme is utilized to discretize the incompressible perturbation Navier-Stokes equation. A modified fourth-order Runge-Kutta scheme is used for time integration. The compact difference scheme based on non-uniform meshes is applied to the spatial discretization. The convective term is discretized by the fifth-order upwind compact scheme. The pressure gradient term is discretized by the sixth-order symmetric compact scheme. The viscosity term is discretized by the fifth-order symmetric compact scheme. Besides, the pressure Poisson equation is solved by the fourth-order scheme on the non-uniform meshes. The favorable or adverse pressure gradient promotes or suppresses the receptivity triggered by the interaction between free-stream turbulence and blowing/suction. And the blowing always induces a stronger receptivity than the suction in the same intensity. The initial amplitude of the T-S wave and wave packet excited in the adverse-pressure-gradient boundary layer are two orders larger than those excited in the favorable-pressure-gradient boundary layer. It is analyzed in detail that the favorable and adverse pressure gradient play a promoting or suppressing role in the growth of the excited T-S wave. Then the influences of the pressure gradient on the amplitudes, growth rates, wave numbers, phase speeds and shape functions of the excited T-S waves are investigated. The intensive research on receptivity in the pressure-gradient boundary layers provides a reference for designing the turbine machinery blades in the practical engineering.
      Corresponding author: Lu Chang-Gen, cglu@nuist.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11472139)
    [1]

    Goldstein M E 1983 J. Fluid. Mech. 127 59Google Scholar

    [2]

    Ruban A I 1984 Fluid Dynam. 19 709

    [3]

    陆昌根, 沈露予 2015 物理学报 65 194701Google Scholar

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 65 194701Google Scholar

    [4]

    Shen L, Lu C, Zhu X 2019 Appl. Math. Mech. 40 851Google Scholar

    [5]

    Goldstein M E 1985 J. Fluid. Mech. 154 509Google Scholar

    [6]

    Saric W S, Hoos J A, Radeztsky R H 1991 Proceedings of the Symposium and Joint Fluids Engineering Conference, 1st Portland, U.S.A, June 23−27, 1991 p17

    [7]

    Wiegel M, Wlezien R 1993 AIAA P. 3280

    [8]

    Dietz A J 1999 J. Fluid. Mech. 378 291Google Scholar

    [9]

    Dietz A J 1998 AIAA J. 36 1171Google Scholar

    [10]

    Dietz A J 1996 AIAA P. 2083

    [11]

    Wu X 2001 J. Fluid. Mech. 449 373Google Scholar

    [12]

    Wu X 2001 J. Fluid. Mech. 431 91Google Scholar

    [13]

    Shen L, Lu C 2016 Appl. Math. Mech. 37 929Google Scholar

    [14]

    Shen L, Lu C 2016 Appl. Math. Mech. 37 349Google Scholar

    [15]

    Würz W, Herr S, Wörner A, Rist U 2003 J. Fluid. Mech. 478 135Google Scholar

    [16]

    Shen L, Lu C 2018 Adv. Appl. Math. Mech. 10 735Google Scholar

    [17]

    陆昌根, 沈露予 2015 物理学报 64 224702Google Scholar

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702Google Scholar

    [18]

    Johnson M W, Pinarbasi 2014 Flow Turbul. Combu. 93 1Google Scholar

    [19]

    Jacobs R G 2001 J. Fluid. Mech. 428 185Google Scholar

  • 图 1  数值计算区域示意图

    Figure 1.  The domain of numerical simulation.

    图 2  在压力梯度(a) βH = 0.1, (b) βH = 0和(c) βH = –0.05情况下壁面局部吹入边界层内被激发出T-S波波包沿流向呈现增长的演化趋势

    Figure 2.  The streamwise evolutions of the excited T-S waves under the localized suction in the pressure-gradient boundary layers of (a) βH = 0.1, (b) βH = 0 and (c) βH = –0.05.

