Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research of a wide-angle backscattering enhancement metasurface

Feng Mao-Chang Li Yong-Feng Zhang Jie-Qiu Wang Jia-Fu Wang Chao Ma Hua Qu Shao-Bo

Citation:

Research of a wide-angle backscattering enhancement metasurface

Feng Mao-Chang, Li Yong-Feng, Zhang Jie-Qiu, Wang Jia-Fu, Wang Chao, Ma Hua, Qu Shao-Bo
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • To enhance backscattering, corner reflector and Luneburg lens are usually used. They can operate effectively in a broad angle range and also in a quite wide band. However, corner reflector as a typical structure of backscattering enhancement device, has obvious disadvantages in practical application. For example, it is usually made of metal material, which causes it to be too heavy and bulky. Luneburg lens is generally made of dielectric with strong loss and high cost, which is unfavorable for applications. Thus, it is necessary to explore a new way to realize wide-angle backscattering enhancement. In this paper, a phase gradient metasurface with wide-angle radar cross section (RCS) enhancement property is proposed and demonstrated, which consists of two phase gradients with equal magnitude but in opposite directions. Through designing a reflective phase profile along the surface, an equivalent wave vector can be generated, with doubled magnitude but in an opposite direction to the parallel component of the wave vector of the incident wave. At the incidence angles =-45 and 45, electromagnetic (EM) waves are reflected to the directions just opposite to the directions of incident waves. And at incidence angle =0, the incident EM wave is coupled into spoof surface wave and then guided to another region to decouple into a free space wave. These guarantee RCS enhancement property in a related angular domain. The polarization independent Jerusalem cross unit is used to design the phase gradient, and a wide-angle RCS enhancement metasurface is designed. The simulated results indicate that at the designed incidence angles, directions of the reflected waves are all opposite to the directions of incidence waves for both x and y polarized wave. In order to evaluate the RCS enhancement performances, the mono-static RCS of the designed wide-angle RCS enhancement metasurface is measured. Both the simulations and experiments are in good agreement with each other, and show that the designed metasurface obtains tremendous RCS enhancement performances in a wide-angle domain (-45-45) for both x and y polarized wave with frequencies ranging from 9 GHz to 12 GHz.
    [1]

    Zentgraf T, Liu Y, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151

    [2]

    Nikolic N, Kot J S, Vinogradov S 2007 J. Electromagnet Wave 21 549

    [3]

    Lipuma D, Meric S, Gillard R 2013 Electron. Lett. 49 152

    [4]

    Jia Y X, Wang J F, Li Y F, Pang Y Q, Yang J, Fan Y, Qu S B 2017 AIP Adv. 7 105315

    [5]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [6]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298

    [7]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807

    [8]

    Achouri K, Salem M A, Caloz C 2015 IEEE Trans. Antennas Propag. 63 2977

    [9]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502

    [10]

    Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110

    [11]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401

    [12]

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [13]

    Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588

    [14]

    Deng Z L, Li G 2017 Mater. Today Phys. 3 16

    [15]

    Deng Z L, Deng J H, Zhuang X, Wang S, Li K F, Wang Y, Chi Y H, Ye X, Xu J, Wang G P, Zhao R K, Wang X L, Cao Y Y, Cheng X, Li G X, Li X P 2018 Nano Lett. 18 2885

    [16]

    Deng Z L, Zhang S, Wang G P 2016 Opt. Express 24 23118

    [17]

    Deng Z L, Cao Y Y, Li X P, Wang G P 2018 Photon. Res. 6 443

    [18]

    Wan X, Shen X, Luo Y, Cui T J 2014 Laser Photon. Rev. 8 757

    [19]

    Xu H X, Wang G M, Liang J G, Qi M Q, Gao X 2013 IEEE Trans. Antennas Propag. 61 3442

    [20]

    Badawe M E, Almoneef T S, Ramahi O M 2016 Sci. Rep. 6 19268

    [21]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [22]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]

    [23]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Zhen L, Xu Z, Zhang A X 2014 J. Phys. D:Appl. Phys. 47 425103

    [24]

    Wang J F, Qu S B, Ma H, Xu Z. Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [25]

    Langguth L, Schokker A H, Guo K, Koenderink A F 2015 Phys. Rev. B 92 205401

    [26]

    Zheng Q Q, Li Y F, Zhang J Q, Ma H, Wang J F, Pang Y Q, Han Y J, Sui S, Shen Y, Chen H Y, Qu S B 2017 Sci. Rep. 7 43543

  • [1]

    Zentgraf T, Liu Y, Mikkelsen M H, Valentine J, Zhang X 2011 Nat. Nanotechnol. 6 151

    [2]

    Nikolic N, Kot J S, Vinogradov S 2007 J. Electromagnet Wave 21 549

    [3]

    Lipuma D, Meric S, Gillard R 2013 Electron. Lett. 49 152

    [4]

    Jia Y X, Wang J F, Li Y F, Pang Y Q, Yang J, Fan Y, Qu S B 2017 AIP Adv. 7 105315

    [5]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [6]

    Lin D, Fan P, Hasman E, Brongersma M L 2014 Science 345 298

    [7]

