-
To enhance backscattering, corner reflector and Luneburg lens are usually used. They can operate effectively in a broad angle range and also in a quite wide band. However, corner reflector as a typical structure of backscattering enhancement device, has obvious disadvantages in practical application. For example, it is usually made of metal material, which causes it to be too heavy and bulky. Luneburg lens is generally made of dielectric with strong loss and high cost, which is unfavorable for applications. Thus, it is necessary to explore a new way to realize wide-angle backscattering enhancement. In this paper, a phase gradient metasurface with wide-angle radar cross section (RCS) enhancement property is proposed and demonstrated, which consists of two phase gradients with equal magnitude but in opposite directions. Through designing a reflective phase profile along the surface, an equivalent wave vector can be generated, with doubled magnitude but in an opposite direction to the parallel component of the wave vector of the incident wave. At the incidence angles =-45 and 45, electromagnetic (EM) waves are reflected to the directions just opposite to the directions of incident waves. And at incidence angle =0, the incident EM wave is coupled into spoof surface wave and then guided to another region to decouple into a free space wave. These guarantee RCS enhancement property in a related angular domain. The polarization independent Jerusalem cross unit is used to design the phase gradient, and a wide-angle RCS enhancement metasurface is designed. The simulated results indicate that at the designed incidence angles, directions of the reflected waves are all opposite to the directions of incidence waves for both x and y polarized wave. In order to evaluate the RCS enhancement performances, the mono-static RCS of the designed wide-angle RCS enhancement metasurface is measured. Both the simulations and experiments are in good agreement with each other, and show that the designed metasurface obtains tremendous RCS enhancement performances in a wide-angle domain (-45-45) for both x and y polarized wave with frequencies ranging from 9 GHz to 12 GHz.
-
Keywords:
- metasurface /
- phase gradient /
- wide-angle /
- radar cross section enhancement
[1] Zentgraf T, Liu Y, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151
[2] Nikolic N, Kot J S, Vinogradov S 2007 J. Electromagnet Wave 21 549
[3] Lipuma D, Meric S, Gillard R 2013 Electron. Lett. 49 152
[4] Jia Y X, Wang J F, Li Y F, Pang Y Q, Yang J, Fan Y, Qu S B 2017 AIP Adv. 7 105315
[5] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[6] Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298
[7] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807
[8] Achouri K, Salem M A, Caloz C 2015 IEEE Trans. Antennas Propag. 63 2977
[9] Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502
[10] Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110
[11] Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401
[12] Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]
[13] Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588
[14] Deng Z L, Li G 2017 Mater. Today Phys. 3 16
[15] Deng Z L, Deng J H, Zhuang X, Wang S, Li K F, Wang Y, Chi Y H, Ye X, Xu J, Wang G P, Zhao R K, Wang X L, Cao Y Y, Cheng X, Li G X, Li X P 2018 Nano Lett. 18 2885
[16] Deng Z L, Zhang S, Wang G P 2016 Opt. Express 24 23118
[17] Deng Z L, Cao Y Y, Li X P, Wang G P 2018 Photon. Res. 6 443
[18] Wan X, Shen X, Luo Y, Cui T J 2014 Laser Photon. Rev. 8 757
[19] Xu H X, Wang G M, Liang J G, Qi M Q, Gao X 2013 IEEE Trans. Antennas Propag. 61 3442
[20] Badawe M E, Almoneef T S, Ramahi O M 2016 Sci. Rep. 6 19268
[21] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110
[22] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]
[23] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Zhen L, Xu Z, Zhang A X 2014 J. Phys. D:Appl. Phys. 47 425103
[24] Wang J F, Qu S B, Ma H, Xu Z. Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104
[25] Langguth L, Schokker A H, Guo K, Koenderink A F 2015 Phys. Rev. B 92 205401
[26] Zheng Q Q, Li Y F, Zhang J Q, Ma H, Wang J F, Pang Y Q, Han Y J, Sui S, Shen Y, Chen H Y, Qu S B 2017 Sci. Rep. 7 43543
-
[1] Zentgraf T, Liu Y, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151
[2] Nikolic N, Kot J S, Vinogradov S 2007 J. Electromagnet Wave 21 549
[3] Lipuma D, Meric S, Gillard R 2013 Electron. Lett. 49 152
[4] Jia Y X, Wang J F, Li Y F, Pang Y Q, Yang J, Fan Y, Qu S B 2017 AIP Adv. 7 105315
[5] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[6] Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298
[7] Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807
[8] Achouri K, Salem M A, Caloz C 2015 IEEE Trans. Antennas Propag. 63 2977
[9] Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502
[10] Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110
[11] Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401
[12] Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]
[13] Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588
[14] Deng Z L, Li G 2017 Mater. Today Phys. 3 16
[15] Deng Z L, Deng J H, Zhuang X, Wang S, Li K F, Wang Y, Chi Y H, Ye X, Xu J, Wang G P, Zhao R K, Wang X L, Cao Y Y, Cheng X, Li G X, Li X P 2018 Nano Lett. 18 2885
[16] Deng Z L, Zhang S, Wang G P 2016 Opt. Express 24 23118
[17] Deng Z L, Cao Y Y, Li X P, Wang G P 2018 Photon. Res. 6 443
[18] Wan X, Shen X, Luo Y, Cui T J 2014 Laser Photon. Rev. 8 757
[19] Xu H X, Wang G M, Liang J G, Qi M Q, Gao X 2013 IEEE Trans. Antennas Propag. 61 3442
[20] Badawe M E, Almoneef T S, Ramahi O M 2016 Sci. Rep. 6 19268
[21] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110
[22] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]
[23] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Zhen L, Xu Z, Zhang A X 2014 J. Phys. D:Appl. Phys. 47 425103
[24] Wang J F, Qu S B, Ma H, Xu Z. Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104
[25] Langguth L, Schokker A H, Guo K, Koenderink A F 2015 Phys. Rev. B 92 205401
[26] Zheng Q Q, Li Y F, Zhang J Q, Ma H, Wang J F, Pang Y Q, Han Y J, Sui S, Shen Y, Chen H Y, Qu S B 2017 Sci. Rep. 7 43543
Catalog
Metrics
- Abstract views: 8027
- PDF Downloads: 270
- Cited By: 0