Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in flexible piezoresistive pressure sensor

Li Feng-Chao Kong Zhen Wu Jin-Hua Ji Xin-Yi Liang Jia-Jie

Citation:

Advances in flexible piezoresistive pressure sensor

Li Feng-Chao, Kong Zhen, Wu Jin-Hua, Ji Xin-Yi, Liang Jia-Jie
PDF
HTML
Get Citation
  • In recent years, the flexible piezoresistive pressure sensor has attracted widespread attention due to the trend of improved wearable electronics applied to the field of electronic skin, disease diagnosis, motion detection and health monitoring. Here in this paper, the latest progress of the exploitation of flexible piezoresistive pressure sensors is reviewed in terms of sensing mechanism, selection of sensing materials, structural design and their advanced application. Firstly, the sensing mechanism of piezoresistive pressure sensors is generally introduced from the band structure of semiconductor materials, seepage theory and tunneling effect of conductive polymer composites and changes in interface contact resistance. Based on these sensing mechanisms, various flexible piezoresistive pressure sensors with high sensitivity, broad sensing range and fast response time have been developed. The selection of composition materials and microstructural design in flexible piezoresistive pressure sensor to implement the optimization of sensing performance are emphatically presented in this review. The composition materials including organic polymer material and inorganic nanomaterial based on two-dimensional (2D) materials such as graphene and MXene are intensively exhibited. In addition to the above characteristics, these kinds of pressure sensors exhibit high mechanical reversibility and low detection limit, which is essential for detecting the minor motions like respiratory rate and pulse. Moreover, the well-designed structures applied to the composition analysis are also overviewed, such as the sea urchin-like structure, spongy porous structure and regular structure. Various designed structures provide further properties like stability for the flexible pressure sensor. However, comparing with traditional pressure sensor, the mass production and application of flexible pressure sensor are confronting several barriers, like the high cost of raw materials and relatively complex manufacturing processes. How to achieve the low cost and low energy consumption simultaneously on the basis of excellent performance is still a challenge to expanding the applications of flexible pressure sensor. Novel sensing mechanism, functional materials and synthetic integration are expected to be developed in the future. And also, the potential application of flexible pressure sensor will be further expanded after endowing it with more functions.
      Corresponding author: Ji Xin-Yi, xyji06@nankai.edu.cn ; Liang Jia-Jie, liang0909@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51673099, 51872146)
    [1]

    Meng J, Li Z 2020 Adv. Mater. 32 2000130Google Scholar

    [2]

    Trung T Q, Lee N E 2016 Adv. Mater. 28 4338Google Scholar

    [3]

    Hua Q, Sun J, Liu H, Bao R, Yu R, Zhai J, Pan C, Wang Z L 2018 Nat. Commun. 9 244Google Scholar

    [4]

    Li J, Bao R R, Tao J, Peng Y Y, Pan C F 2018 J. Mater. Chem. C 6 11878Google Scholar

    [5]

    Amit M, Chukoskie L, Skalsky A J, Garudadri H, Ng T N 2020 Adv. Funct. Mater. 30 1905241Google Scholar

    [6]

    Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z 2010 Nat. Mater. 9 859Google Scholar

    [7]

    Konishi S, Hirata A 2019 Sci. Rep. 9 15634Google Scholar

    [8]

    Jeon J, Lee H B R, Bao Z 2013 Adv. Mater. 25 850Google Scholar

    [9]

    Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, Wang Z L 2008 Nano Lett. 8 3035Google Scholar

    [10]

    Han Z, Liu L, Zhang J, Han Q, Wang K, Song H, Wang Z, Jiao Z, Niu S, Ren L 2018 Nanoscale 10 15178Google Scholar

    [11]

    Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C 2017 Nanoscale 9 6246Google Scholar

    [12]

    Ma L, Wu R, Patil A, Zhu S, Meng Z, Meng H, Hou C, Zhang Y, Liu Q, Yu R, Wang J, Lin N, Liu X Y 2019 Adv. Funct. Mater. 29 1904549Google Scholar

    [13]

    Tien N T, Jeon S, Kim D I, Trung T Q, Jang M, Hwang B U, Byun K E, Bae J, Lee E, Tok J B H, Bao Z, Lee N E, Park J J 2014 Adv. Mater. 26 796Google Scholar

    [14]

    Huang Y, Fan X, Chen S C, Zhao N 2019 Adv. Funct. Mater. 29 1808509Google Scholar

    [15]

    Xiong Y, Shen Y, Tian L, Hu Y, Zhu P, Sun R, Wong C P 2020 Nano Energy 70 104436Google Scholar

    [16]

    Nela L, Tang J, Cao Q, Tulevski G, Han S J 2018 Nano Lett. 18 2054Google Scholar

    [17]

    Luo N, Dai W, Li C, Zhou Z, Lu L, Poon C C Y, Chen S C, Zhang Y, Zhao N 2016 Adv. Funct. Mater. 26 1178Google Scholar

    [18]

    Shi J, Wang L, Dai Z, Zhao L, Du M, Li H, Fang Y 2018 Small 14 1800819Google Scholar

    [19]

    Yang J, Luo S, Zhou X, Li J, Fu J, Yang W, Wei D 2019 ACS Appl. Mater. Interfaces 11 14997Google Scholar

    [20]

    Nie B, Li R, Cao J, Brandt J D, Pan T 2015 Adv. Mater. 27 6055Google Scholar

    [21]

    Signore M A, Rescio G, de Pascali C, Iacovacci V, Dario P, Leone A, Quaranta F, Taurino A, Siciliano P, Francioso L 2019 Sci. Rep. 9 17130Google Scholar

    [22]

    Yang Y, Pan H, Xie G, Jiang Y, Chen C, Su Y, Wang Y, Tai H 2020 Sens. Actuators, A 301 111789Google Scholar

    [23]

    He W, Sohn M, Ma R, Kang D J 2020 Nano Energy 78 105383Google Scholar

    [24]

    Yang D, Guo H, Chen X, Wang L, Jiang P, Zhang W, Zhang L, Wang Z L 2020 J. Mater. Chem. A 8 23827Google Scholar

    [25]

    Wang J, Jiang J, Zhang C, Sun M, Han S, Zhang R, Liang N, Sun D, Liu H 2020 Nano Energy 76 105050Google Scholar

    [26]

    Guan X, Wang Z, Zhao W, Huang H, Wang S, Zhang Q, Zhong D, Lin W, Ding N, Peng Z 2020 ACS Appl. Mater. Interfaces 12 26137Google Scholar

    [27]

    Ruth S R A, Feig V R, Tran H, Bao Z 2020 Adv. Funct. Mater. 30 2003491Google Scholar

    [28]

    Li W D, Pu J H, Zhao X, Jia J, Ke K, Bao R Y, Liu Z Y, Yang M B, Yang W 2020 J. Mater. Chem. C 8 16774Google Scholar

    [29]

    He J, Xiao P, Lu W, Shi J, Zhang L, Liang Y, Pan C, Kuo S W, Chen T 2019 Nano Energy 59 422Google Scholar

    [30]

    He J, Zhang Y, Zhou R, Meng L, Chen T, Mai W, Pan C 2020 J. Materiomics 6 86Google Scholar

    [31]

    Wu Q, Qiao Y, Guo R, Naveed S, Hirtz T, Li X, Fu Y, Wei Y, Deng G, Yang Y, Wu X, Ren T L 2020 ACS Nano 14 10104Google Scholar

    [32]

    Park J, Kim J, Hong J, Lee H, Lee Y, Cho S, Kim S W, Kim J J, Kim S Y, Ko H 2018 NPG Asia Mater. 10 163Google Scholar

    [33]

    Shu Y, Tian H, Yang Y, Li C, Cui Y, Mi W, Li Y, Wang Z, Deng N, Peng B, Ren T L 2015 Nanoscale 7 8636Google Scholar

    [34]

    Fiorillo A S, Critello C D, Pullano S A 2018 Sens. Actuators, A 281 156Google Scholar

    [35]

    Naumov P, Huangfu S, Wu X, Schilling A, Thomale R, Felser C, Medvedev S, Jeschke H O, von Rohr F O 2019 Phys. Rev. B 100 155113Google Scholar

    [36]

    Cao M, Su J, Fan S, Qiu H, Su D, Li L 2021 Chem. Eng. J. 406 126777Google Scholar

    [37]

    Haniff M A S M, Hafiz S M, Huang N M, Rahman S A, Wahid K A A, Syono M I, Azid I A 2017 ACS Appl. Mater. Interfaces 9 15192Google Scholar

    [38]

    Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401

    [39]

    Lipomi D J, Lee J A, Vosgueritchian M, Tee B C K, Bolander J A, Bao Z 2012 Chem. Mater. 24 373Google Scholar

    [40]

    Chen Z, Ming T, Goulamaly M M, Yao H, Nezich D, Hempel M, Hofmann M, Kong J 2016 Adv. Funct. Mater. 26 5061Google Scholar

    [41]

    Choi J, Kwon D, Kim K, Park J, Orbe D D, Gu J, Ahn J, Cho I, Jeong Y, Oh Y, Park I 2020 ACS Appl. Mater. Interfaces 12 1698Google Scholar

    [42]

    Chen M, Luo W, Xu Z, Zhang X, Xie B, Wang G, Han M 2019 Nat. Commun. 10 4024Google Scholar

    [43]

    Zhao Z, Zhang J, Zhang J, Li C, Li Y, Wang X 2017 Sens. Actuators, A 263 648Google Scholar

    [44]

    Strümpler R, Glatz-Reichenbach J 1999 J. Electroceram. 3 329Google Scholar

    [45]

    Wang M, Gurunathan R, Imasato K, Geisendorfer N R, Jakus A E, Peng J, Shah R N, Grayson M, Snyder G J 2019 Adv. Theory Simul. 2 1800125Google Scholar

    [46]

    Wang S, Chen G, Niu S, Chen K, Gan T, Wang Z, Wang H, Du P, Leung C W, Qu S 2019 ACS Appl. Mater. Interfaces 11 48331Google Scholar

    [47]

    Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H 2008 Acta Mater. 56 2929Google Scholar

    [48]

    Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y, Ko H 2014 ACS Nano 8 4689Google Scholar

    [49]

    Sreeprasad T S, Rodriguez A A, Colston J, Graham A, Shishkin E, Pallem V, Berry V 2013 Nano Lett. 13 1757Google Scholar

    [50]

    Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I 2014 ACS Nano 8 5154Google Scholar

    [51]

    Simmons J G 1963 J. Appl. Phys. 34 1793Google Scholar

    [52]

    Yang H, Yuan L, Yao X, Fang D 2020 J. Mech. Phys. Solids 139 103943Google Scholar

    [53]

    Higashisaka T, Nagato K, Tomizawa M, Tanaka E, Watanabe H, Nakao M 2019 Microelectron. Eng. 216 111058Google Scholar

    [54]

    Hamedi M, Atashparva M 2017 Weld. World 61 269Google Scholar

    [55]

    Matsuda Y, Deng W Q, Goddard W A 2010 J. Phys. Chem. C 114 17845Google Scholar

    [56]

    Paulson S, Helser A, Nardelli M B, Taylor R M, Falvo M, Superfine R, Washburn S 2000 Science 290 1742Google Scholar

    [57]

    Timsit R S 1999 IEEE Trans. Compon. Packag. Technol. 22 85Google Scholar

    [58]

    Gao L, Zhu C, Li L, Zhang C, Liu J, Yu H D, Huang W 2019 ACS Appl. Mater. Interfaces 11 25034Google Scholar

    [59]

    Doshi S M, Thostenson E T 2018 ACS Sens. 3 1276Google Scholar

    [60]

    Guo Y, Zhong M, Fang Z, Wan P, Yu G 2019 Nano Lett. 19 1143Google Scholar

    [61]

    Lee D, Lee H, Jeong Y, Ahn Y, Nam G, Lee Y 2016 Adv. Mater. 28 9364Google Scholar

    [62]

    Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, Molina-Lopez F, Lissel F, Liu J, Rabiah N I, Chen Z, Chung J W, Linder C, Toney M F, Murmann B, Bao Z 2017 Sci. Adv. 3 e1602076Google Scholar

    [63]

    Jang H H, Park J S, Choi B 2019 Sens. Actuators, A 286 107Google Scholar

    [64]

    Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I 2014 Adv. Mater. 26 3451Google Scholar

    [65]

    Yang J C, Kim J O, Oh J, Kwon S Y, Sim J Y, Kim D W, Choi H B, Park S 2019 ACS Appl. Mater. Interfaces 11 19472Google Scholar

    [66]

    Qiu L, Liu J Z, Chang S L Y, Wu Y, Li D 2012 Nat. Commun. 3 1241Google Scholar

    [67]

    Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T, Wang J, Gao Y 2020 ACS Nano 14 2145Google Scholar

    [68]

    Chu Y, Zhong J, Liu H, Ma Y, Liu N, Song Y, Liang J, Shao Z, Sun Y, Dong Y, Wang X, Lin L 2018 Adv. Funct. Mater. 28 1803413Google Scholar

    [69]

    Zhang Z, Zhang Y, Jiang X, Bukhari H, Zhang Z, Han W, Xie E 2019 Carbon 155 71Google Scholar

    [70]

    Gao Y, Ota H, Schaler E W, Chen K, Zhao A, Gao W, Fahad H M, Leng Y, Zheng A, Xiong F, Zhang C, Tai L C, Zhao P, Fearing R S, Javey A 2017 Adv. Mater. 29 1701985Google Scholar

    [71]

    Kim G, Cho S, Chang K, Kim W S, Kang H, Ryu S P, Myoung J, Park J, Park C, Shim W 2017 Adv. Mater. 29 1606120Google Scholar

    [72]

    Zheng M, Li W, Xu M, Xu N, Chen P, Han M, Xie B 2014 Nanoscale 6 3930Google Scholar

    [73]

    Huang C B, Witomska S, Aliprandi A, Stoeckel M A, Bonini M, Ciesielski A, Samorì P 2019 Adv. Mater. 31 1804600Google Scholar

    [74]

    Zhao Y, Song J G, Ryu G H, Ko K Y, Woo W J, Kim Y, Kim D, Lim J H, Lee S, Lee Z, Park J, Kim H 2018 Nanoscale 10 9338Google Scholar

    [75]

    Htwe Y Z N, Chow W S, Suriati G, Thant A A, Mariatti M 2019 Synth. Met. 256 116120Google Scholar

    [76]

    Vuorinen T, Niittynen J, Kankkunen T, Kraft T M, Mäntysalo M 2016 Sci. Rep. 6 35289Google Scholar

    [77]

    Hassan G, Khan M U, Bae J, Shuja A 2020 Sci. Rep. 10 18234Google Scholar

    [78]

    Liu T, Liu M, Dou S, Sun J, Cong Z, Jiang C, Du C, Pu X, Hu W, Wang Z L 2018 ACS Nano 12 2818Google Scholar

    [79]

    Yeo W H, Kim Y S, Lee J, Ameen A, Shi L, Li M, Wang S, Ma R, Jin S H, Kang Z, Huang Y, Rogers J A 2013 Adv. Mater. 25 2773Google Scholar

    [80]

    Wu H, Liu Q, Du W, Li C, Shi G 2018 ACS Appl. Mater. Interfaces 10 3895Google Scholar

    [81]

    Wang Z, Volinsky A A, Gallant N D 2014 J. Appl. Polym. Sci. 131 4105

    [82]

    Tahk D, Lee H H, Khang D Y 2009 Macromolecules 42 7079Google Scholar

    [83]

    Li J, Orrego S, Pan J, He P, Kang S H 2019 Nanoscale 11 2779Google Scholar

    [84]

    Ma Z, Wei A, Ma J, Shao L, Jiang H, Dong D, Ji Z, Wang Q, Kang S 2018 Nanoscale 10 7116Google Scholar

    [85]

    Lee D, Kim J, Kim H, Heo H, Park K, Lee Y 2018 Nanoscale 10 18812Google Scholar

    [86]

    Kou H, Zhang L, Tan Q, Liu G, Dong H, Zhang W, Xiong J 2019 Sci. Rep. 9 3916Google Scholar

    [87]

    Schlicke H, Kunze S, Rebber M, Schulz N, Riekeberg S, Trieu H K, Vossmeyer T 2020 Adv. Funct. Mater. 30 2003381Google Scholar

    [88]

    Schlicke H, Rebber M, Kunze S, Vossmeyer T 2016 Nanoscale 8 183Google Scholar

    [89]

    Tang Y, Gong S, Chen Y, Yap L W, Cheng W 2014 ACS Nano 8 5707Google Scholar

    [90]

    Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W 2014 Nat. Commun. 5 3132Google Scholar

    [91]

    Li Y, Han D, Jiang C, Xie E, Han W 2019 Adv. Mater. Technol. 4 1800504Google Scholar

    [92]

    Wu J, Li H, Lai X, Chen Z, Zeng X 2020 Chem. Eng. J. 386 123998Google Scholar

    [93]

    Azhari S, Termeh Yousefi A, Tanaka H, Khajeh A, Kuredemus N, Mansouri Bigdeli M, Hamidon M N 2017 Sens. Actuators, A 266 158Google Scholar

    [94]

    Chen H, Su Z, Song Y, Cheng X, Chen X, Meng B, Song Z, Chen D, Zhang H 2017 Adv. Funct. Mater. 27 1604434Google Scholar

    [95]

    Mohammad Haniff M A S, Muhammad Hafiz S, Wahid K A A, Endut Z, Wah Lee H, Bien D C S, Abdul Azid I, Abdullah M Z, Ming Huang N, Abdul Rahman S 2015 Sci. Rep. 5 14751Google Scholar

    [96]

    Mattevi C, Kim H, Chhowalla M 2011 J. Mater. Chem. 21 3324Google Scholar

    [97]

    Zhu S E, Ghatkesar M K, Zhang C, Janssen G C A M 2013 Appl. Phys. Lett. 102 161904Google Scholar

    [98]

    Luo N, Huang Y, Liu J, Chen S C, Wong C P, Zhao N 2017 Adv. Mater. 29 1702675Google Scholar

    [99]

    Bae G Y, Pak S W, Kim D, Lee G, Kim D H, Chung Y, Cho K 2016 Adv. Mater. 28 5300Google Scholar

    [100]

    Pang Y, Tian H, Tao L, Li Y, Wang X, Deng N, Yang Y, Ren T L 2016 ACS Appl. Mater. Interfaces 8 26458Google Scholar

    [101]

    Zhu B, Niu Z, Wang H, Leow W R, Wang H, Li Y, Zheng L, Wei J, Huo F, Chen X 2014 Small 10 3625Google Scholar

    [102]

    Yang T, Wang W, Zhang H, Li X, Shi J, He Y, Zheng Q, Li Z, Zhu H 2015 ACS Nano 9 10867Google Scholar

    [103]

    Sheng L, Liang Y, Jiang L, Wang Q, Wei T, Qu L, Fan Z 2015 Adv. Funct. Mater. 25 6545Google Scholar

    [104]

    Shi X, Liu S, Sun Y, Liang J, Chen Y 2018 Adv. Funct. Mater. 28 1800850Google Scholar

    [105]

    Van Lier G, Van Alsenoy C, Van Doren V, Geerlings P 2000 Chem. Phys. Lett. 326 181Google Scholar

    [106]

    Dillon A D, Ghidiu M J, Krick A L, Griggs J, May S J, Gogotsi Y, Barsoum M W, Fafarman A T 2016 Adv. Funct. Mater. 26 4162Google Scholar

    [107]

    Lipatov A, Lu H, Alhabeb M, Anasori B, Gruverman A, Gogotsi Y, Sinitskii A 2018 Sci. Adv. 4 eaat0491Google Scholar

    [108]

    Ma Y, Liu N, Li L, Hu X, Zou Z, Wang J, Luo S, Gao Y 2017 Nat. Commun. 8 1207Google Scholar

    [109]

    Ma Y, Yue Y, Zhang H, Cheng F, Zhao W, Rao J, Luo S, Wang J, Jiang X, Liu Z, Liu N, Gao Y 2018 ACS Nano 12 3209Google Scholar

    [110]

    Wang L, Zhang M, Yang B, Tan J, Ding X 2020 ACS Nano 14 10633Google Scholar

    [111]

    Gao Y, Yan C, Huang H, Yang T, Tian G, Xiong D, Chen N, Chu X, Zhong S, Deng W, Fang Y, Yang W 2020 Adv. Funct. Mater. 30 1909603Google Scholar

    [112]

    Wang Z, Wang S, Zeng J, Ren X, Chee A J Y, Yiu B Y S, Chung W C, Yang Y, Yu A C H, Roberts R C, Tsang A C O, Chow K W, Chan P K L 2016 Small 12 3827Google Scholar

    [113]

    Pan H, Xie G, Pang W, Wang S, Wang Y, Jiang Z, Du X, Tai H 2020 ACS Appl. Mater. Interfaces 12 38805Google Scholar

    [114]

    Teixeira J, Horta-Romarís L, Abad M J, Costa P, Lanceros-Méndez S 2018 Materials & Design 141 1

    [115]

    Han S, Jiao F, Khan Z U, Edberg J, Fabiano S, Crispin X 2017 Adv. Funct. Mater. 27 1703549Google Scholar

    [116]

    Han S, Alvi N U H, Granlöf L, Granberg H, Berggren M, Fabiano S, Crispin X 2019 Adv. Sci 6 1802128Google Scholar

    [117]

    Wagner S, Yim C, McEvoy N, Kataria S, Yokaribas V, Kuc A, Pindl S, Fritzen C P, Heine T, Duesberg G S, Lemme M C 2018 Nano Lett. 18 3738Google Scholar

    [118]

    Si Y, Wang X, Yan C, Yang L, Yu J, Ding B 2016 Adv. Mater. 28 9512Google Scholar

    [119]

    Wang Q, Jian M, Wang C, Zhang Y 2017 Adv. Funct. Mater. 27 1605657Google Scholar

    [120]

    Li X, Fan Y J, Li H Y, Cao J W, Xiao Y C, Wang Y, Liang F, Wang H L, Jiang Y, Wang Z L, Zhu G 2020 ACS Nano 14 9605Google Scholar

    [121]

    He R, Yang P 2006 Nat. Nanotechnol. 1 42Google Scholar

    [122]

    Ghosh R, Song M S, Park J, Tchoe Y, Guha P, Lee W, Lim Y, Kim B, Kim S W, Kim M, Yi G C 2021 Nano Energy 80 105537Google Scholar

    [123]

    Pandey V, Mandal A, Sisle S, Gururajan M P, Dusane R O 2020 Sens. Actuators, A 316 112372Google Scholar

    [124]

    Peng S, Blanloeuil P, Wu S, Wang C H 2018 Adv. Mater. Interfaces 5 1800403Google Scholar

    [125]

    Pang Y, Zhang K, Yang Z, Jiang S, Ju Z, Li Y, Wang X, Wang D, Jian M, Zhang Y, Liang R, Tian H, Yang Y, Ren T L 2018 ACS Nano 12 2346Google Scholar

    [126]

    Wang K, Lou Z, Wang L, Zhao L, Zhao S, Wang D, Han W, Jiang K, Shen G 2019 ACS Nano 13 9139Google Scholar

    [127]

    Yue Y, Liu N, Liu W, Li M, Ma Y, Luo C, Wang S, Rao J, Hu X, Su J, Zhang Z, Huang Q, Gao Y 2018 Nano Energy 50 79Google Scholar

    [128]

    Lv L, Zhang P, Xu T, Qu L 2017 ACS Appl. Mater. Interfaces 9 22885Google Scholar

    [129]

    Xiao J, Tan Y, Song Y, Zheng Q 2018 J. Mater. Chem. A 6 9074Google Scholar

    [130]

    Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H 2013 Adv. Mater. 25 6692Google Scholar

    [131]

    Cao X, Zhang J, Chen S, Varley R J, Pan K 2020 Adv. Funct. Mater. 30 2003618Google Scholar

    [132]

    Tsui M N, Islam M F 2017 Nanoscale 9 1128Google Scholar

    [133]

    Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z 2019 ACS Appl. Mater. Interfaces 11 6685Google Scholar

    [134]

    Deville S, Saiz E, Nalla R K, Tomsia A P 2006 Science 311 515Google Scholar

    [135]

    Yu S, Li L, Wang J, Liu E, Zhao J, Xu F, Cao Y, Lu C 2020 Adv. Funct. Mater. 30 1907091Google Scholar

    [136]

    Wang Z, Guan X, Huang H, Wang H, Lin W, Peng Z 2019 Adv. Funct. Mater. 29 1807569Google Scholar

    [137]

    Huang Y, Chen Y, Fan X, Luo N, Zhou S, Chen S C, Zhao N, Wong C P 2018 Small 14 1801520Google Scholar

    [138]

    Shin K Y, Lee J S, Jang J 2016 Nano Energy 22 95Google Scholar

    [139]

    Gerratt A P, Michaud H O, Lacour S P 2015 Adv. Funct. Mater. 25 2287Google Scholar

    [140]

    Zhan Z, Lin R, Tran V T, An J, Wei Y, Du H, Tran T, Lu W 2017 ACS Appl. Mater. Interfaces 9 37921Google Scholar

    [141]

    Tee B C K, Chortos A, Berndt A, Nguyen A K, Tom A, McGuire A, Lin Z C, Tien K, Bae W G, Wang H, Mei P, Chou H H, Cui B, Deisseroth K, Ng T N, Bao Z 2015 Science 350 313Google Scholar

  • 图 1  (a)半导体硅在[111]和[100]波数方向的导带和价带[34]; (b)化合物CsAuBr3在27 ℃下, 45 GPa压力范围内电阻率的变化[35]; (c)石墨烯片层沿指定方向均匀拉伸或压缩[38]; (d)通过按压导电聚合物复合材料降低电阻率的示意图[45]; (e) 相邻纳米线之间的不同电接触情况[50]

    Figure 1.  (a) Conduction band and valence band in silicon along [111] and [100] κ-directions[34]; (b) Evolution of the resistivity of CsAuBr3 at 27 ℃ in a pressure range up to 45 GPa[35]; (c) the graphene sheet is uniformly stretched or compressed along a prescribed direction[38]; (d) schematic illustration of decrease in resistivity by pressing a conductive polymer composite[45]; (e) different electrical interconnections between two adjacent NWs[45].

    图 2  基于界面接触电阻的变化 (a)两种固体材料接触界面的示意图[54]; (b)电极-活性层接触型压力传感器的工作机理[58]; (c) PEI-CNT涂层的非导电纤维在外加压力下的传感机理[59]

    Figure 2.  Change based on interface contact resistance: (a) Schematic diagram of a bulk electrical interface[54]; (b) working mechanism of pressure sensor of electrode-active layer contact type[58]; (c) PEI-CNT coated non-conductive fibers under applied pressure showing the proposed sensing mechanism[59].

    图 3  柔性压阻式压力传感器活性层材料、微结构类型及应用概述. 柔性压阻式压力传感器活性层材料的组分包括: 碳基纳米材料[60]、金属基纳米材料[61]、导电聚合物[62]、绝缘弹性体[63]等; 柔性压阻式压力传感器微结构设计类型包括: 单一微凸体结构(如金字塔结构[64])、复合微凸体结构(如多孔金字塔结构[65]、互锁结构[48]等)及三维多孔结构[66]; 柔性压阻式压力传感器主要应用于电子皮肤感知[67]和健康检测[68]等领域

    Figure 3.  Overview of flexible piezoresistive pressure sensor active layer materials, microstructure types and application. The components of the active layer materials of flexible piezoresistive pressure sensors include carbon nanomaterials[60], metal materials[61], conductive polymers[62], insulating elastomers[63]; The microstructure types of flexibility piezoresistive pressure sensor include single microstructure (such as pyramid structure[64]), composite microstructure (such as porous pyramid structure[65], interlocking structure[48]) and 3D porous structure[66]; and the application of flexible piezoresistive pressure sensor: electronic skin[67] and health monitoring[68].

    图 4  柔性压阻式压力传感器常用的代表性活性层材料 (a), (b) 海胆状金属基纳米颗粒和弹性体应用于柔性压阻式压力传感器的制备[61]; (c), (d)碳基材料(CNTs)应用于柔性压阻式压力传感器的制备[94]; (e), (f) 碳基材料二维MXene应用于柔性压阻式压力传感器的制备[60]; (g), (h) 导电聚合物PEDOT:PSS应用于柔性压阻式压力传感器的制备[115,116]

    Figure 4.  Typical active layer materials for flexible piezoresistive pressure sensors: (a), (b) Sea urchin-like metal-based nanoparticles and elastomers are used in the preparation of flexible piezoresistive pressure sensors[61]; (c), (d) carbon-based material(CNTs) used in the preparation of flexible piezoresistive pressure sensors[94]; (e), (f) carbon-based material(MXene) used in the preparation of flexible piezoresistive pressure sensors[60]; (g), (h) conductive polymer(PEDOT:PSS) applied to the preparation of flexible piezoresistive pressure sensor[115,116].

    图 5  一种制备工艺: 在金字塔表面涂覆一层PEDOT:PSS薄膜, 电路模型用于推导传感器的传感原理, 它依赖于金字塔的几何形状对压力的响应的变化[64]; (b) 金字塔结构传感器在拉伸时的压力响应及其线性压力灵敏度[64]; (c) 具有不同表面形貌的单一微凸体结构的压力传感原理示意图[32]; (d) 对压力进行响应时的相对电流变化[32]; (e) 压力作用下不同微结构的有限元建模分析[124]; (f)传感器单元的接触面积随压力的变化[124]; (g) 不同几何形状结构: 金字塔、半球、纳米线等在5 kPa外载荷下的压力分布[125]; (h) RDS微结构在5 kPa外载荷下的压力分布[125]; (i) 具有不同表面微结构传感器的电阻随压力变化的模拟结果[125]

    Figure 5.  (a) Fabrication process showing a processing step that is first introduced: a PEDOT:PSSthin film coating the pyramid surface.Circuit model used to derive the sensing principle of the sensor, which relies on the change of the pyramid’s geometry in response to pressure[64]; (b) pressure responses of pyramid-structured sensors when stretched and their respective linear pressure sensitivities[64]; (c) a schematic illustration of the pressure-sensing principle of single microstructured e-skins with different surface morphologies[32]; (d) relative current changes in response to normal pressure[32]; (e) FEM analysis of different microstructures under pressure[124]; (f) contact area of a sensor cell as a function of pressure[124]; (g) the pressure distribution of the simulation results for different geometries: pyramid, hemisphere, nanowire at an external loading pressure of 5 kPa[125]; (h) the pressure distribution of the simulation results for RDS microstructure at an external loading pressure of 5 kPa[125]; (i) the simulation results of resistance variation versus applied pressure for different surface microstructures[125].

    图 6  (a)简述了电子皮肤的工作原理. 外部压力集中应力在接触点, 使互锁型微结构变形, 从而导致接触面积和隧穿电流的增加[48]; (b) 质量分数为8%碳纳米管的不同传感器结构的压力敏感性比较: 平面型(黑色)、半球型(红色)和互锁型微结构(蓝色)[48]; (c) 具有互锁结构的Ti3C2/天然微囊体生物复合薄膜柔性传感器示意图[126]; (d) 手指不同角度弯曲时, Ti3C2/天然微囊体柔性传感器的相对电流变化[126]; (e)分层结构的石墨烯/PDMS的单个结构图像, 传感器组装的示意图及压力传感器的工作原理[99]; (f)基于PPy接枝多孔金字塔介质层的压力传感器结构[65]; (g)基于PPy接枝多孔/固体金字塔介质层的压力传感器的电流随压力变化关系[65]

    Figure 6.  (a) Schematic showing the working principle of the electronic skin. The external pressure concentrates stress at the contact spots, deforming the microdomes, which in turn causes an increase in the contact area and the tunneling currents[48]; (b) the comparison of pressure sensitivities of different sensor structures for 8 wt%: planar (black), microdome (red), and interlocked microdome (blue)[48]; (c) schematic illustration of the Ti3C2/NMC biocomposite film-based flexible sensors with interlocked structure[126]; (d) relative current change of Ti3C2/NMC flexible sensor in response to various angle bending[126]; (e) image of the individual structure of hierarchically structured graphene/PDMS Array, and schematic illustration of sensor assembly and operating principle of the pressure sensor[99]; (f) schematic of contact resistance-based pressure sensor based on PPy-grafted porous pyramid dielectric layer[65]; (g) relative change in current versus pressure ofthe contact resistance-based pressure sensor based on PPy-grafted porous pyramid dielectric layer and solid pyramid dielectric layer[65].

    图 7  (a) 具有中空结构的石墨烯复合材料的制备工艺[98]; (b) MXene基海绵的制备工艺[127]; (c) 加载-卸载1万次循环的MXene基压力传感器的稳定性能[127]; (d)发泡石墨烯传感器的制备说明[128]; (e) 发泡石墨烯传感器的压力-响应曲线[128]

    Figure 7.  (a) Fabrication process of hollow-structured graphene composite[98]; (b) schematic illustration of fabrication procedure of MXene-sponge[127]; (c) stability performance of the pressure sensor with loading-unloading 10000 cycles[127]; (d) illustrations for the preparation of sparkling graphene block[128]; (e) pressure-response curve for the sparkling graphene block[128].

    图 8  (a)“MXene基仿生皮肤”的设计与组装[67], MXene基压阻传感器阵列及相应压力分布的检测, 压力传感器用于检测机器人运动行为; (b)信号以电流变化的形式响应来自弯曲手指、弯曲手腕、腕部脉搏、吞咽动作等[67]; (c)无线健康监测系统在行走和跑步过程中的应用图像[29]

    Figure 8.  (a) Design and assembly of piezoresistive sensors with bionic spinous microstructure, photograph of the array of MXene-based piezoresistive sensor and detection of the corresponding pressure distributions, and photograph of the pressure sensor assembled on a robot and detection of its response to the motion behavior[67]; (b) the signal responses in the form of current changes come from finger bending, wrist bending, wrist pulse, throat swallowing[67]; (c)image of wireless health monitoring system applied during the process of walking and running[29].

  • [1]

    Meng J, Li Z 2020 Adv. Mater. 32 2000130Google Scholar

    [2]

    Trung T Q, Lee N E 2016 Adv. Mater. 28 4338Google Scholar

    [3]

    Hua Q, Sun J, Liu H, Bao R, Yu R, Zhai J, Pan C, Wang Z L 2018 Nat. Commun. 9 244Google Scholar

    [4]

    Li J, Bao R R, Tao J, Peng Y Y, Pan C F 2018 J. Mater. Chem. C 6 11878Google Scholar

    [5]

    Amit M, Chukoskie L, Skalsky A J, Garudadri H, Ng T N 2020 Adv. Funct. Mater. 30 1905241Google Scholar

    [6]

    Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z 2010 Nat. Mater. 9 859Google Scholar

    [7]

    Konishi S, Hirata A 2019 Sci. Rep. 9 15634Google Scholar

    [8]

    Jeon J, Lee H B R, Bao Z 2013 Adv. Mater. 25 850Google Scholar

    [9]

    Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, Wang Z L 2008 Nano Lett. 8 3035Google Scholar

    [10]

    Han Z, Liu L, Zhang J, Han Q, Wang K, Song H, Wang Z, Jiao Z, Niu S, Ren L 2018 Nanoscale 10 15178Google Scholar

    [11]

    Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C 2017 Nanoscale 9 6246Google Scholar

    [12]

    Ma L, Wu R, Patil A, Zhu S, Meng Z, Meng H, Hou C, Zhang Y, Liu Q, Yu R, Wang J, Lin N, Liu X Y 2019 Adv. Funct. Mater. 29 1904549Google Scholar

    [13]

    Tien N T, Jeon S, Kim D I, Trung T Q, Jang M, Hwang B U, Byun K E, Bae J, Lee E, Tok J B H, Bao Z, Lee N E, Park J J 2014 Adv. Mater. 26 796Google Scholar

    [14]

    Huang Y, Fan X, Chen S C, Zhao N 2019 Adv. Funct. Mater. 29 1808509Google Scholar

    [15]

    Xiong Y, Shen Y, Tian L, Hu Y, Zhu P, Sun R, Wong C P 2020 Nano Energy 70 104436Google Scholar

    [16]

    Nela L, Tang J, Cao Q, Tulevski G, Han S J 2018 Nano Lett. 18 2054Google Scholar

    [17]

    Luo N, Dai W, Li C, Zhou Z, Lu L, Poon C C Y, Chen S C, Zhang Y, Zhao N 2016 Adv. Funct. Mater. 26 1178Google Scholar

    [18]

    Shi J, Wang L, Dai Z, Zhao L, Du M, Li H, Fang Y 2018 Small 14 1800819Google Scholar

    [19]

    Yang J, Luo S, Zhou X, Li J, Fu J, Yang W, Wei D 2019 ACS Appl. Mater. Interfaces 11 14997Google Scholar

    [20]

    Nie B, Li R, Cao J, Brandt J D, Pan T 2015 Adv. Mater. 27 6055Google Scholar

    [21]

    Signore M A, Rescio G, de Pascali C, Iacovacci V, Dario P, Leone A, Quaranta F, Taurino A, Siciliano P, Francioso L 2019 Sci. Rep. 9 17130Google Scholar

    [22]

    Yang Y, Pan H, Xie G, Jiang Y, Chen C, Su Y, Wang Y, Tai H 2020 Sens. Actuators, A 301 111789Google Scholar

    [23]

    He W, Sohn M, Ma R, Kang D J 2020 Nano Energy 78 105383Google Scholar

    [24]

    Yang D, Guo H, Chen X, Wang L, Jiang P, Zhang W, Zhang L, Wang Z L 2020 J. Mater. Chem. A 8 23827Google Scholar

    [25]

    Wang J, Jiang J, Zhang C, Sun M, Han S, Zhang R, Liang N, Sun D, Liu H 2020 Nano Energy 76 105050Google Scholar

    [26]

    Guan X, Wang Z, Zhao W, Huang H, Wang S, Zhang Q, Zhong D, Lin W, Ding N, Peng Z 2020 ACS Appl. Mater. Interfaces 12 26137Google Scholar

    [27]

    Ruth S R A, Feig V R, Tran H, Bao Z 2020 Adv. Funct. Mater. 30 2003491Google Scholar

    [28]

    Li W D, Pu J H, Zhao X, Jia J, Ke K, Bao R Y, Liu Z Y, Yang M B, Yang W 2020 J. Mater. Chem. C 8 16774Google Scholar

    [29]

    He J, Xiao P, Lu W, Shi J, Zhang L, Liang Y, Pan C, Kuo S W, Chen T 2019 Nano Energy 59 422Google Scholar

    [30]

    He J, Zhang Y, Zhou R, Meng L, Chen T, Mai W, Pan C 2020 J. Materiomics 6 86Google Scholar

    [31]

    Wu Q, Qiao Y, Guo R, Naveed S, Hirtz T, Li X, Fu Y, Wei Y, Deng G, Yang Y, Wu X, Ren T L 2020 ACS Nano 14 10104Google Scholar

    [32]

    Park J, Kim J, Hong J, Lee H, Lee Y, Cho S, Kim S W, Kim J J, Kim S Y, Ko H 2018 NPG Asia Mater. 10 163Google Scholar

    [33]

    Shu Y, Tian H, Yang Y, Li C, Cui Y, Mi W, Li Y, Wang Z, Deng N, Peng B, Ren T L 2015 Nanoscale 7 8636Google Scholar

    [34]

    Fiorillo A S, Critello C D, Pullano S A 2018 Sens. Actuators, A 281 156Google Scholar

    [35]

    Naumov P, Huangfu S, Wu X, Schilling A, Thomale R, Felser C, Medvedev S, Jeschke H O, von Rohr F O 2019 Phys. Rev. B 100 155113Google Scholar

    [36]

    Cao M, Su J, Fan S, Qiu H, Su D, Li L 2021 Chem. Eng. J. 406 126777Google Scholar

    [37]

    Haniff M A S M, Hafiz S M, Huang N M, Rahman S A, Wahid K A A, Syono M I, Azid I A 2017 ACS Appl. Mater. Interfaces 9 15192Google Scholar

    [38]

    Pereira V M, Castro Neto A H, Peres N M R 2009 Phys. Rev. B 80 045401

    [39]

    Lipomi D J, Lee J A, Vosgueritchian M, Tee B C K, Bolander J A, Bao Z 2012 Chem. Mater. 24 373Google Scholar

    [40]

    Chen Z, Ming T, Goulamaly M M, Yao H, Nezich D, Hempel M, Hofmann M, Kong J 2016 Adv. Funct. Mater. 26 5061Google Scholar

    [41]

    Choi J, Kwon D, Kim K, Park J, Orbe D D, Gu J, Ahn J, Cho I, Jeong Y, Oh Y, Park I 2020 ACS Appl. Mater. Interfaces 12 1698Google Scholar

    [42]

    Chen M, Luo W, Xu Z, Zhang X, Xie B, Wang G, Han M 2019 Nat. Commun. 10 4024Google Scholar

    [43]

    Zhao Z, Zhang J, Zhang J, Li C, Li Y, Wang X 2017 Sens. Actuators, A 263 648Google Scholar

    [44]

    Strümpler R, Glatz-Reichenbach J 1999 J. Electroceram. 3 329Google Scholar

    [45]

    Wang M, Gurunathan R, Imasato K, Geisendorfer N R, Jakus A E, Peng J, Shah R N, Grayson M, Snyder G J 2019 Adv. Theory Simul. 2 1800125Google Scholar

    [46]

    Wang S, Chen G, Niu S, Chen K, Gan T, Wang Z, Wang H, Du P, Leung C W, Qu S 2019 ACS Appl. Mater. Interfaces 11 48331Google Scholar

    [47]

    Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H 2008 Acta Mater. 56 2929Google Scholar

    [48]

    Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y, Ko H 2014 ACS Nano 8 4689Google Scholar

    [49]

    Sreeprasad T S, Rodriguez A A, Colston J, Graham A, Shishkin E, Pallem V, Berry V 2013 Nano Lett. 13 1757Google Scholar

    [50]

    Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I 2014 ACS Nano 8 5154Google Scholar

    [51]

    Simmons J G 1963 J. Appl. Phys. 34 1793Google Scholar

    [52]

    Yang H, Yuan L, Yao X, Fang D 2020 J. Mech. Phys. Solids 139 103943Google Scholar

    [53]

    Higashisaka T, Nagato K, Tomizawa M, Tanaka E, Watanabe H, Nakao M 2019 Microelectron. Eng. 216 111058Google Scholar

    [54]

    Hamedi M, Atashparva M 2017 Weld. World 61 269Google Scholar

    [55]

    Matsuda Y, Deng W Q, Goddard W A 2010 J. Phys. Chem. C 114 17845Google Scholar

    [56]

    Paulson S, Helser A, Nardelli M B, Taylor R M, Falvo M, Superfine R, Washburn S 2000 Science 290 1742Google Scholar

    [57]

    Timsit R S 1999 IEEE Trans. Compon. Packag. Technol. 22 85Google Scholar

    [58]

    Gao L, Zhu C, Li L, Zhang C, Liu J, Yu H D, Huang W 2019 ACS Appl. Mater. Interfaces 11 25034Google Scholar

    [59]

    Doshi S M, Thostenson E T 2018 ACS Sens. 3 1276Google Scholar

    [60]

    Guo Y, