Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Insight of the doping mechanism of F and Al co-doped ZnO transparent conductive films

Wang Yan-Feng Xie Xi-Cheng Liu Xiao-Jie Han Bing Wu Han-Han Lian Ning-Ning Yang Fu Song Qing-Gong Pei Hai-Lin Li Jun-Jie

Citation:

Insight of the doping mechanism of F and Al co-doped ZnO transparent conductive films

Wang Yan-Feng, Xie Xi-Cheng, Liu Xiao-Jie, Han Bing, Wu Han-Han, Lian Ning-Ning, Yang Fu, Song Qing-Gong, Pei Hai-Lin, Li Jun-Jie
PDF
HTML
Get Citation
  • Transparent conductive oxide (TCO) films, as transparent electrodes, are widely used in thin-film solar cells. The performance of TCO film has a significant influence on the conversion efficiency of the film solar cell fabricated byusing it. Although the conductivity can be improved by increasing the carrier concentration, the transmittance in the long wave will be sacrificed. Therefore, the only feasible method is to increase the carrier mobility within a certain carrier concentration range, rather than increase the mobility by reducing carrier concentration. In this paper, the F and Al co-doped ZnO (FAZO) films are deposited on glass substrates (Corning XG) by an RF magnetron sputtering technique with using a small amount of ZnF2 (1 wt.%) and Al2O3 (1 wt.%) dopant. The influences of sputtering pressure on the structure, morphology and photoelectric characteristics of the films are respectively investigated by X-ray diffraction analysis, scanning electron microscope, Hall effect measurement, and ultraviolet–visible–near infrared spectrophotometry. All the thin films show typical wurtzite structure with the c axis preferentially oriented perpendicular to the substrate. With the increase of sputtering pressure, the deposition rate of FAZO film decreases, the crystallization quality is deteriorated, surface topography changes gradually from “crater-like” to co-existent “crater-like” and “granular-like”, and the surface roughness increases. The FAZO film deposited at 0.5 Pa presents the optimal performance with a mobility of 40.03 cm2/V·s, carrier concentration of 3.92 × 1020 cm–3, resistivity of 3.98 × 10–4 Ω·cm, and about 90% average transmittance in a range of 380-1200 nm. The theoretical result shows that the co-doping of F and Al takes the advantages of single F and Al doped ZnO films, and overcomes the shortcoming of metal elements doping, which donates the carriers just from doped metal elements. Furthermore, the co-doping of F and Al not only increases the carriers but also reduces the scatterings caused by the inter-orbital interaction of doped atoms. The doped F 2p electron orbitals repel the O 2p and Zn 4s electron orbitals, making them move down and donate electrons. At the same time, the orbitals of Al 3s and Al 3p also make a contribution to the conductivity. After co-doping of F and Al, both the carrier concentration and conductivity increase significantly.
      Corresponding author: Li Jun-Jie, ljj888999@hebeinu.edu.cn
    • Funds: Project Supported by the Natural Science Foundation of Hebei Province, China (Grant No. A2019405059), the Key Research and Development Program of Hebei Province, China (Grant No. 19214301D), the Fundamental Research Fund of Hebei North University, China (Grant No. JYT2019001), the General Projects of Hebei North University, China (Grant No. YB2018014), and the Innovation and Entrepreneurship Training Program for College Students of Hebei North University, China (Grant No. 201910092010)
    [1]

    Gordon R G 2000 MRS Bull. 25 52

    [2]

    Minami T 2000 MRS Bull. 25 38

    [3]

    Moulin E, Bittkau K, Ghosh M, Bugnon G, Stuckelberger M, Meier M, Haug F J, Hüpkes J, Ballif C 2016 Sol. Energy Mater. Sol. Cells 145 185Google Scholar

    [4]

    Jost G, Merdzhanova T, Zimmermann T, Hüpkes J 2013 Thin Solid Films 532 66Google Scholar

    [5]

    Tao K, Sun Y, Cai H K, Zhang D X, Xie K, Wang Y 2012 Appl. Surf. Sci. 258 5943Google Scholar

    [6]

    Warasawa M, Kaijo A, Sugiyama M 2012 Thin Solid Films 520 2119Google Scholar

    [7]

    Wang Y F, Song J M, Bai L S, Yang F, Han B, Guo Y J, Dai B T, Zhao Y, Zhang X D 2018 Sol. Energy Mater. Sol. Cells 179 401Google Scholar

    [8]

    Liu B F, Bai L S, Li T T, Wei C C, Li B Z, Huang Q, Zhang D K, Wang G C, Zhao Y, Zhang X D 2017 Energy Environ. Sci. 10 1134Google Scholar

