Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wide-angle scanning linear phased arrays based on wide-beam magneto electric dipole antenna

Yan Hao-Nan Cao Xiang-Yu Gao Jun Yang Huan-Huan Li Tong

Citation:

Wide-angle scanning linear phased arrays based on wide-beam magneto electric dipole antenna

Yan Hao-Nan, Cao Xiang-Yu, Gao Jun, Yang Huan-Huan, Li Tong
PDF
HTML
Get Citation
  • Microstrip phased array has aroused interest of many researchers because of its beam agility. However, a big problem for typical microstrip array is that its main beam can only scan from about –50° to 50°, with a gain loss of 4-5 dB. Meanwhile, the relatively narrow operating bandwidth of microstrip antenna is also a problem in application. These flaws have dramatically limited its applications and spawned many studies on phased array with wide-angle scanning capability. Several methods have been proposed to broaden the scanning coverage of phased array, such as utilizing pattern-reconfigurable antenna as an element of array, taking wide-beam antenna as the element of array, and adopt metasurface as the top cladding of array. However, most of existing researches mainly focus on achieving wide-angle scanning performance within a relatively narrow bandwidth. A phased array that possesses wide-angle scanning capability at both main planes within a relatively wide bandwidth is highly desirable. In this paper, a wide-beam magnetoelectric (ME) dipole antenna is proposed. It consists of an ME dipole antenna in the form of microstrip patch and a pair of magnetic dipoles. Metallic through holes integrated with patches and ground are utilized to form magnetic currents. Extra magnetic dipoles are added to broaden the 3-dB beam-width. The simulated results reveal that the 3-dB beam-width of the proposed antenna is greater than 107° in the E-plane (9 GHz–12 GHz) and 178° in the H-plane (7 GHz–12 GHz) respectively. The impedance bandwidth of the proposed antenna is 53.26% from 7.3 GHz to 12.6 GHz (VWSR < 2). Based on the proposed antenna element, two linear phased arrays are fabricated and measured. To test the wide-angle scanning capability of the arrays, each antenna element is simply fed with alternating currents with identical amplitude and linearly increasing phases. The measured results reveal that the wide-angle scanning capability of H-plane array and E-plane array can be obtained from 9 GHz to 12 GHz. The scanning beam of the H-plane array can cover the range from -90° to 90°. The scanning beam of the E-plane array can cover the range from –70° to 70°. The impedance bandwidth of the central antenna is 27.03% for the H-plane array from 9.6 GHz to 12.6 GHz (active VWSR < 2.5) and 36.36% for the E-plane array from 9 GHz to 13 GHz (active VWSR < 2) respectively. Hence, the proposed method can be used as a reference for designing a wide-beam antenna and wide-angle scanning phased array and the designed phased arrays can be applied to X-band radar systems.
      Corresponding author: Yan Hao-Nan, 18220526812@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61671464, 61801508, 61701523), the Natural Science Foundational Research Fund of Shaanxi Province, China (Grant Nos. 2018JM6040, 2019JQ-103), and the Postdoctoral Innovation Talent Support Program of China (Grant No. BX20180375)
    [1]

    张祖稷, 金林, 束咸荣 2005 雷达天线技术 (北京: 电子工业出版社) 第221页

    Zhang Z J, Jin L, Shu X R 2007 Radar Antenna Technology (Beijing: Publishing House of Electronics Industry) p221 (in Chinese)

    [2]

    Bai Y Y, Xiao S Q, Wang B Z, Ding Z F 2010 J. Infrared Millim. Terahertz Waves 31 1Google Scholar

    [3]

    Bai Y Y, Xiao S Q, Tang M C, Ding Z F 2011 IEEE Trans. Antennas Propag. 59 4071Google Scholar

    [4]

    Ding X, Wang B Z, He G Q 2013 IEEE Trans. Antennas Propag. 61 5319Google Scholar

    [5]

    Xiao S Q, Zheng C R, Li M, Xiong J 2015 IEEE Trans. Antennas Propag. 63 2364Google Scholar

    [6]

    Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 396Google Scholar

    [7]

    Ding X, Cheng Y F, Shao W, Wang B Z 2017 IEEE Trans. Antennas Propag. 65 4548Google Scholar

    [8]

    Ge L, Luk K M 2015 IEEE Antennas Wireless Propag. Lett. 14 28Google Scholar

    [9]

    Ge L, Luk K M 2016 IEEE Trans. Antennas Propag. 64 423Google Scholar

    [10]

