Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of coupling the age-structured contact patterns to the COVID-19 pandemic transmission

Wang Guo-Qiang Zhang Shuo Yang Jun-Yuan Xu Xiao-Ke

Citation:

Study of coupling the age-structured contact patterns to the COVID-19 pandemic transmission

Wang Guo-Qiang, Zhang Shuo, Yang Jun-Yuan, Xu Xiao-Ke
PDF
HTML
Get Citation
  • Background: The coronavirus disease 2019 (COVID-19) has raged more than 10 months and it has become a major public health concern. It is necessary to account for the intrinsic mechanisms and reveal the transmission pattern. Method: We collect detailed information of 944 COVID-19 cases in Guangdong province from January 23rd to February 16th. According to the age-structured characteristics, the population is divided into four groups such as child group (0–5 years old), adolescent group (6–19 years old), young and middle-aged group (20–64 years old), elderly group (65 and over years old). Coupling with different age-structured contact patterns, we establish a discrete age-structured COVID-19 model, obtain the basic reproduction number and final size. By Markov Chain Monte Carlo numerical method (MCMC), we identify the model parameters, fit the cumulative cases, calculate eradiation time of disease, infection peak and the peak arrival time, etc. Results: We found that the most infected people are the young and middle-aged individuals; Compared with household quarantine measure, the peak value of hospitalizations among young and middle-aged group in community mode will increase of 41%, and the peak will delay two weeks. By analyzing the proportions of the final sizes associated age groups, it is found that the elderly have a higher susceptibility, while the adolescents have a lower susceptibility. Under the household quarantine measure, if infected individuals have been confirmed in time of half a day, the peak size of hospitalizations will be further reduced, and the peak hospitalization will advance one week. The model reveals social contact patterns for impacting on COVID-19 transmission, and evaluates the effectiveness of household quarantine.
      Corresponding author: Yang Jun-Yuan, yjyang66@sxu.edu.cn ; Xu Xiao-Ke, xuxiaoke@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61573016, 61873154,61773091), the Fund for Returned Chinese Scholars of Shanxi Province, China (Grant No. 2015-094), the 1331 Engineering Project of Shanxi Province, China, and the New Coronavirus (COVID-19) Prevention and Control Project of Shanxi Province, China (Grant No. 202003D31011/GZ)
    [1]

    Guangdong Provincial Health Commission. http://www.gd.gov.cn/gdywdt/gdyw/content/post_2878982.html/ [2020-01-24]

    [2]

    Ankarali H, Ankarali S, Caskurlu H 2020 Asia-Pac. J. Public Health 32 157

    [3]

    金启轩 2020 统计与决策 36 11

    Jin Q X 2020 Statistics & Decision 36 11

    [4]

    张琳 2020 电子科技大学学报 49 345Google Scholar

    Zhang L 2020 J. Univ. Electon. Sci. Technol. China 49 345Google Scholar

    [5]

    曹文静, 刘小菲, 韩卓, 冯鑫, 张琳, 刘肖凡, 许小可, 吴晔 2020 物理学报 69 090203Google Scholar

    Cao W J, Liu X F, Han Z, Feng X, Zhang L, Liu X F, Xu X K, Wu Y 2020 Acta Phys. Sin. 69 090203Google Scholar

    [6]

    李盈科, 赵时, 楼一均, 高道舟, 杨琳, 何岱海 2020 物理学报 69 090202Google Scholar

    Li Y K, Zhao S, Lou Y J, Gao D Z, Yang L, He D H 2020 Acta Phys. Sin. 69 090202Google Scholar

    [7]

    Yang J Y, Wang G Q, Zhang S 2020 Math. Biol. Eng. 17 4500

    [8]

    Tang B, Wang X, Qian L, Nicola L B, Tang S Y, Xiao Y N, Wu J H 2020 J. Clin. Med. 9 462

    [9]

    白媛 2017 博士学位论文 (长春: 吉林大学)

    Bai Y 2017 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [10]

    Prem K, Alex R, Mark J 2017 PLOS Comput. Biol. 13 e1005697

    [11]

    Li X Z, Yang J Y, Maia M 2020 Age Structured Epidemic Modelling (Switzerland: Springer) p153

    [12]

    Kiesha P, Liu Y, Timothy W R, Adam J K, Rosalind M E, Nicholas D 2020 Lancet Public Health 5 e261

    [13]

    Zhao H, Feng Z L 2020 Math. Biosci. 326 108405

    [14]

    Read J M, Lessler J, Riley S, Wang S, et al. 2014 Proc. R. Soc. B 281 20140268

    [15]

    The Economic Observer https://baijiahao.baidu.com/s?id=1657595901837318521&wfr=spider&for=pc/ [2020-02-04]

    [16]

    Health Commission of Guangdong Province. http://wsjkw.gd.gov.cn/zwyw_yqxx/content/post_2911721.html/ [2020-03-01]

    [17]

    Martcheva M 2015 An Introduction to Mathematical Epidemiology (New York: Springer) p104

    [18]

    Van Den Driessche P, Watmough J 2002 Math. Biosci. 180 29

    [19]

    Horn R A, Jonhson C R 1994 Matrix Analysis (Cambridge: Cambridge University Press) p534

    [20]

    Lasalle J P 1976 The Stability of Dynamical Systems (Philadelphia: SIAM) p30

    [21]

    国务院人口普查办公室, 国家统计局人口和就业统计司2012中国2010年人口普查资料-上 (北京: 中国统计出版社) 第265页

    Census Office of the State Council, Division of Population and Employment Statistics 2012 Data from China's 2010 population census-on (Beijing: China Statistical Press) p265

    [22]

    Guangdong Statistical Yearbook 2019 http://stats.gd.gov.cn/gdtjnj/content/post_2639622.html/ [2019-09-29]

    [23]

    Li Q, Guan X H, Wu P, Wang X Y, Zhou L, Tong Y Q, Ren R Q, Kathy S M, Leung, Eric H Y L, Jessica Y W, Xing X S, Xiang N J 2020 N. Engl. J. Med. 382 1199

    [24]

    肖燕妮, 周义仓, 唐三一 2012 生物数学原理 (西安: 西安交通大学出版社) 第213页

    Xiao Y N, Zhou Y C, Tang S Y 2012 Principle of Biomathematics (Xi'an: Xi'an Jiaotong University Press) p213

    [25]

    Moghadas S M, Shoukat A, Fitzpatrick M C, et al. 2020 Proc. Natl. Acad. Sci. USA 117 9122

    [26]

    Zhang J, Litvinova M, Liang Y, et al. 2020 Science 368 1481

  • 图 1  广东省各年龄组每日新增病例折线图

    Figure 1.  Line chart of new cases for each age group in Guangdong province

    图 2  广东省各年龄组每日新增病例占当日新增总病例百分比图

    Figure 2.  Chart of the percentage of new cases for each age group in the total new cases of each day in Guangdong province

    图 3  (a) 广东省居家模式接触矩阵; (b) 广东省社区模式接触矩阵

    Figure 3.  (a) Household-mode contact matrix of Guangdong; (b) community-mode contact matrix of Guangdong.

    图 4  各年龄组每日累计确诊住院数. 红点表示实际数据, 蓝线表示模型预测均值, 灰色阴影代表95%的置信区间

    Figure 4.  The cumulative number of confirmed cases per day in each age group. The red dots represent the actual data, the blue line represents the solution of model 1, and the shaded gray area represents the 95% confidence interval.

    图 5  各年龄组每日现有确诊住院数$H_k(t)$. 其中蓝线表示模型的解, 灰色阴影部分表示95%置信区间, 红线表示峰值

    Figure 5.  The number of confirmed hospitalized cases per day in each age group. The blue line represents the solution of the model, the shaded gray area represents the 95% confidence interval, and the red line represents the peak.

    图 6  (a) 各年龄组每日累计确诊住院数 (b) 各年龄组每日现有确诊住院数$H_k(t)$.

    Figure 6.  (a) Total number of confirmed hospitalizations per day in each age group. (b) Each age group has the number of confirmed hospitalizations $H_k(t)$ per day.

    图 7  (a)各年龄组最终规模占比图; (b) 各年龄层最终规模占对应年龄层人数占比图

    Figure 7.  (a) The proportions of final size in each age group; (b) The proportion of the final size of each age group in the associated age group.

    图 8  各年龄组每日确诊病例时间序列图. 蓝实线表示居家模式下的每日确诊病例时间序列图, 红虚线表示社区模式下每日确诊病例时间序列图

    Figure 8.  The daily hospitalized cases for each age group over time t. The blue line represents the daily hospitalized cases in the household mode, the red dotted line represents the daily hospitalized cases in the community mode.

    图 9  (a) 参数对基本再生数$R_0$的敏感性分析; (b) 每日现有总确诊住院数$\sum\limits_{k=1}^{4}H_k(t)$取不同确诊率时间序列图

    Figure 9.  (a) The sensitivity analysis of model parameters to $R_0$; (b) the time series diagram of the total hospitalized cases with parameter $h$.

    图 10  均匀混合模型与模型(1)比较图

    Figure 10.  The comparison diagram of uniformly mixed model and model (1)

    表 1  参数定义和参数值

    Table 1.  Parameter definitions and parameter values

    参数 定义 数值 置信区间 数据来源
    $\beta_1$ 0—5岁年龄组
    感染率
    0.0164 [0.0163, 0.0165] MCMC
    $\beta_2$ 6—19岁年龄
    组感染率
    0.0266 [0.0265, 0.0267] MCMC
    $\beta_3$ 20—64岁年龄
    组感染率
    0.0869 [0.0868, 0.0870] MCMC
    $\beta_4$ 65岁及以上年
    龄组感染率
    0.0358 [0.0357, 0.0359] MCMC
    $1/\alpha$ 潜伏期 5.2 文献[14]
    $1/h$ 确诊周期 2.0383 [2.0379, 2.0387] MCMC
    $1/\gamma$ 康复期 10 文献[15]
    DownLoad: CSV

    表 2  变量生物学意义和变量初始值

    Table 2.  The meaning of variables and initial values

    参数 定义 数值 置信区间 数据来源
    $S_1(0)$ 初始时刻0—5岁人群
    易感者数量
    7153800 表4
    $S_2(0)$ 初始时刻6—19岁人
    群易感者数量
    16207482 表4
    $S_3(0)$ 初始时刻20—64岁
    人群易感者数量
    78760477 表4
    $S_4(0)$ 初始时刻65岁及以上
    人群易感者数量
    10664042 表4
    $E_1(0)$ 初始时刻0—5岁
    人群潜伏者数量
    16 [15, 17] MCMC
    $E_2(0)$ 初始时刻6—19岁
    人群潜伏者数量
    31 [30, 32] MCMC
    $E_3(0)$ 初始时刻20—64岁
    人群潜伏数量
    317 [316, 318] MCMC
    $E_4(0)$ 初始时刻65岁及以上
    人群潜伏者数量
    64 [63, 65] MCMC
    $I_1(0)$ 初始时刻0—5岁人
    群染病者数量
    2 [1, 3] MCMC
    $I_2(0)$ 初始时刻6—19岁人
    群染病者数量
    2 [1, 3] MCMC
    $I_3(0)$ 初始时刻20—64岁人
    群染病者数量
    68 [67, 69] MCMC
    $I_4(0)$ 初始时刻65岁及以上
    人群染病者数量
    17 [16, 18] MCMC
    $H_1(0)$ 初始时刻0—5岁人
    群确诊住院数量
    2 文献[16]
    $H_2(0)$ 初始时刻6—19岁人
    群确诊住院数量
    3 文献[16]
    $H_3(0)$ 初始时刻20—64岁
    人群确诊住院数量
    109 文献[16]
    $H_4(0)$ 初始时刻65岁及以上
    人群确诊住院数量
    24 文献[16]
    DownLoad: CSV

    表 3  2010年广东省各年龄段人口(单位: 1000人)

    Table 3.  The number of population for each age group of Guangdong province in 2010 (Unit: 1000)