    [9]

    Zhang L, Huang J, Yang J, Tang K, Ren B, Zhang S W, Wang L J 2016 Surf. Coat. Technol. 307 1129Google Scholar

    [10]

    Tsay C Y, Pai K C 2018 Thin Solid Films 654 11Google Scholar

    [11]

    Kirby S D, van Dover R B 2009 Thin Solid Films 517 1958Google Scholar

    [12]

    Li Q, Zhu L P, Li Y G, Zhang X Y, Niu W Z, Guo Y M, Ye Z Z 2017 J. Alloys Compd. 697 156Google Scholar

    [13]

    Mallick A, Basak D 2017 Appl. Surf. Sci. 410 540Google Scholar

    [14]

    Shi Q, Zhou K S, Dai M J, Lin S S, Hou H J, Wei C B, Hu F 2014 Ceram. Int. 40 211Google Scholar

    [15]

    Ji X Z, Song J M, Wu T T, Tian Y, Han B, Liu X N, Wang H W, Gui Y B, Ding Y, Wang Y F 2019 Sol. Energy Mater. Sol. Cells 190 6Google Scholar

    [16]

    Wang Y F, Song J M, Song W Y, Tian Y, Han B, Meng X D, Yang F, Ding Y, Li J J 2019 Sol. Energy 186 126Google Scholar

    [17]

    Zheng G X, Song J M, Zhang J, Li J J, Han B, Meng X D, Yang F, Zhao Y, Wang Y F 2020 Mater. Sci. Semicond. Process. 112 105016Google Scholar

    [18]

    王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 物理学报 61 137801Google Scholar

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801Google Scholar

    [19]

    王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 物理学报 62 247802Google Scholar

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802Google Scholar

    [20]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [23]

    Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314Google Scholar

    [24]

    王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇 2016 物理学报 65 087802Google Scholar

    Wang Y F, Meng X D, Zheng W, Song Q G, Zhai C X, Guo B, Zhang Y, Yang F, Nan J Y 2016 Acta Phys. Sin. 65 087802Google Scholar

    [25]

    Hsu F H, Wang N F, Tsai Y Z, Chuang M C, Cheng Y S, Houng M P 2013 Appl. Surf. Sci. 280 104Google Scholar

    [26]

    Yue H, Wu A, Feng Y, Zhang X, Li T 2011 Thin Solid Films 519 5577Google Scholar

    [27]

    Kluth O, Schöpe G, Hüpkes J, Agashe C, Müller J, Rech B 2003 Thin Solid Films 442 80Google Scholar

    [28]

    Assunção V, Fortunato E, Marques A, Águas H, Ferreira I, Costa M E V, Martins R 2003 Thin Solid Films 427 401Google Scholar

    [29]

    Maccoa B, Knoops H C M, Verheijen M A, Beyer W, Creatore M, Kessels W M M 2017 Sol. Energy Mater. Sol. Cells 173 111Google Scholar

    [30]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432Google Scholar

    [31]

    Sreedhar A, Kwon J H, Yi J, Gwag J S 2016 Ceram. Int. 42 14456Google Scholar

    [32]

    Cao L, Zhu LvP, Jiang J, Zhao R, Ye Z Z, Zhao B H 2011 Sol. Energy Mater. Sol. Cells 95 894Google Scholar

    [33]

    Xu H Y, Liu Y C, Mu R, Shao C L, Lu Y M, Shen D Z, Fan X W 2005 Appl. Phys. Lett. 86 123107

    [34]

    Burstein E 1954 Phys. Rev. 93 632Google Scholar

    [35]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775Google Scholar

    [36]

    Slassi A 2015 Opt. Quantum Electron. 47 2465Google Scholar

    [37]

    张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 2015

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Opt. Sin. 29 2015

    [38]

    Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J, Zhao Y 2016 Sol. Energy Mater. Sol. Cells 145 171Google Scholar

  • 图 1  不同溅射气压制备FAZO薄膜的沉积速率

    Figure 1.  The deposition rate of FAZO films deposited at different pressures.

    图 2  不同溅射气压制备FAZO薄膜的XRD衍射谱 (a) XRD 衍射谱; (b)半高宽(FWHM)和晶粒尺寸(D)

    Figure 2.  XRD patterns of FAZO films deposited at different pressures: (a) XRD patterns; (b) full width at half maximum (FWHM) and grain size (D).

    图 3  不同溅射气压制备FAZO薄膜的表面形貌图 (a) 0.3 Pa; (b) 0.8 Pa; (c) 3.0 Pa

    Figure 3.  SEM images of FAZO films deposited at different pressures: (a) 0.3 Pa; (b) 0.8 Pa; (c) 3.0 Pa.

    图 4  不同溅射气压制备FAZO薄膜的电学特性

    Figure 4.  Electrical properties of FAZO films deposited at different pressures.

    图 5  FZO, AZO和FAZO能带结构图 (a) FZO; (b) AZO; (c) FAZO

    Figure 5.  Band structure of FZO, AZO and FAZO: (a) FZO; (b) AZO; (c) FAZO.

    图 6  FZO, AZO和FAZO态密度图 (a) FZO; (b) AZO; (c) FAZO

    Figure 6.  Density of states of FZO, AZO and FAZO: (a) FZO; (b) AZO; (c) FAZO.

    图 7  不同溅射气压制备FAZO薄膜以及AZO薄膜的光学特性 (a)透过谱; (b)反射谱; (c)吸收谱

    Figure 7.  Optical properties of FAZO films deposited at different pressures and AZO film: (a) Transmittance; (b) reflection; (c) absorption.

    图 8  不同溅射气压制备FAZO薄膜和AZO薄膜的光学带隙

    Figure 8.  Optical bandgap of FAZO films deposited at different pressures and AZO film.

  • [1]

    Gordon R G 2000 MRS Bull. 25 52

    [2]

    Minami T 2000 MRS Bull. 25 38

    [3]

    Moulin E, Bittkau K, Ghosh M, Bugnon G, Stuckelberger M, Meier M, Haug F J, Hüpkes J, Ballif C 2016 Sol. Energy Mater. Sol. Cells 145 185Google Scholar

    [4]

    Jost G, Merdzhanova T, Zimmermann T, Hüpkes J 2013 Thin Solid Films 532 66Google Scholar

    [5]

    Tao K, Sun Y, Cai H K, Zhang D X, Xie K, Wang Y 2012 Appl. Surf. Sci. 258 5943Google Scholar

    [6]

    Warasawa M, Kaijo A, Sugiyama M 2012 Thin Solid Films 520 2119Google Scholar

    [7]

    Wang Y F, Song J M, Bai L S, Yang F, Han B, Guo Y J, Dai B T, Zhao Y, Zhang X D 2018 Sol. Energy Mater. Sol. Cells 179 401Google Scholar

    [8]

    Liu B F, Bai L S, Li T T, Wei C C, Li B Z, Huang Q, Zhang D K, Wang G C, Zhao Y, Zhang X D 2017 Energy Environ. Sci. 10 1134Google Scholar

    [9]

    Zhang L, Huang J, Yang J, Tang K, Ren B, Zhang S W, Wang L J 2016 Surf. Coat. Technol. 307 1129Google Scholar

    [10]

    Tsay C Y, Pai K C 2018 Thin Solid Films 654 11Google Scholar

    [11]

    Kirby S D, van Dover R B 2009 Thin Solid Films 517 1958Google Scholar

    [12]

    Li Q, Zhu L P, Li Y G, Zhang X Y, Niu W Z, Guo Y M, Ye Z Z 2017 J. Alloys Compd. 697 156Google Scholar

    [13]

    Mallick A, Basak D 2017 Appl. Surf. Sci. 410 540Google Scholar

    [14]

    Shi Q, Zhou K S, Dai M J, Lin S S, Hou H J, Wei C B, Hu F 2014 Ceram. Int. 40 211Google Scholar

    [15]

    Ji X Z, Song J M, Wu T T, Tian Y, Han B, Liu X N, Wang H W, Gui Y B, Ding Y, Wang Y F 2019 Sol. Energy Mater. Sol. Cells 190 6Google Scholar

    [16]

    Wang Y F, Song J M, Song W Y, Tian Y, Han B, Meng X D, Yang F, Ding Y, Li J J 2019 Sol. Energy 186 126Google Scholar

    [17]

    Zheng G X, Song J M, Zhang J, Li J J, Han B, Meng X D, Yang F, Zhao Y, Wang Y F 2020 Mater. Sci. Semicond. Process. 112 105016Google Scholar

    [18]

    王延峰, 黄茜, 宋庆功, 刘阳, 魏长春, 赵颖, 张晓丹 2012 物理学报 61 137801Google Scholar

    Wang Y F, Huang Q, Song Q G, Liu Y, Wei C C, Zhao Y, Zhang X D 2012 Acta Phys. Sin. 61 137801Google Scholar

    [19]

    王延峰, 张晓丹, 黄茜, 杨富, 孟旭东, 宋庆功, 赵颖 2013 物理学报 62 247802Google Scholar

    Wang Y F, Zhang X D, Huang Q, Yang F, Meng X D, Song Q G, Zhao Y 2013 Acta Phys. Sin. 62 247802Google Scholar

    [20]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [22]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [23]

    Sheetz R M, Ponomareva I, Richter E, Andriotis A N, Menon M 2009 Phys. Rev. B 80 195314Google Scholar

    [24]

    王延峰, 孟旭东, 郑伟, 宋庆功, 翟昌鑫, 郭兵, 张越, 杨富, 南景宇 2016 物理学报 65 087802Google Scholar

    Wang Y F, Meng X D, Zheng W, Song Q G, Zhai C X, Guo B, Zhang Y, Yang F, Nan J Y 2016 Acta Phys. Sin. 65 087802Google Scholar

    [25]

    Hsu F H, Wang N F, Tsai Y Z, Chuang M C, Cheng Y S, Houng M P 2013 Appl. Surf. Sci. 280 104Google Scholar

    [26]

    Yue H, Wu A, Feng Y, Zhang X, Li T 2011 Thin Solid Films 519 5577Google Scholar

    [27]

    Kluth O, Schöpe G, Hüpkes J, Agashe C, Müller J, Rech B 2003 Thin Solid Films 442 80Google Scholar

    [28]

    Assunção V, Fortunato E, Marques A, Águas H, Ferreira I, Costa M E V, Martins R 2003 Thin Solid Films 427 401Google Scholar

    [29]

    Maccoa B, Knoops H C M, Verheijen M A, Beyer W, Creatore M, Kessels W M M 2017 Sol. Energy Mater. Sol. Cells 173 111Google Scholar

    [30]

    Pei Z L, Sun C, Tan M H, Xiao J Q, Guan D H, Huang R F, Wen L S 2001 J. Appl. Phys. 90 3432Google Scholar

    [31]

    Sreedhar A, Kwon J H, Yi J, Gwag J S 2016 Ceram. Int. 42 14456Google Scholar

    [32]

    Cao L, Zhu LvP, Jiang J, Zhao R, Ye Z Z, Zhao B H 2011 Sol. Energy Mater. Sol. Cells 95 894Google Scholar

    [33]

    Xu H Y, Liu Y C, Mu R, Shao C L, Lu Y M, Shen D Z, Fan X W 2005 Appl. Phys. Lett. 86 123107

    [34]

    Burstein E 1954 Phys. Rev. 93 632Google Scholar

    [35]

    Moss T S 1954 Proc. Phys. Soc. London, Sect. B 67 775Google Scholar

    [36]

    Slassi A 2015 Opt. Quantum Electron. 47 2465Google Scholar

    [37]

    张富春, 张志勇, 张威虎, 阎军峰, 贠江妮 2009 光学学报 29 2015

    Zhang F C, Zhang Z Y, Zhang W H, Yan J F, Yun J N 2009 Acta Opt. Sin. 29 2015

    [38]

    Wang Y F, Zhang X D, Meng X D, Cao Y, Yang F, Nan J Y, Song Q G, Huang Q, Wei C C, Zhang J J, Zhao Y 2016 Sol. Energy Mater. Sol. Cells 145 171Google Scholar