    Shi Y, Cai Y, Yang J, Li L 2019 IEEE Antennas Wireless Propag. Lett. 18 28Google Scholar

    [11]

    Lin G 2007 Radar Sci. Technol. 5 157

    [12]

    Wang R, Wang B Z, Hu C, Ding X 2015 IEEE Trans. Antennas Propag. 63 3908Google Scholar

    [13]

    Wang R, Wang B Z, Ding X, Yang X S 2017 Sci. Rep. 7 2729Google Scholar

    [14]

    Liu C M, Xiao S Q, Tu H L, Ding Z F 2017 IEEE Trans. Antennas Propag. 65 1151Google Scholar

    [15]

    Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 876Google Scholar

    [16]

    Yang G W, Li J Y, Wei D J, Xu R 2018 IEEE Trans. Antennas Propag. 66 450Google Scholar

    [17]

    Yang G W, Li J Y, Yang J J, Zhou S G 2018 IEEE Trans. Antennas Propag. 66 6724Google Scholar

    [18]

    Yang G W, Chen Q Q, Li J Y, Zhou S G, Xing Z J 2019 IEEE Acc. 7 71897Google Scholar

    [19]

    Chattopadhyay S 2009 IEEE Trans. Antennas Propag. 57 3325Google Scholar

    [20]

    Yang H H, Li T, Xu L M, Cao X Y, Gao J, Tian J H, Yang H N, Sun D 2019 IEEE Acc. 7 152715Google Scholar

    [21]

    Lü Y H, Ding X, Wang B Z, Anagnostou D E 2020 IEEE Trans. Antennas Propag. 68 1402Google Scholar

    [22]

    Luk K M, Wong H 2006 Int. J. Microw. Opt. Technol. 1 35

    [23]

    Ng K B, Wong H, So K K, Chan C H, Luk K M 2012 IEEE Trans. Antennas Propag. 60 3129Google Scholar

    [24]

    Li Y J, Luk K M 2014 IEEE Trans. Antennas Propag. 62 1830Google Scholar

    [25]

    Lai J, Feng B, Zeng Q 2019 IEEE 6th International Symposium on Electromagnetic Compatibility Nanjing, China November 1–4, 2019 p1

    [26]

    Feng B T, Zhu C, Cheng J C, Sim C Y D 2019 IEEE Acc. 7 43346Google Scholar

    [27]

    郑贵 2016 硕士学位论文 (成都: 电子科技大学)

    Zheng G 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [28]

    王茂泽 2014 硕士学位论文 (西安: 西安电子科技大学)

    Wang M Z 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [29]

    徐志 2008 博士学位论文 (西安: 西安电子科技大学)

    Xu Z 2008 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [30]

    Smolders A B 1996 Proceedings of International Symposium on Phased Array Systems and Technology Boston, MA, USA, October 15–18, 1996 p87

    [31]

    Kedar A, Beenamole K S 2011 Prog. Electro. Res. B 27 235Google Scholar

  • 图 1  宽波束天线单元结构图 (a) 三维图; (b) 俯视图

    Figure 1.  Structure of the wide-beam antenna: (a) 3-D view; (b) top view.

    图 2  设计流程

    Figure 2.  The design process.

    图 3  10 GHz处3-dB波束宽度拓展效果

    Figure 3.  The broadening effect of 3-dB beam-width at 10 GHz.

    图 4  10 GH处电流分布图 (a) 0°; (b) 90°; (a) 180°; (b) 270°

    Figure 4.  The distribution of electric current at 10 GHz: (a) 0°; (b) 90°; (c) 180°; (d) 270°.

    图 5  天线单元驻波比

    Figure 5.  VSWR of the antenna.

    图 6  天线单元方向图

    Figure 6.  Radiation patterns of the antenna.

    图 7  一维相控阵列 (a) E面阵列; (b) H面阵列

    Figure 7.  The phased arrays: (a) E-plane array; (b) H-plane array.

    图 8  阵列实物图 (a) E面阵列; (b) H面阵列

    Figure 8.  The prototypes of the arrays: (a) E-plane array; (b) H-plane array.

    图 9  阵列中心单元实测有源驻波比 (a) E面阵列; (b) H面阵列

    Figure 9.  The active VSWRs of the unit at the center of two arrays: (a) E-plane array; (b) H-plane array.