    年龄 0 1—4岁 5—9岁 10—14岁 15—19岁 20—24岁 25—29岁 30—34岁 35—39岁 40—44岁
    人口 1081 4543 5167 6812 9990 12276 10621 8935 9533 8864
    年龄 45—49岁 50—54岁 55—59岁 60—64岁 65—69岁 70—74岁 75—79岁 80—84岁 85岁以上
    人口 7047 4899 4399 3066 2168 1911 1494 903 611
    DownLoad: CSV

    表 4  2019年广东省各年龄段人口分布(单位: 人)

    Table 4.  The number of population for aggregated age groups in Guangdong province in 2019 (unit: person)

    年龄 $N_1$(0—5岁) $N_2$(5—19岁) $N_3$(20—64岁) $N_4$(65岁以上)
    人口数 7153800 16207482 78760477 10664042
    DownLoad: CSV

    表 5  拟合结果分析

    Table 5.  Analysis of fitting results

    名 称 峰值到达时间 住院峰值/人 最终规模/人 疾病消亡时间
    0—5岁年龄组 2月2日 [2月1日, 2月3日] 11 [10, 12] 28 [23, 33] 3月10日 [3月3日, 3月17日]
    6—19岁年龄组 2月3日 [2月1日, 2月5日] 21 [20, 23] 61 [54, 69] 3月22日 [3月15日, 3月29日]
    20—64岁年龄组 2月3日 [2月2日, 2月4日] 296 [290, 301] 877 [791, 962] 4月22日 [3月31日, 4月30日]
    65岁及以上年龄组 1月31日 [1月29日, 2月1日] 52 [50, 54] 125 [107, 144] 3月23日 [3月9日, 4月5日]
    DownLoad: CSV

    表 6  社区模式住院峰值到达时间及峰值

    Table 6.  Daily peak arrival time and peak values of hospitalized cases in the community mode.

    名 称 0—5岁年
    龄组
    6—19岁年
    龄组
    20—64岁
    年龄组
    65岁及以上
    年龄组
    峰值到达时间 2月4日 2月6日 2月8日 2月1日
    住院峰值 12 27 417 56
    DownLoad: CSV
  • [1]

    Guangdong Provincial Health Commission. http://www.gd.gov.cn/gdywdt/gdyw/content/post_2878982.html/ [2020-01-24]

    [2]

    Ankarali H, Ankarali S, Caskurlu H 2020 Asia-Pac. J. Public Health 32 157

    [3]

    金启轩 2020 统计与决策 36 11

    Jin Q X 2020 Statistics & Decision 36 11

    [4]

    张琳 2020 电子科技大学学报 49 345Google Scholar

    Zhang L 2020 J. Univ. Electon. Sci. Technol. China 49 345Google Scholar

    [5]

    曹文静, 刘小菲, 韩卓, 冯鑫, 张琳, 刘肖凡, 许小可, 吴晔 2020 物理学报 69 090203Google Scholar

    Cao W J, Liu X F, Han Z, Feng X, Zhang L, Liu X F, Xu X K, Wu Y 2020 Acta Phys. Sin. 69 090203Google Scholar

    [6]

    李盈科, 赵时, 楼一均, 高道舟, 杨琳, 何岱海 2020 物理学报 69 090202Google Scholar

    Li Y K, Zhao S, Lou Y J, Gao D Z, Yang L, He D H 2020 Acta Phys. Sin. 69 090202Google Scholar

    [7]

    Yang J Y, Wang G Q, Zhang S 2020 Math. Biol. Eng. 17 4500

    [8]

    Tang B, Wang X, Qian L, Nicola L B, Tang S Y, Xiao Y N, Wu J H 2020 J. Clin. Med. 9 462

    [9]

    白媛 2017 博士学位论文 (长春: 吉林大学)

    Bai Y 2017 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [10]

    Prem K, Alex R, Mark J 2017 PLOS Comput. Biol. 13 e1005697

    [11]

    Li X Z, Yang J Y, Maia M 2020 Age Structured Epidemic Modelling (Switzerland: Springer) p153

    [12]

    Kiesha P, Liu Y, Timothy W R, Adam J K, Rosalind M E, Nicholas D 2020 Lancet Public Health 5 e261

    [13]

    Zhao H, Feng Z L 2020 Math. Biosci. 326 108405

    [14]

    Read J M, Lessler J, Riley S, Wang S, et al. 2014 Proc. R. Soc. B 281 20140268

    [15]

    The Economic Observer https://baijiahao.baidu.com/s?id=1657595901837318521&wfr=spider&for=pc/ [2020-02-04]

    [16]

    Health Commission of Guangdong Province. http://wsjkw.gd.gov.cn/zwyw_yqxx/content/post_2911721.html/ [2020-03-01]

    [17]

    Martcheva M 2015 An Introduction to Mathematical Epidemiology (New York: Springer) p104

    [18]

    Van Den Driessche P, Watmough J 2002 Math. Biosci. 180 29

    [19]

    Horn R A, Jonhson C R 1994 Matrix Analysis (Cambridge: Cambridge University Press) p534

    [20]

    Lasalle J P 1976 The Stability of Dynamical Systems (Philadelphia: SIAM) p30

    [21]

    国务院人口普查办公室, 国家统计局人口和就业统计司2012中国2010年人口普查资料-上 (北京: 中国统计出版社) 第265页

    Census Office of the State Council, Division of Population and Employment Statistics 2012 Data from China's 2010 population census-on (Beijing: China Statistical Press) p265

    [22]

    Guangdong Statistical Yearbook 2019 http://stats.gd.gov.cn/gdtjnj/content/post_2639622.html/ [2019-09-29]

    [23]

    Li Q, Guan X H, Wu P, Wang X Y, Zhou L, Tong Y Q, Ren R Q, Kathy S M, Leung, Eric H Y L, Jessica Y W, Xing X S, Xiang N J 2020 N. Engl. J. Med. 382 1199

    [24]

    肖燕妮, 周义仓, 唐三一 2012 生物数学原理 (西安: 西安交通大学出版社) 第213页

    Xiao Y N, Zhou Y C, Tang S Y 2012 Principle of Biomathematics (Xi'an: Xi'an Jiaotong University Press) p213

    [25]

    Moghadas S M, Shoukat A, Fitzpatrick M C, et al. 2020 Proc. Natl. Acad. Sci. USA 117 9122

    [26]

    Zhang J, Litvinova M, Liang Y, et al. 2020 Science 368 1481

  • [1] Xun Zhi-Peng, Hao Da-Peng. Monte Carlo simulation of bond percolation on square lattice with complex neighborhoods. Acta Physica Sinica, 2022, 71(6): 066401. doi: 10.7498/aps.71.20211757
    [2] Wang Li-Min, Duan Bing-Huang, Xu Xian-Guo, Li Hao, Chen Zhi-Jun, Yang Kun-Jie, Zhang Shuo. Simulation of neutron irradiation damage in lead lanthanum zirconate titanate by Monte Carlo method. Acta Physica Sinica, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] Li Ying-Ke, Zhao Shi, Lou Yi-Jun, Gao Dao-Zhou, Yang Lin, He Dai-Hai. Epidemiological parameters and models of coronavirus disease 2019. Acta Physica Sinica, 2020, 69(9): 090202. doi: 10.7498/aps.69.20200389
    [4] Sun Hao-Chen, Liu Xiao-Fan, Xu Xiao-Ke, Wu Ye. Analysis of COVID-19 spreading and prevention strategy in schools based on continuous infection model. Acta Physica Sinica, 2020, 69(24): 240201. doi: 10.7498/aps.69.20201106
    [5] Tian Zi-Ning, Ouyang Xiao-Ping, Chen Wei, Wang Xue-Mei, Deng Ning, Liu Wen-Biao, Tian Yan-Jie. Source boundary parameter of Monte Carlo inversion technology based on virtual source principle. Acta Physica Sinica, 2019, 68(23): 232901. doi: 10.7498/aps.68.20191095
    [6] Ye Hong-Jun, Wang Da-Wei, Jiang Zhi-Jun, Cheng Sheng, Wei Xiao-Yong. Ferroelectric phase transition of perovskite SnTiO3 based on the first principles. Acta Physica Sinica, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [7] Li Wen-Fang, Du Jin-Jin, Wen Rui-Juan, Yang Peng-Fei, Li Gang, Zhang Tian-Cai. Single-atom transfer in a strongly coupled cavity quantum electrodynamics: experiment and Monte Carlo simulation. Acta Physica Sinica, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [8] Wang Chao, Liu Cheng-Yuan, Hu Yuan-Ping, Liu Zhi-Hong, Ma Jian-Feng. Stability of information spreading over social network. Acta Physica Sinica, 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [9] Lu Yan-Ling, Jiang Guo-Ping, Song Yu-Rong. Stability and bifurcation of epidemic spreading on adaptive network. Acta Physica Sinica, 2013, 62(13): 130202. doi: 10.7498/aps.62.130202
    [10] Hua Yu-Chao, Dong Yuan, Cao Bing-Yang. Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm. Acta Physica Sinica, 2013, 62(24): 244401. doi: 10.7498/aps.62.244401
    [11] Lan Mu, Xiang Gang, Gu Gang-Xu, Zhang Xi. A Monte Carlo simulation study on growth mechanism of horizontal nanowires on crystal surface. Acta Physica Sinica, 2012, 61(22): 228101. doi: 10.7498/aps.61.228101
    [12] Zhao Xing-Yu, Wang Li-Na, Fan Xiao-Hui, Zhang Li-Li, Wei Lai, Zhang Jin-Lu, Huang Yi-Neng. Computer simulation of the string relaxation modes of the molecule-string model for glass transition. Acta Physica Sinica, 2011, 60(3): 036403. doi: 10.7498/aps.60.036403
    [13] Fan Xiao-Hui, Zhao Xing-Yu, Wang Li-Na, Zhang Li-Li, Zhou Heng-Wei, Zhang Jin-Lu, Huang Yi-Neng. Monte Carlo simulations of the relaxation dynamics of the spatial relaxation modes in the molecule-string model. Acta Physica Sinica, 2011, 60(12): 126401. doi: 10.7498/aps.60.126401
    [14] Chen Shan, Wu Qing-Yun, Chen Zhi-Gao, Xu Gui-Gui, Huang Zhi-Gao. Ferromagnetism of C doped ZnO: first-principles calculation and Monte Carlo simulation. Acta Physica Sinica, 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [15] Xiong Kai-Guo, Feng Guo-Lin, Hu Jing-Guo, Wan Shi-Quan, Yang Jie. Monte Carlo simulation of the record-breaking high temperature events of climate changes. Acta Physica Sinica, 2009, 58(4): 2843-2852. doi: 10.7498/aps.58.2843
    [16] Gao Fei, Ryoko Yamada, Mitsuo Watanabe, Liu Hua-Feng. Use of Monte Carlo simulations for the scatter events analysis of PET scanners. Acta Physica Sinica, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [17] Xu Lan-Qing, Li Hui, Xiao Zheng-Ying. Discussion on backscattered photon numbers and their scattering events in a turbid media. Acta Physica Sinica, 2008, 57(9): 6030-6035. doi: 10.7498/aps.57.6030
    [18] He Qing-Fang, Xu Zheng, Liu De-Ang, Xu Xu-Rong. Monte Carlo simulation of the effect of impact ionization in thin-film electroluminescent devices. Acta Physica Sinica, 2006, 55(4): 1997-2002. doi: 10.7498/aps.55.1997
    [19] Wang Zhi-Jun, Dong Li-Fang, Shang Yong. Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond. Acta Physica Sinica, 2005, 54(2): 880-885. doi: 10.7498/aps.54.880
    [20] Wang Jian-Hua, Jin Chuan-En. Application of Monte Carlo simulation to the research of ions transport plasma sheaths of glow discharge. Acta Physica Sinica, 2004, 53(4): 1116-1122. doi: 10.7498/aps.53.1116
Metrics
  • Abstract views:  13403
  • PDF Downloads:  249
  • Cited By: 0
Publishing process
  • Received Date:  20 August 2020
  • Accepted Date:  14 October 2020
  • Available Online:  21 December 2020
  • Published Online:  05 January 2021

/

返回文章
返回