    图 3  局部吹入和吸出边界层内被激发出T-S波包初始幅值AR与压力梯度的关系 (a) 吹入强度; (b) 吸出强度

    Figure 3.  The relationships between the initial amplitudes of the excited T-S waves AR and the pressure-gradients in the localized blowing and suction boundary layers: (a) Blowing intensity; (b) suction intensity

    图 4  不同压力梯度对壁面局部吹入边界层内被激发出的T-S波沿x向发展的影响  (a) F = 40; (b) F = 80

    Figure 4.  The effect of different pressure gradients on x-direction evolutions of the excited T-S waves in the localized blowing boundary layers. (a) F = 40; (b) F = 80

    图 5  壁面局部吹入边界层内被激发出T-S波的幅值AT-S沿x向的演化(t = 2400) (a) F = 40; (b) F = 80

    Figure 5.  The x-direction evolutions of the amplitude of the excited T-S waves in the local blowing boundary layers (t = 2400): (a) F = 40; (b) F = 80.

    图 6  壁面局部吹入边界层内被激发出T-S波的增长率(–αi)沿x向的演化(t = 2400) (a) F = 40; (b) F = 80

    Figure 6.  The x-direction evolutions of the growth rate (–αi) of the excited T-S waves in the local blowing boundary layers (t = 2400): (a) F = 40; (b) F = 80.

    图 7  在不同压力梯度情况下壁面局部吹入和吸出边界层内被激发出T-S波波包的初始幅值AR与局部吹吸强度q之间的关系

    Figure 7.  The relationships between the initial amplitudes of the excited T-S waves AR and the localized blowing/suction intensity q in different pressure boundary layers

    图 8  压力梯度对壁面局部吹入边界层内被激发出T-S波的特征形状函数的幅值沿y向演变的影响(x = 300)

    Figure 8.  The effects of different pressure gradients on y-direction amplitude profiles of the shape functions of the excited T-S waves in localized blowing boundary layers (x = 300).

    图 9  压力梯度对壁面局部吹入边界层内被激发出T-S波的特征形状函数的相位沿y向演变的影响(x = 300)

    Figure 9.  The effects of different pressure gradients on y-direction phase profiles of the shape functions of the excited T-S waves in localized blowing boundary layers (x = 300).

    表 1  压力梯度对边界层内被激发出T-S波波包向前传播的群速度(Cg)的影响

    Table 1.  The group speeds (Cg) of the excited T-S wave packets in the pressure-gradient boundary layers.

    βH0.30.10.050–0.05–0.1
    Cg (吹入)0.3580.3480.3430.3360.3330.331
    Cg (吸出)0.3560.3470.3410.3340.3320.329
    DownLoad: CSV

    表 2  压力梯度边界层被激发出的T-S波的流向波数和相速度(αr, C)

    Table 2.  The streamwise wave numbers and phase speeds (αr, C) of the excited T-S wave packets in the pressure-gradient boundary layers.

    βH–0.1–0.0500.050.1
    F = 30(吹) (0.0977, 0.3071) (0.0960, 0.3125) (0.0949, 0.3161) (0.0934, 0.3212) (0.0915, 0.3279)
    F = 30(吸) (0.0984, 0.3049) (0.0967, 0.3102) (0.0956, 0.3138) (0.0943, 0.3181) (0.0923, 0.3250)
    F = 40(吹) (0.1262, 0.3169) (0.1251, 0.3197) (0.1240, 0.3226) (0.1218, 0.3284) (0.1204, 0.3322)
    F = 40(吸) (0.1269, 0.3152) (0.1257, 0.3182) (0.1248, 0.3205) (0.1226, 0.3263) (0.1210, 0.3306)
    F = 50(吹) (0.1533, 0.3262) (0.1522, 0.3285) (0.1514, 0.3303) (0.1489, 0.3357) (0.1470, 0.3401)
    F = 50(吸) (0.1541, 0.3245) (0.1531, 0.3266) (0.1521, 0.3287) (0.1497, 0.3340) (0.1477, 0.3385)
    F = 60(吹) (0.1792, 0.3348) (0.1784, 0.3363) (0.1772, 0.3386) (0.1755, 0.3419) (0.1735, 0.3458)
    F = 60(吸) (0.1799, 0.3335) (0.1792, 0.3348) (0.1780, 0.3371) (0.1763, 0.3403) (0.1744, 0.3440)
    F = 70(吹) (0.2047, 0.3419) (0.2036, 0.3438) (0.2020, 0.3465) (0.2004, 0.3493) (0.1985, 0.3526)
    F = 70(吸) (0.2055, 0.3406) (0.2043, 0.3426) (0.2028, 0.3451) (0.2012, 0.3479) (0.1993, 0.3512)
    F = 80(吹) (0.2287, 0.3498) (0.2279, 0.3510) (0.2267, 0.3529) (0.2249, 0.3557) (0.2234, 0.3581)
    F = 80(吸) (0.2295, 0.3486) (0.2286, 0.3500) (0.2276, 0.3515) (0.2261, 0.3538) (0.2244, 0.3565)
    DownLoad: CSV
  • [1]