    图 10  E面阵列实测扫描方向图 (a) 9 GHz; (b) 10 GHz; (a) 11 GHz; (b) 12 GHz

    Figure 10.  The scanning patterns of the E-plane array: (a) 9 GHz; (b) 10 GHz; (c) 11 GHz; (d) 12 GHz.

    图 11  H面阵列实测扫描方向图 (a) 9 GHz; (b) 10 GHz; (a) 11 GHz; (b) 12 GHz

    Figure 11.  The scanning patterns of the H-plane array: (a) 9 GHz; (b) 10 GHz; (c) 11 GHz; (d) 12 GHz.

    表 1  宽波束天线单元参数

    Table 1.  Parameters of the wide-beam antenna.

    天线参数LWHL1L2L3L4L5L6 L7L8W1W2W3W4W5W6W7
    参数值/mm1593.50.63.22.221.50.5 3.21.551.51.52.8621
    DownLoad: CSV

    表 2  天线单元3-dB波束宽度

    Table 2.  3-dB beam-width of the antenna.

    频率/GHzE面3-dB波束宽度/(°)H面3-dB波束宽度/(°)
    797180.4
    8101.1178.2
    9107178.4
    10115.8185.2
    11135.5220.9
    12180.6360
    DownLoad: CSV

    表 3  2号天线与3号天线增益对比

    Table 3.  Comparison between Ant.2 and Ant.3.

    频率/GHz参考天线增益/dBi本文天线增益-/dBi
    95.914.19
    105.983.91
    115.843.59
    125.432.87
    DownLoad: CSV

    表 4  已报道宽波束磁电偶极子天线与本文天线特性对比

    Table 4.  Comparison between the reported and proposed magneto-electric dipole antenna.

    文献相对阻抗带宽/%工作频带/GHz增益/dBi剖面/λE面波束宽度/(°)H面波束宽度/(°)
    [16]34.63.1—4.40.21174112
    [17]81.13.3—7.83.65 ± 1.650.27215 (5.5 GHz)
    106 (7.5 GHz)
    186 (5.5 GHz)
    83 (7.5 GHz)
    [24]412.42—3.76.30.4575120
    [25]632.76—5.350.15129.1 (3.4 GHz)
    151.6 (4.9 GHz)
    100.4 (3.4 GHz)
    94.2 (4.9 GHz)
    [26]22.6
    19.6
    3.25—4.08
    4.29—5.22
    6.9 ± 0.3
    5.4 ± 0.7
    0.27
    0.23
    91 (3.5 GHz)
    168 (4.9 GHz)
    83 (3.5 GHz)
    74 (4.9 GHz)
    83 (3.5 GHz)
    162 (4.9 GHz)
    90 (3.5 GHz)
    133 (4.9 GHz)
    本文53.267.3—12.63.53 ± 0.660.116>97>178.2
    DownLoad: CSV

    表 5  已报道X波段相控阵与本文相控阵天线特性对比

    Table 5.  Comparison between the reported and proposed X-band phased arrays.

    文献相对阻抗带宽/%工作频带/GHz剖面/λE面扫描范围/(°)H面扫描范围/(°)
    [27]408—120.31± 60 (8—10 GHz)
    ± 50 (12 GHz)
    ± 60 (8—10 GHz)
    ± 50 (12 GHz)
    [28]408—121.22± 45± 45
    [29]18.1810.5—12.60.84± 60± 60
    [30]408—120.8± 45± 60
    [31]30± 60± 60
    本文28.59—120.116± 70± 90
    DownLoad: CSV
  • [1]

    张祖稷, 金林, 束咸荣 2005 雷达天线技术 (北京: 电子工业出版社) 第221页

    Zhang Z J, Jin L, Shu X R 2007 Radar Antenna Technology (Beijing: Publishing House of Electronics Industry) p221 (in Chinese)

    [2]

    Bai Y Y, Xiao S Q, Wang B Z, Ding Z F 2010 J. Infrared Millim. Terahertz Waves 31 1Google Scholar

    [3]

    Bai Y Y, Xiao S Q, Tang M C, Ding Z F 2011 IEEE Trans. Antennas Propag. 59 4071Google Scholar

    [4]

    Ding X, Wang B Z, He G Q 2013 IEEE Trans. Antennas Propag. 61 5319Google Scholar

    [5]

    Xiao S Q, Zheng C R, Li M, Xiong J 2015 IEEE Trans. Antennas Propag. 63 2364Google Scholar

    [6]

    Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 396Google Scholar

    [7]

    Ding X, Cheng Y F, Shao W, Wang B Z 2017 IEEE Trans. Antennas Propag. 65 4548Google Scholar

