-
Based on the ideal magneto-hydro-dynamic equations (MHD) and adopting the CTU (Corner Transport Upwind) + CT (Constrained Transport) algorithm, the Richtmyer-Meshkov (RM) instability of the Gaussian distribution R22 gas column generated by the interaction of a planar shock wave with the gas column in the presence of magnetic field is investigated numerically. The numerical results show that the evolution of shock wave structure and interface instability during the interaction between shock wave and gas column are consistent with the experimental results of Haas and Sturtevant (Hass J F, Sturtevant B 1987 J. Fluid Mech. 181 41) in the absence of a magnetic field. In the presence of a longitudinal magnetic field, the evolution of the shock structures is almost unaffected, while the density interface appears very smooth and interfacial vortex sequences vanish, which is a clear indication of the RMI suppresion. Moreover, as the shock wave impinges on the interface, the magnetic field lines refract on the interface, resulting in the generation of magnetic field gradient in the flow field, which is not consistent with the scenario in the above case. As a result, a stronger magnetic tension is produced on the inner and outer vorticity layer. Simultaneously, the magnetic tension produces a moment on the interface fluid, which is opposite to the rolling direction of the velocity shear. Therefore, the interface instability and the main vortex rolling-up are effectively suppressed. In addition, the non-uniform distribution of magnetic tensions along the interface changes the aggregation degree of the magnetic lines, amplifying the magnetic strength, and finally enhancing the suppression effect of the magnetic field on the interface instability.
-
Keywords:
- Richtmyer-Meshkov instability /
- magneto-hydro-dynamic /
- shock wave /
- gas column
[1] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar
[2] Meshkov E E 1969 Fluid Dyn. 4 101Google Scholar
[3] Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 45 32Google Scholar
[4] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Steven W, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[5] Lindl J D, Otto Landen O, Edwards J, Moses E 2014 Phys. Plasmas 21 020501Google Scholar
[6] Yang J D, Kubota T, and Zukoski E E 1993 AIAA J. 31 854Google Scholar
[7] Samtaney R 2003 Phys. Fluids 15 53Google Scholar
[8] Hawley J F, Zabusky N J 1989 Phys. Rev. Lett. 63 1241Google Scholar
[9] Wheatley V, Pullin D I, Samtaney R 2005 Phys. Rev. Lett. 95 125002Google Scholar
[10] Wheatley V, Samtaney R, Pullin D I 2009 Phys. Fluids 21 082102Google Scholar
[11] Wheatley V, Samtaney R, Pullin D I, Gehre R M 2014 Phys. Fluids 26 016102Google Scholar
[12] Cao J, Wu Z, Ren H, Li D 2008 Phys. Plasmas 15 042102Google Scholar
[13] Sano T, Nishihara K, Matsuoka C, Inoue T 2012 The Astrophys. J. 758 126Google Scholar
[14] Mac Low M M, McKee C F, Klein R I 1994 The Astrophys. J. 433 757Google Scholar
[15] Fragile P C, Anninos P, Gustafson K 2005 The Astrophys. J. 619 327Google Scholar
[16] 李源, 罗喜胜 2014 计算物理 31 659Google Scholar
Li Y, Luo X S 2014 Chinese J. Comput. Phys. 31 659Google Scholar
[17] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎 2018 物理学报 67 204701Google Scholar
Dong G D, Zhang H H, Lin Z Y, Qin J H, Chen Z H, Guo Z Q, Sha S 2018 Acta Phys. Sin. 67 204701Google Scholar
[18] 董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎 2019 物理学报 68 165201Google Scholar
Dong G D, Guo Z Q, Qin J H, Zhang H H, Jiang X H, Chen Z H, Sha S 2019 Acta Phys. Sin. 68 165201Google Scholar
[19] 沙莎, 陈志华, 薛大文 2013 物理学报 62 144701Google Scholar
Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701Google Scholar
[20] 沙莎, 陈志华, 张庆兵 2015 物理学报 64 015201Google Scholar
Sha S, Chen Z H, Zhang Q B 2015 Acta Phys. Sin. 64 015201Google Scholar
[21] Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D. 31 21Google Scholar
[22] 林震亚, 张焕好, 陈志华, 刘迎 2017 爆炸与冲击 37 748Google Scholar
Lin Z Y, Zhang H H, Chen Z H, Liu Y 2017 Explosion and Shock Waves 37 748Google Scholar
[23] Gardiner T A, Stone J M 2008 J. Comput. Phys. 227 4123Google Scholar
[24] Londrillo P, Zanna L D 2003 J. Comput. Phys. 195 17Google Scholar
[25] Hass J F, Sturtevant B 1987 J. Fluid Mech. 181 41Google Scholar
-
图 2 激波与气柱作用过程的计算阴影结果(上)与实验结果(下)[25]的对比 (a) t = 0.09 ms; (b) t = 0.215 ms; (c) t = 0.25 ms; (d) t = 1.20 ms
Figure 2. Comparison of our numerical (up) and experimental[25] (down) shadowgraph images of the interactions between shock wave and gas column: (a) t = 0.09 ms; (b) t = 0.215 ms; (c) t = 0.25 ms; (d) t = 1.20 ms.
图 3 施加磁场后流场的计算阴影图 (a) t = 0.12 ms; (b) t = 0.2 ms; (c) t = 0.25 ms; (d) t = 0.29 ms; (e) t = 0.425 ms; (f) t = 0.85 ms; (g) t = 1.20 ms; (h) t = 1.55 ms
Figure 3. Numerical shadowgraph images of the case in the presence of a magnetic field: (a) t = 0.12 ms; (b) t = 0.2 ms; (c) t = 0.25 ms; (d) t = 0.29 ms; (e) t = 0.425 ms; (f) t = 0.85 ms; (g) t = 1.20 ms; (h) t = 1.55 ms.
图 6 t = 0.2 ms时, 流场中各物理量的分布 (a)横向磁场强度; (b)纵向磁场强度; (c)磁能量; (d)横向磁张力; (e)纵向磁张力; (f)涡量
Figure 6. Spatial distribution of various physical quantities at t = 0.2 ms: (a) Transverse magnetic field; (b) longitudinal magnetic field; (c) magnetic energy; (d) transverse magnetic tension; (e) longitudinal magnetic tension; (f) vorticity.
-
[1] Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar
[2] Meshkov E E 1969 Fluid Dyn. 4 101Google Scholar
[3] Lindl J D, McCrory R L, Campbell E M 1992 Phys. Today 45 32Google Scholar
[4] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Steven W, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339Google Scholar
[5] Lindl J D, Otto Landen O, Edwards J, Moses E 2014 Phys. Plasmas 21 020501Google Scholar
[6] Yang J D, Kubota T, and Zukoski E E 1993 AIAA J. 31 854Google Scholar
[7] Samtaney R 2003 Phys. Fluids 15 53Google Scholar
[8] Hawley J F, Zabusky N J 1989 Phys. Rev. Lett. 63 1241Google Scholar
[9] Wheatley V, Pullin D I, Samtaney R 2005 Phys. Rev. Lett. 95 125002Google Scholar
[10] Wheatley V, Samtaney R, Pullin D I 2009 Phys. Fluids 21 082102Google Scholar
[11] Wheatley V, Samtaney R, Pullin D I, Gehre R M 2014 Phys. Fluids 26 016102Google Scholar
[12] Cao J, Wu Z, Ren H, Li D 2008 Phys. Plasmas 15 042102Google Scholar
[13] Sano T, Nishihara K, Matsuoka C, Inoue T 2012 The Astrophys. J. 758 126Google Scholar
[14] Mac Low M M, McKee C F, Klein R I 1994 The Astrophys. J. 433 757Google Scholar
[15] Fragile P C, Anninos P, Gustafson K 2005 The Astrophys. J. 619 327Google Scholar
[16] 李源, 罗喜胜 2014 计算物理 31 659Google Scholar
Li Y, Luo X S 2014 Chinese J. Comput. Phys. 31 659Google Scholar
[17] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎 2018 物理学报 67 204701Google Scholar
Dong G D, Zhang H H, Lin Z Y, Qin J H, Chen Z H, Guo Z Q, Sha S 2018 Acta Phys. Sin. 67 204701Google Scholar
[18] 董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎 2019 物理学报 68 165201Google Scholar
Dong G D, Guo Z Q, Qin J H, Zhang H H, Jiang X H, Chen Z H, Sha S 2019 Acta Phys. Sin. 68 165201Google Scholar
[19] 沙莎, 陈志华, 薛大文 2013 物理学报 62 144701Google Scholar
Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701Google Scholar
[20] 沙莎, 陈志华, 张庆兵 2015 物理学报 64 015201Google Scholar
Sha S, Chen Z H, Zhang Q B 2015 Acta Phys. Sin. 64 015201Google Scholar
[21] Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D. 31 21Google Scholar
[22] 林震亚, 张焕好, 陈志华, 刘迎 2017 爆炸与冲击 37 748Google Scholar
Lin Z Y, Zhang H H, Chen Z H, Liu Y 2017 Explosion and Shock Waves 37 748Google Scholar
[23] Gardiner T A, Stone J M 2008 J. Comput. Phys. 227 4123Google Scholar
[24] Londrillo P, Zanna L D 2003 J. Comput. Phys. 195 17Google Scholar
[25] Hass J F, Sturtevant B 1987 J. Fluid Mech. 181 41Google Scholar
Catalog
Metrics
- Abstract views: 7336
- PDF Downloads: 76
- Cited By: 0