    Goldstein M E 1983 J. Fluid. Mech. 127 59Google Scholar

    [2]

    Ruban A I 1984 Fluid Dynam. 19 709

    [3]

    陆昌根, 沈露予 2015 物理学报 65 194701Google Scholar

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 65 194701Google Scholar

    [4]

    Shen L, Lu C, Zhu X 2019 Appl. Math. Mech. 40 851Google Scholar

    [5]

    Goldstein M E 1985 J. Fluid. Mech. 154 509Google Scholar

    [6]

    Saric W S, Hoos J A, Radeztsky R H 1991 Proceedings of the Symposium and Joint Fluids Engineering Conference, 1st Portland, U.S.A, June 23−27, 1991 p17

    [7]

    Wiegel M, Wlezien R 1993 AIAA P. 3280

    [8]

    Dietz A J 1999 J. Fluid. Mech. 378 291Google Scholar

    [9]

    Dietz A J 1998 AIAA J. 36 1171Google Scholar

    [10]

    Dietz A J 1996 AIAA P. 2083

    [11]

    Wu X 2001 J. Fluid. Mech. 449 373Google Scholar

    [12]

    Wu X 2001 J. Fluid. Mech. 431 91Google Scholar

    [13]

    Shen L, Lu C 2016 Appl. Math. Mech. 37 929Google Scholar

    [14]

    Shen L, Lu C 2016 Appl. Math. Mech. 37 349Google Scholar

    [15]

    Würz W, Herr S, Wörner A, Rist U 2003 J. Fluid. Mech. 478 135Google Scholar

    [16]

    Shen L, Lu C 2018 Adv. Appl. Math. Mech. 10 735Google Scholar

    [17]

    陆昌根, 沈露予 2015 物理学报 64 224702Google Scholar

    Lu C G, Shen L Y 2015 Acta Phys. Sin. 64 224702Google Scholar

    [18]

    Johnson M W, Pinarbasi 2014 Flow Turbul. Combu. 93 1Google Scholar

    [19]

    Jacobs R G 2001 J. Fluid. Mech. 428 185Google Scholar

  • [1] Zeng Rui-Tong, Yi Shi-He, Lu Xiao-Ge, Zhao Yu-Xin, Zhang Bo, Gang Dun-Dian. Experimental study on boundary layer of internal flow visible supersonic nozzle. Acta Physica Sinica, 2024, 73(16): 164702. doi: 10.7498/aps.73.20240713
    [2] Wan Bing-Bing, Hu Wei-Bo, Li Xiao-Hu, Huang Wen-Feng, Chen Jian-Qiang, Tu Guo-Hua. Three-dimensional receptivity of high-speed blunt cone to different types of freestream disturbances. Acta Physica Sinica, 2024, 73(23): 234701. doi: 10.7498/aps.73.20241383
    [3] He Xiao-Qiu, Xiong Yong-Liang, Peng Ze-Rui, Xu Shun. Boundary layers and energy dissipation rates on a half soap bubble heated at the equator. Acta Physica Sinica, 2022, 71(20): 204701. doi: 10.7498/aps.71.20220693
    [4] Lu Chang-Gen, Shen Lu-Yu. Influence of leading-edge curvature on excited unsteady cross-flow vortices in three-dimensional boundary-layer. Acta Physica Sinica, 2018, 67(21): 214702. doi: 10.7498/aps.67.20181343
    [5] Shen Lu-Yu, Lu Chang-Gen. Effect of leading-edge curvature variation on flat-plate boundary-layer receptivity. Acta Physica Sinica, 2018, 67(18): 184703. doi: 10.7498/aps.67.20180593
    [6] Ai Xu-Peng, Ni Bao-Yu. Influence of viscosity and surface tension of fluid on the motion of bubbles. Acta Physica Sinica, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [7] Liu Qiang, Luo Zhen-Bing, Deng Xiong, Yang Sheng-Ke, Jiang Hao. Linear stability of supersonic boundary layer with synthetic cold/hot jet control. Acta Physica Sinica, 2017, 66(23): 234701. doi: 10.7498/aps.66.234701
    [8] Shen Lu-Yu, Lu Chang-Gen. Receptivity of the steady cross-flow vortices in three-dimensional boundary layer. Acta Physica Sinica, 2017, 66(1): 014703. doi: 10.7498/aps.66.014703
    [9] Lu Chang-Gen, Zhu Xiao-Qing, Shen Lu-Yu. Receptivity mechanism of cross-flow instablity modes induced in three-dimensional boundary layer. Acta Physica Sinica, 2017, 66(20): 204702. doi: 10.7498/aps.66.204702
    [10] Lu Chang-Gen, Shen Lu-Yu. Numerical study of leading-edge receptivity on the infinite-thin flat-plat boundary layer. Acta Physica Sinica, 2016, 65(19): 194701. doi: 10.7498/aps.65.194701
    [11] Gu Yun-Qing, Mou Jie-Gang, Dai Dong-Shun, Zheng Shui-Hua, Jiang Lan-Fang, Wu Deng-Hao, Ren Yun, Liu Fu-Qing. Characteristics on drag reduction of bionic jet surface based on earthworm's back orifice jet. Acta Physica Sinica, 2015, 64(2): 024701. doi: 10.7498/aps.64.024701
    [12] Li Fang, Zhao Gang, Liu Wei-Xin, Zhang Shu, Bi Hong-Shi. Numerical simulation and experimental study on drag reduction performance of bionic jet hole shape. Acta Physica Sinica, 2015, 64(3): 034703. doi: 10.7498/aps.64.034703
    [13] Lu Chang-Gen, Shen Lu-Yu. Numerical study on boundary-layer receptivity with localized wall blowing/suction. Acta Physica Sinica, 2015, 64(22): 224702. doi: 10.7498/aps.64.224702
    [14] Chen Yao-Hui, Dong Xiang-Rui, Chen Zhi-Hua, Zhang Hui, Li Bao-Ming, Fan Bao-Chun. Control of flow around hydrofoil using the Lorentz force. Acta Physica Sinica, 2014, 63(3): 034701. doi: 10.7498/aps.63.034701
    [15] Tang Deng-Bin, Liu Chao-Qun, Chen Lin. New properties of streamwise streaks in transitional boundary layers. Acta Physica Sinica, 2011, 60(9): 094702. doi: 10.7498/aps.60.094702
    [16] Mo Jia-Qi, Liu Shu-De, Tang Rong-Rong. Shock position for a class of Robin problems of singularly perturbed nonlinear equation. Acta Physica Sinica, 2010, 59(7): 4403-4408. doi: 10.7498/aps.59.4403
    [17] Li Gang, Li Yi-Ming, Xu Yan-Ji, Zhang Yi, Li Han-Ming, Nie Chao-Qun, Zhu Jun-Qiang. Experimental study of near wall region flow control by dielectric barrier discharge plasma. Acta Physica Sinica, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [18] Zhang Gai-Xia, Zhao Yue-Feng, Zhang Yin-Chao, Zhao Pei-Tao. A lidar system for monitoring planetary boundary layer aerosol in daytime. Acta Physica Sinica, 2008, 57(11): 7390-7395. doi: 10.7498/aps.57.7390
    [19] Li Rui-Qu, Li Cun-Biao. . Acta Physica Sinica, 2002, 51(8): 1743-1749. doi: 10.7498/aps.51.1743
    [20] Gong An-Long, Li Rui-Qu, Li Cun-Bao. . Acta Physica Sinica, 2002, 51(5): 1068-1074. doi: 10.7498/aps.51.1068
Metrics
  • Abstract views:  8138
  • PDF Downloads:  73
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2019
  • Accepted Date:  23 July 2019
  • Available Online:  01 November 2019
  • Published Online:  20 November 2019

/

返回文章
返回