Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study on the effect of thermal annealing process on ohmic contact performance of AuGeNi/n-AlGaInP

Wang Su-Jie Li Shu-Qiang Wu Xiao-Ming Chen Fang Jiang Feng-Yi

Citation:

Study on the effect of thermal annealing process on ohmic contact performance of AuGeNi/n-AlGaInP

Wang Su-Jie, Li Shu-Qiang, Wu Xiao-Ming, Chen Fang, Jiang Feng-Yi
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this paper, Ni/Au/Ge/Ni/Au laminated metals were deposited on the n-(Al0.27Ga0.73)0.5In0.5P by electron beam evaporation, the ohmic contact with low contact resistance was successfully prepared by optimized annealing process. The specific contact resistance reached 1.4 × 10–4 Ω·cm2 when annealed at 445 ℃ for 600 s. The result of the secondary ion mass spectrometer shows that the solid-state reaction takes place at the interface between the laminated metal Ni/Au/Ge/Ni/Au and n-AlGaInP, then the germanium atoms and indium atoms diffuse outwards due to thermal decomposition and leave vacancies in the lattice. In this paper, the reason for the formation of ohmic contact is attributed to the fact that the germanium vacancy and indium vacancy are occupied by gallium atoms as donors to increasing the N-type doping concentration. The optimized annealing process can improve the ohmic contact performance of n-(Al0.27Ga0.73)0.5In0.5P with low doping concentration, but the specific contact resistivity has no obvious relationship with the annealing process when the of doping concentration of n-(Al0.27Ga0.73)0.5In0.5P increased. The Schottky barrier is high at low doping concentration of n-(Al0.27Ga0.73)0.5In0.5P. So inter diffusion in the annealing process could significantly increase the doping concentration of n-(Al0.27Ga0.73)0.5In0.5P and reduce the Schottky barrier height. Nevertheless, the Schottky barrier of the sample with high doping concentration is low enough what is not sensitive with inter diffusion. It provides a new method for the preparation of N-electrode of AlGaInP thin film light-emitting-diodes chip, as so as avoid the problem of n+-GaAs absorption in the conventional N-electrode preparation method and the problem of electrode dropping. However, there are still some shortcomings in this paper. The disadvantage is that the high doping concentration of n-AlGaInP will affect the crystal quality, which will reduce the luminous efficiency of LED. Therefore, in order to prepare ohmic contact with excellent properties on n-AlGaInP with lower doping concentration, optimizing the electrode design and the surface treatment of semiconductor materials are the keys to follow-up research.
      Corresponding author: Li Shu-Qiang, lishuqiang@ncu.edu.cn
    • Funds: project supported by the National Key R&D Program of China (Grant Nos. 2016YFB0400600, 2016YFB0400601, 2016YFB0400603)
    [1]

    Hong R H, Huang S H, Wu D S, Chi C Y 2003 Appl. Phys. Lett. 82 4011Google Scholar

    [2]

    Gessmann T, Schubert E F 2004 J. Appl. Phys. 95 2203Google Scholar

    [3]

    Dupuis R D, Krames M R 2008 J. Lightwave. Technol. 26 1154Google Scholar

    [4]

    Kish F A, Steranka F M, Defevere D C, Vanderwater D A, Park K G, Kuo C P, Osentowski T D, Peanasky M J, Yu J G, Fletcher R M 1994 Appl. Phys. 64 2839

    [5]

    刘自可, 高伟, 徐晨 2010 半导体学报 31 52

    Liu Z K, Gao W, Xu C 2010 J. Semicond. 31 52

    [6]

    Huang W, Chien F S, Yen F, Lin C, Ching B, Chiang K N 2014 Solid. State. Electron. 93 15Google Scholar

    [7]

    Dong Y, Han J, Chen X, Xie Y, Jie S 2016 IEEE Electron Device Lett. 37 1303Google Scholar

    [8]

    战瑛, 牛丽娟, 李晓云, 王小丽, 彭晓磊 2008 半导体技术 8 15Google Scholar

    Zhan Y, Niu L J, Li X Y, Wang X L, Peng X L 2008 Semicond. Technol. 8 15Google Scholar

    [9]

    Sai S G, Mahadeva B K, Dhamodaran S, Pathak A P, Muralidharan R, Vyas H P, Sridhara R D, Balamuralikrishnan R, Muraleedharan K 2015 Mater. Sci. Semicond. Process. 30 62Google Scholar

    [10]

    Carroll J E 1977 IET. Power. Electron. 23 841

    [11]

    Tahamtan S, Goodarzi A, Abbasi S P, Hodaei A, Zabihi M S, Sabbaghzadeh J 2011 Microelectron. Reliab. 51 1330Google Scholar

    [12]

    Kumar D 2006 Phys. Status Solidi A 139 433

    [13]

    Clausen T, Leistiko O 1995 Semicond. Sci. Technol. 10 691Google Scholar

    [14]

    吴鼎芬, 王德宁 1985 物理学报 34 332Google Scholar

    Wu D F, Wang D N 1985 Acta. Phys. Sin. 34 332Google Scholar

    [15]

    王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益 2011 物理学报 60 808

    Wang G X, Tao X X, Xiong C B, Liu J L, Feng F F, Zhang M, Jiang F Y 2011 Acta. Phys. Sin. 60 808

    [16]

    Blank T V, Gol’Dberg Y A 2007 Semiconductors. 41 1263Google Scholar

    [17]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 (第7版) (北京: 电子工业出版社) 第204页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (7th Ed.) (Beijing: Electronics industry Press) p204 (in Chinese)

    [18]

    Lumpkin N E, Lumpkin G R, Blackford M G 1999 J. Mater. Res. 14 1261Google Scholar

    [19]

    Hao P H, Wang L C, Ressel P, Kuo J M 1996 J. Vac. Sci. Technol., B 14 3244Google Scholar

    [20]

    郭伟玲, 钱可元, 王军喜 2015 LED器件与工艺技术 (北京: 电子工业出版社) 第76页

    Guo W L, Qian K W, Wang J X 2015 LED Devices and Technology (Beijing: Publishing House of Electronics Industry) p76 (in Chinese)

    [21]

    Clausen T, Leistiko O, Chorkendorff I, Larsen J 1993 Thin Solid Films 232 215Google Scholar

    [22]

    Farmanbar M, Brocks G 2016 Adv. Electron. Mater. 2 4

    [23]

    Wen C H, Tan F L, Lee C L 1996 J. Appl. Phys. 79 9200Google Scholar

  • 图 1  AlGaInP LED基本外延结构

    Figure 1.  Schematic diagrams of AlGaInP-base LED epitaxial structure.

    图 2  n面出光AlGaInP LED (a)常规结构薄膜芯片; (b)基于n-AlGaInP欧姆接触的芯片结构

    Figure 2.  Schematic diagrams of (a) conventional n-side-up AlGaInP LED structure and (b) n-AlGaInP contact LED.

    图 3  D5样品的I-V曲线, 圆环间距为10−35 µm

    Figure 3.  I-V behaviors of Sample D5, ring intervals are 10−35 µm

    图 4  385 ℃退火25 s时, A1, B1, C1和D1样品I-V曲线

    Figure 4.  I-V behaviors of Sample A1, B1, C1 and D1 after annealing at 385 ℃ for 25 s.

    图 5  不同退火条件下, ρcND关系

    Figure 5.  Contact resistivity as a function of doping concentration for different annealing conditions.

    图 6  SIMS深度剖析Ni/Au/Ge/Ni/Au与n-(Al0.27Ga0.73)0.5In0.5P接触性能

    Figure 6.  SIMS depth profiles of Ni/Au/Ge/Ni/Au contact on n-(Al0.27Ga0.73)0.5In0.5P before annealing and after annealing.

    图 7  相同掺杂浓度时 (a)退火时间25 s, ρc与退火温度关系; (b) 退火温度445 ℃, ρc与退火时间关系

    Figure 7.  At the same ND (a) ρc as a function of annealing temperature when the annealing time is 25 s; (b) ρc as a function of annealing temperature when the annealing temperature is 445 ℃.

    图 8  SEM测试不同退火温度下接触界面形貌 (a) 445 ℃退火25 s; (b) 485 ℃退火25 s

    Figure 8.  SEM micrographs showing the surface morphologies of ohmic contact (a) 445 ℃ for 25 s (b) 485 ℃ for 25 s.

    表 1  样品退火分组信息及比接触电阻率(ρc)测试结果

    Table 1.  Grouping information of samples annealing and specific contact resistivity (ρc) results.

    编号ND/cm-3T/℃Time/sρc/Ω·cm2编号ND/cm-3T/℃Time/sρc/Ω·cm2
    A17 × 101738525C12 × 1018385251.1 × 10–3
    A27 × 101742525C22 × 1018425259.4 × 10–4
    A37 × 101744525C32 × 1018445254.8 × 10–4
    A47 × 1017485252.9 × 10–3C42 × 1018485255.3 × 10–4
    A57 × 10174456003.2 × 10–3C52 × 10184456002.8 × 10–4
    A67 × 10174459003.6 × 10–3C62 × 10184459003.0 × 10–4
    B11 × 101838525D13 × 1018385254.9 × 10–4
    B21 × 101842525D23 × 1018425254.0 × 10–4
    B31 × 1018445253.5 × 10–3D33 × 1018445253.3 × 10–4
    B41 × 1018485255.1 × 10–4D43 × 1018485254.1 × 10–4
    B51 × 10184456004.6 × 10–4D53 × 10184456001.4 × 10–4
    B61 × 10184459005.4 × 10–4D63 × 10184459001.9 × 10–4
    DownLoad: CSV
  • [1]

    Hong R H, Huang S H, Wu D S, Chi C Y 2003 Appl. Phys. Lett. 82 4011Google Scholar

    [2]

    Gessmann T, Schubert E F 2004 J. Appl. Phys. 95 2203Google Scholar

    [3]

    Dupuis R D, Krames M R 2008 J. Lightwave. Technol. 26 1154Google Scholar

    [4]

    Kish F A, Steranka F M, Defevere D C, Vanderwater D A, Park K G, Kuo C P, Osentowski T D, Peanasky M J, Yu J G, Fletcher R M 1994 Appl. Phys. 64 2839

    [5]

    刘自可, 高伟, 徐晨 2010 半导体学报 31 52

    Liu Z K, Gao W, Xu C 2010 J. Semicond. 31 52

    [6]

    Huang W, Chien F S, Yen F, Lin C, Ching B, Chiang K N 2014 Solid. State. Electron. 93 15Google Scholar

    [7]

    Dong Y, Han J, Chen X, Xie Y, Jie S 2016 IEEE Electron Device Lett. 37 1303Google Scholar

    [8]

    战瑛, 牛丽娟, 李晓云, 王小丽, 彭晓磊 2008 半导体技术 8 15Google Scholar

    Zhan Y, Niu L J, Li X Y, Wang X L, Peng X L 2008 Semicond. Technol. 8 15Google Scholar

    [9]

    Sai S G, Mahadeva B K, Dhamodaran S, Pathak A P, Muralidharan R, Vyas H P, Sridhara R D, Balamuralikrishnan R, Muraleedharan K 2015 Mater. Sci. Semicond. Process. 30 62Google Scholar

    [10]

    Carroll J E 1977 IET. Power. Electron. 23 841

    [11]

    Tahamtan S, Goodarzi A, Abbasi S P, Hodaei A, Zabihi M S, Sabbaghzadeh J 2011 Microelectron. Reliab. 51 1330Google Scholar

    [12]

    Kumar D 2006 Phys. Status Solidi A 139 433

    [13]

    Clausen T, Leistiko O 1995 Semicond. Sci. Technol. 10 691Google Scholar

    [14]

    吴鼎芬, 王德宁 1985 物理学报 34 332Google Scholar

    Wu D F, Wang D N 1985 Acta. Phys. Sin. 34 332Google Scholar

    [15]

    王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益 2011 物理学报 60 808

    Wang G X, Tao X X, Xiong C B, Liu J L, Feng F F, Zhang M, Jiang F Y 2011 Acta. Phys. Sin. 60 808

    [16]

    Blank T V, Gol’Dberg Y A 2007 Semiconductors. 41 1263Google Scholar

    [17]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 (第7版) (北京: 电子工业出版社) 第204页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (7th Ed.) (Beijing: Electronics industry Press) p204 (in Chinese)

    [18]

    Lumpkin N E, Lumpkin G R, Blackford M G 1999 J. Mater. Res. 14 1261Google Scholar

    [19]

    Hao P H, Wang L C, Ressel P, Kuo J M 1996 J. Vac. Sci. Technol., B 14 3244Google Scholar

    [20]

    郭伟玲, 钱可元, 王军喜 2015 LED器件与工艺技术 (北京: 电子工业出版社) 第76页

    Guo W L, Qian K W, Wang J X 2015 LED Devices and Technology (Beijing: Publishing House of Electronics Industry) p76 (in Chinese)

    [21]

    Clausen T, Leistiko O, Chorkendorff I, Larsen J 1993 Thin Solid Films 232 215Google Scholar

    [22]

    Farmanbar M, Brocks G 2016 Adv. Electron. Mater. 2 4

    [23]

    Wen C H, Tan F L, Lee C L 1996 J. Appl. Phys. 79 9200Google Scholar

  • [1] Li Jing-Hui, Cao Sheng-Guo, Han Jia-Ning, Li Zhan-Hai, Zhang Zhen-Hua. Electrical contact properties of 2D metal-semiconductor heterojunctions composed of different phases of NbS2 and GeS2. Acta Physica Sinica, 2024, 73(13): 137102. doi: 10.7498/aps.73.20240530
    [2] Zhao Jian-Cheng, Wu Chao-Xing, Guo Tai-Liang. Carrier transport model of non-carrier-injection light-emitting diode. Acta Physica Sinica, 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [3] Wang Dang-Hui, Xu Tian-Han. Low-frequency generation-recombination noise behaviors of blue/violet-light-emitting diode. Acta Physica Sinica, 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [4] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [5] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun, Zhao Ming-Jie. Improved performance of Al/n+Ge Ohmic contact andGe n+/p diode by two-step annealing method. Acta Physica Sinica, 2019, 68(17): 178501. doi: 10.7498/aps.68.20190699
    [6] Feng Bo, Deng Biao, Liu Le-Gong, Li Zeng-Cheng, Feng Mei-Xin, Zhao Han-Min, Sun Qian. Effect of plasma surface treatment on embedded n-contact for GaN-based blue light-emitting diodes grown on Si substrate. Acta Physica Sinica, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [7] Wang Dang-Hui, Xu Tian-Han, Wang Rong, Luo She-Ji, Yao Ting-Zhen. Research on emission transition mechanisms of InGaN/GaN multiple quantum well light-emitting diodes using low-frequency current noise. Acta Physica Sinica, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [8] Lu Wu-Yue, Zhang Yong-Ping, Chen Zhi-Zhan, Cheng Yue, Tan Jia-Hui, Shi Wang-Zhou. Effect of different annealing treatment methods on the Ni/SiC contact interface properties. Acta Physica Sinica, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [9] Chen Wei-Chao, Tang Hui-Li, Luo Ping, Ma Wei-Wei, Xu Xiao-Dong, Qian Xiao-Bo, Jiang Da-Peng, Wu Feng, Wang Jing-Ya, Xu Jun. Research progress of substrate materials used for GaN-Based light emitting diodes. Acta Physica Sinica, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [10] Sun Pei, Li Jian-Jun, Deng Jun, Han Jun, Ma Ling-Yun, Liu Tao. Temperature window of the (Al0.1Ga0.9)0.5In0.5P growth by MOCVD. Acta Physica Sinica, 2013, 62(2): 026801. doi: 10.7498/aps.62.026801
    [11] Li Xiao-Jing, Zhao De-Gang, He Xiao-Guang, Wu Liang-Liang, Li Liang, Yang Jing, Le Ling-Cong, Chen Ping, Liu Zong-Shun, Jiang De-Sheng. Influence of different annealing temperature and atmosphere on the Ni/Au Ohmic contact to p-GaN. Acta Physica Sinica, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [12] Gao Hui, Kong Fan-Min, Li Kang, Chen Xin-Lian, Ding Qing-An, Sun Jing. Structural optimization of GaN blue light LED with double layers of photonic crystals. Acta Physica Sinica, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [13] Wang Xiao-Yong, Chong Ming, Zhao De-Gang, Su Yan-Mei. Two-dimensional hole gas in p-GaN/p-AlxGa1-xN heterojunctions and its influence on Ohmic contact. Acta Physica Sinica, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [14] Wang Guang-Xu, Tao Xi-Xia, Xiong Chuan-Bing, Liu Jun-Lin, Feng Fei-Fei, Zhang Meng, Jiang Feng-Yi. Effects of Ni-assisted annealing on p-type contact resistivity of GaN-based LED films grown on Si(111) substrates. Acta Physica Sinica, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [15] Zhu Li-Hong, Cai Jia-Fa, Li Xiao-Ying, Deng Biao, Liu Bao-Lin. Luminous performance improvement of InGaN/GaN light-emitting diodes by modulating In content in well layers. Acta Physica Sinica, 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [16] Li Bing-Qian, Zheng Tong-Chang, Xia Zheng-Hao. Temperature characteristics of the forward voltage of GaN based blue light emitting diodes. Acta Physica Sinica, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] Shen Guang-Di, Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling. Research on effects of current spreading and optimized contact scheme for high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [18] Zhang Jian-Ming, Zou De-Shu, Xu Chen, Gu Xiao-Ling, Shen Guang-Di. Effects of optimized contact scheme on the performance of high-power GaN-based light-emitting diodes. Acta Physica Sinica, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [19] Liu Nai-Xin, Wang Huai-Bing, Liu Jian-Ping, Niu Nan-Hui, Han Jun, Shen Guang-Di. Growth of p-GaN at low temperature and its properties as light emitting diodes. Acta Physica Sinica, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] Hu Jin, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, Zhou Jiang. Noise as a representation for reliability of light emitting diode. Acta Physica Sinica, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
Metrics
  • Abstract views:  13759
  • PDF Downloads:  262
  • Cited By: 0
Publishing process
  • Received Date:  09 November 2019
  • Accepted Date:  19 December 2019
  • Published Online:  20 February 2020

/

返回文章
返回