    Ni X, Kildishev A V, Shalaev V M 2013 Nat. Commun. 4 2807

    [8]

    Achouri K, Salem M A, Caloz C 2015 IEEE Trans. Antennas Propag. 63 2977

    [9]

    Li Y, Assouar B M 2016 Appl. Phys. Lett. 108 063502

    [10]

    Liu Y, Ling X, Yi X, Zhou X, Luo H, Wen S 2014 Appl. Phys. Lett. 104 191110

    [11]

    Pfeiffer C, Grbic A 2013 Phys. Rev. Lett. 110 197401

    [12]

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese) [孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾 2013 物理学报 62 104201]

    [13]

    Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588

    [14]

    Deng Z L, Li G 2017 Mater. Today Phys. 3 16

    [15]

    Deng Z L, Deng J H, Zhuang X, Wang S, Li K F, Wang Y, Chi Y H, Ye X, Xu J, Wang G P, Zhao R K, Wang X L, Cao Y Y, Cheng X, Li G X, Li X P 2018 Nano Lett. 18 2885

    [16]

    Deng Z L, Zhang S, Wang G P 2016 Opt. Express 24 23118

    [17]

    Deng Z L, Cao Y Y, Li X P, Wang G P 2018 Photon. Res. 6 443

    [18]

    Wan X, Shen X, Luo Y, Cui T J 2014 Laser Photon. Rev. 8 757

    [19]

    Xu H X, Wang G M, Liang J G, Qi M Q, Gao X 2013 IEEE Trans. Antennas Propag. 61 3442

    [20]

    Badawe M E, Almoneef T S, Ramahi O M 2016 Sci. Rep. 6 19268

    [21]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Appl. Phys. Lett. 104 221110

    [22]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z, Zhang A X 2014 Acta Phys. Sin. 63 084103 (in Chinese) [李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学 2014 物理学报 63 084103]

    [23]

    Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Zhen L, Xu Z, Zhang A X 2014 J. Phys. D:Appl. Phys. 47 425103

    [24]

    Wang J F, Qu S B, Ma H, Xu Z. Zhang A X, Zhou H, Chen H Y, Li Y F 2012 Appl. Phys. Lett. 101 201104

    [25]

    Langguth L, Schokker A H, Guo K, Koenderink A F 2015 Phys. Rev. B 92 205401

    [26]

    Zheng Q Q, Li Y F, Zhang J Q, Ma H, Wang J F, Pang Y Q, Han Y J, Sui S, Shen Y, Chen H Y, Qu S B 2017 Sci. Rep. 7 43543

  • [1] Meng Xiang-Yu, Li Tao, Yu Bin-Bin, Tai Yong-Hang. Exploring the tuning mechanism of multipolar quasi-continuous domain bound states in tetramer metasurface. Acta Physica Sinica, 2024, 73(10): 107801. doi: 10.7498/aps.73.20240272
    [2] Li Hao, Pang Yong-Qiang, Qu Bing-Yue, Zheng Jiang-Shan, Xu Zhuo. Optical transparent metasurface lenses and their wireless communication efficiency enhancement. Acta Physica Sinica, 2024, 73(14): 144104. doi: 10.7498/aps.73.20240464
    [3] Xia Zhao-Sheng, Liu Yu-Hang, Bao Zheng, Wang Li-Hua, Wu Bo, Wang Gang, Wang Hui, Ren Xin-Gang, Huang Zhi-Xiang. Strong circular dichroism chiral metasurfaces generated by quasi bound state in continuum domain. Acta Physica Sinica, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [4] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [5] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [6] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [8] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [10] Guo Ze-Xu, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Yang Huan-Huan, Hao Biao. Composite polarization conversion metasurface and its application in integrated regulation radiation and scattering of antenna. Acta Physica Sinica, 2020, 69(23): 234102. doi: 10.7498/aps.69.20200797
    [11] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [12] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [13] Li Xiao-Bing, Lu Wei-Bing, Liu Zhen-Guo, Chen Hao. Dynamic beam-steering in wide angle range based on tunable graphene metasurface. Acta Physica Sinica, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [14] Chen Huan, Ling Xiao-Hui, He Wu-Guang, Li Qian-Guang, Yi Xu-Nong. Generation of Bessel beam by manipulating Pancharatnam-Berry phase. Acta Physica Sinica, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [15] Zhang Yin, Feng Yi-Jun, Jiang Tian, Cao Jie, Zhao Jun-Ming, Zhu Bo. Graphene based tunable metasurface for terahertz scattering manipulation. Acta Physica Sinica, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [16] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [18] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [19] Wu Chen-Jun, Cheng Yong-Zhi, Wang Wen-Ying, He Bo, Gong Rong-Zhou. Design and radar cross section reduction experimental verification of phase gradient meta-surface based on cruciform structure. Acta Physica Sinica, 2015, 64(16): 164102. doi: 10.7498/aps.64.164102
    [20] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
Metrics
  • Abstract views:  7566
  • PDF Downloads:  264
  • Cited By: 0
Publishing process
  • Received Date:  29 May 2018
  • Accepted Date:  02 July 2018
  • Published Online:  05 October 2018

/

返回文章
返回