  • [1] Cao Yu, Jiang Jia-Hao, Liu Chao-Ying, Ling Tong, Meng Dan, Zhou Jing, Liu Huan, Wang Jun-Yao. Bandgap grading of Sb2(S,Se)3 for high-efficiency thin-film solar cells. Acta Physica Sinica, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [2] Zheng Lu-Min, Zhong Shu-Ying, Xu Bo, Ouyang Chu-Ying. First-principles study of rare-earth-doped cathode materials Li2MnO3 in Li-ion batteries. Acta Physica Sinica, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [3] Zhao Qi-Chen, Hao Rui-Ting, Liu Si-Jia, Liu Xin-Xing, Chang Fa-Ran, Yang Min, Lu Yi-Lei, Wang Shu-Rong. Fabrication of Cu2ZnSnS4 thin films by sputtering quaternary compound target and the research of in-situ annealing. Acta Physica Sinica, 2017, 66(22): 226801. doi: 10.7498/aps.66.226801
    [4] Geng Chao, Zheng Yi, Zhang Yong-Zhe, Yan Hui. Optical design of nanowire array on silicon thin film solar cell. Acta Physica Sinica, 2016, 65(7): 070201. doi: 10.7498/aps.65.070201
    [5] Wang Yan-Feng, Meng Xu-Dong, Zheng Wei, Song Qing-Gong, Zhai Chang-Xin, Guo Bing, Zhang Yue, Yang Fu, Nan Jing-Yu. Investigation of V doped ZnO transparent conductive oxide films. Acta Physica Sinica, 2016, 65(8): 087802. doi: 10.7498/aps.65.087802
    [6] Ding Dong, Yang Shi-E, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Numerical simulation of light absorption enhancement in microcrystalline silicon solar cells with Al nanoparticle arrays. Acta Physica Sinica, 2015, 64(24): 248801. doi: 10.7498/aps.64.248801
    [7] Zheng Xue, Yu Xue-Gong, Yang De-Ren. Passivation property of -Si:H/SiNx stack-layer film in crystalline silicon solar cells. Acta Physica Sinica, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [8] Wang Yan-Feng, Zhang Xiao-Dan, Huang Qian, Liu Yang, Wei Chang-Chun, Zhao Ying. Room temperature deposition of highly conductive and transparent H and W co-doped ZnO film. Acta Physica Sinica, 2013, 62(1): 017803. doi: 10.7498/aps.62.017803
    [9] Wang Yan-Feng, Zhang Xiao-Dan, Huang Qian, Yang Fu, Meng Xu-Dong, Song Qing-Gong, Zhao Ying. Experimental and theoretical investigation of transparent and conductive B doped ZnO film. Acta Physica Sinica, 2013, 62(24): 247802. doi: 10.7498/aps.62.247802
    [10] Wang Yan-Feng, Huang Qian, Song Qing-Gong, Liu Yang, Wei Chang-Chun, Zhao Ying, Zhang Xiao-Dan. Theoretical and experimental investigation of W doped ZnO. Acta Physica Sinica, 2012, 61(13): 137801. doi: 10.7498/aps.61.137801
    [11] Yu Huang-Zhong, Zhou Xiao-Ming, Deng Jun-Yu. Annealing treatment effects on the performances of solar cells based on different solvent blend systems. Acta Physica Sinica, 2011, 60(7): 077206. doi: 10.7498/aps.60.077206
    [12] Zhang Kun, Liu Fang-Yang, Lai Yan-Qing, Li Yi, Yan Chang, Zhang Zhi-An, Li Jie, Liu Ye-Xiang. In situ growth and characterization of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering for solar cells. Acta Physica Sinica, 2011, 60(2): 028802. doi: 10.7498/aps.60.028802
    [13] Li Lin-Na, Chen Xin-Liang, Wang Fei, Sun Jian, Zhang De-Kun, Geng Xin-Hua, Zhao Ying. Effects of hydrogen flux on aluminum doped zinc thin films by pulsed magnetron sputtering. Acta Physica Sinica, 2011, 60(6): 067304. doi: 10.7498/aps.60.067304
    [14] Cai Hong-Kun, Tao Ke, Wang Lin-Shen, Zhao Jing-Fang, Sui Yan-Ping, Zhang De-Xian. Interface treatment of amorphous silicon thin film solar cells on flexible substrate. Acta Physica Sinica, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [15] Dai Song-Yuan, Kong Fan-Tai, Hu Lin-Hua, Shi Cheng-Wu, Fang Xia-Qin, Pan Xu, Wang Kong-Jia. Investigation on the dye-sensitized solar cell. Acta Physica Sinica, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [16] Xu Wei-Wei, Dai Song-Yuan, Fang Xia-Qin, Hu Lin-Hua, Kong Fan-Tai, Pan Xu, Wang Kong-Jia. Optimization of photoelectrode introduced to dye-sensitized solar cells by anodic oxidative hydrolysis. Acta Physica Sinica, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
    [17] Zeng Long-Yue, Dai Song-Yuan, Wang Kong-Jia, Shi Cheng-Wu, Kong Fan-Tai, Hu Lin-Hua, Pan Xu. The mechanism of dye-sensitized solar cell based on nanocrystalline ZnO films. Acta Physica Sinica, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [18] Wang Bao-Yi, Zhang Ren-Gang, Zhang Hui, Wan Dong-Yun, Wei Long. Influence of annealing conditions of ZnO films on the properties of ZnS films pr epared by sulfurizing ZnO films. Acta Physica Sinica, 2005, 54(4): 1874-1878. doi: 10.7498/aps.54.1874
    [19] Zhang Ren-Gang, Wang Bao-Yi, Zhang Hui, Ma Chuang-Xin, Wei Long. The properties of the as-sputtered ZnO films under different deposition parameters after sulfidation. Acta Physica Sinica, 2005, 54(5): 2389-2393. doi: 10.7498/aps.54.2389
    [20] . Acta Physica Sinica, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
Metrics
  • Abstract views:  6552
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  20 April 2020
  • Accepted Date:  13 June 2020
  • Available Online:  16 October 2020
  • Published Online:  05 October 2020

/

返回文章
返回