    [8]

    Ge L, Luk K M 2015 IEEE Antennas Wireless Propag. Lett. 14 28Google Scholar

    [9]

    Ge L, Luk K M 2016 IEEE Trans. Antennas Propag. 64 423Google Scholar

    [10]

    Shi Y, Cai Y, Yang J, Li L 2019 IEEE Antennas Wireless Propag. Lett. 18 28Google Scholar

    [11]

    Lin G 2007 Radar Sci. Technol. 5 157

    [12]

    Wang R, Wang B Z, Hu C, Ding X 2015 IEEE Trans. Antennas Propag. 63 3908Google Scholar

    [13]

    Wang R, Wang B Z, Ding X, Yang X S 2017 Sci. Rep. 7 2729Google Scholar

    [14]

    Liu C M, Xiao S Q, Tu H L, Ding Z F 2017 IEEE Trans. Antennas Propag. 65 1151Google Scholar

    [15]

    Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 876Google Scholar

    [16]

    Yang G W, Li J Y, Wei D J, Xu R 2018 IEEE Trans. Antennas Propag. 66 450Google Scholar

    [17]

    Yang G W, Li J Y, Yang J J, Zhou S G 2018 IEEE Trans. Antennas Propag. 66 6724Google Scholar

    [18]

    Yang G W, Chen Q Q, Li J Y, Zhou S G, Xing Z J 2019 IEEE Acc. 7 71897Google Scholar

    [19]

    Chattopadhyay S 2009 IEEE Trans. Antennas Propag. 57 3325Google Scholar

    [20]

    Yang H H, Li T, Xu L M, Cao X Y, Gao J, Tian J H, Yang H N, Sun D 2019 IEEE Acc. 7 152715Google Scholar

    [21]

    Lü Y H, Ding X, Wang B Z, Anagnostou D E 2020 IEEE Trans. Antennas Propag. 68 1402Google Scholar

    [22]

    Luk K M, Wong H 2006 Int. J. Microw. Opt. Technol. 1 35

    [23]

    Ng K B, Wong H, So K K, Chan C H, Luk K M 2012 IEEE Trans. Antennas Propag. 60 3129Google Scholar

    [24]

    Li Y J, Luk K M 2014 IEEE Trans. Antennas Propag. 62 1830Google Scholar

    [25]

    Lai J, Feng B, Zeng Q 2019 IEEE 6th International Symposium on Electromagnetic Compatibility Nanjing, China November 1–4, 2019 p1

    [26]

    Feng B T, Zhu C, Cheng J C, Sim C Y D 2019 IEEE Acc. 7 43346Google Scholar

    [27]

    郑贵 2016 硕士学位论文 (成都: 电子科技大学)

    Zheng G 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [28]

    王茂泽 2014 硕士学位论文 (西安: 西安电子科技大学)

    Wang M Z 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [29]

    徐志 2008 博士学位论文 (西安: 西安电子科技大学)

    Xu Z 2008 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [30]

    Smolders A B 1996 Proceedings of International Symposium on Phased Array Systems and Technology Boston, MA, USA, October 15–18, 1996 p87

    [31]

    Kedar A, Beenamole K S 2011 Prog. Electro. Res. B 27 235Google Scholar

  • [1] Huang Yi-Fan, Xing Yang-Guang, Shen Wen-Jie, Peng Ji-Long, Dai Shu-Wu, Wang Ying, Duan Zi-Wen, Yan Lei, Liu Yue, Li Lin. Optical design of sub-angular second spatially resolved solar extreme ultraviolet broadband imaging spectrometer. Acta Physica Sinica, 2024, 73(3): 039501. doi: 10.7498/aps.73.20231481
    [2] Li Ming-Fei, Yuan Zi-Hao, Liu Yuan-Xing, Deng Yi-Cheng, Wang Xue-Feng. Comparison between optimal configuration algorithms of fiber phased array. Acta Physica Sinica, 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [3] Tong San-Qiang, Wang Bing-Zhong, Wang Ren. A tightly coupled dipole array used for radiation power improvement on finite radiation aperture. Acta Physica Sinica, 2021, 70(20): 204101. doi: 10.7498/aps.70.20210309
    [4] Hu Chang-Hai, Wang Ren, Chen Chuan-Sheng, Wang Bing-Zhong. Array factor analysis for untra-wide-angle scanning performance of planar phased arrays. Acta Physica Sinica, 2021, 70(9): 098401. doi: 10.7498/aps.70.20201850
    [5] Jiang Ji-Heng, Yu Shi-Xing, Kou Na, Ding Zhao, Zhang Zheng-Ping. Beam steering of orbital angular momentum vortex wave based on planar phased array. Acta Physica Sinica, 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [6] Wu Yu-Ming, Wang Ren, Ding Xiao, Wang Bing-Zhong. Design of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(22): 224201. doi: 10.7498/aps.69.20201488
    [7] Dedign of wide-angle metamaterial absorbers based on equivalent medium theory*. Acta Physica Sinica, 2020, (): . doi: 10.7498/aps.69.20201448
    [8] Wu Yu-Ming, Ding Xiao, Wang Ren, Wang Bing-Zhong. Theoretical analysis of wide-angle metamaterial absorbers based on equivalent medium theory. Acta Physica Sinica, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [9] Feng Mao-Chang, Li Yong-Feng, Zhang Jie-Qiu, Wang Jia-Fu, Wang Chao, Ma Hua, Qu Shao-Bo. Research of a wide-angle backscattering enhancement metasurface. Acta Physica Sinica, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [10] Li Xiao-Bing, Lu Wei-Bing, Liu Zhen-Guo, Chen Hao. Dynamic beam-steering in wide angle range based on tunable graphene metasurface. Acta Physica Sinica, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [11] Han Ya-Juan, Zhang Jie-Qiu, Li Yong-Feng, Wang Jia-Fu, Qu Shao-Bo, Zhang An-Xue. 360 scanning multi-beam antenna based on spoof surface plasmon polaritons. Acta Physica Sinica, 2016, 65(14): 147301. doi: 10.7498/aps.65.147301
    [12] Zheng Li, Guo Jian-Zhong. A controllable circular ring acoustic focused field. Acta Physica Sinica, 2016, 65(4): 044305. doi: 10.7498/aps.65.044305
    [13] Zhang Chen, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Zheng Yue-Jun. Design of a broadband and high-gain shared-aperture fabry-perot resonator magneto-electric microstrip antenna. Acta Physica Sinica, 2016, 65(13): 134205. doi: 10.7498/aps.65.134205
    [14] Zheng Yue-Jun, Gao Jun, Cao Xiang-Yu, Zheng Qiu-Rong, Li Si-Jia, Li Wen-Qiang, Yang Qun. A broad-band gain improvement and wide-band, wide-angle low radar cross section microstrip antenna. Acta Physica Sinica, 2014, 63(22): 224102. doi: 10.7498/aps.63.224102
    [15] Ding Ya-Jun, Qian Sheng-You, Hu Ji-Wen, Zou Xiao. Optimization of phased array ultrasonic field in multi-medium. Acta Physica Sinica, 2012, 61(14): 144301. doi: 10.7498/aps.61.144301
    [16] Wang Jian-Peng, Jin Yun-Xia, Ma Jian-Yong, Shao Jian-Da, Fan Zheng-Xiu. Realization of the broad angular spectrum of multilayer dielectric gratings based on the leaky mode resonance. Acta Physica Sinica, 2010, 59(5): 3199-3204. doi: 10.7498/aps.59.3199
    [17] Zou Qi-Hui, Lü Bai-Da. The far-field properties of ultrashort pulsed beams with constant waist width in free space. Acta Physica Sinica, 2005, 54(12): 5642-5647. doi: 10.7498/aps.54.5642
    [18] CHEN RU-HONG, MA BEN-KUN. HIERARCHICAL NETWORK WITH A WIDE DISTRIBUTION OF CONDUCTANCE. Acta Physica Sinica, 1996, 45(7): 1197-1204. doi: 10.7498/aps.45.1197
    [19] QIU XIN-FANG. EFFECTS OF PULSE LENGTH ON THE INTENSITY AND DECAY OF REVERBERATION. Acta Physica Sinica, 1976, 25(1): 47-52. doi: 10.7498/aps.25.47
    [20] LU TAN. THE THERMAL BROADENING OF THE M?SSBAUER LINE. Acta Physica Sinica, 1964, 20(8): 777-784. doi: 10.7498/aps.20.777
Metrics
  • Abstract views:  8657
  • PDF Downloads:  233
  • Cited By: 0
Publishing process
  • Received Date:  12 July 2020
  • Accepted Date:  11 August 2020
  • Available Online:  12 January 2021
  • Published Online:  05 January 2021

/

返回文章
返回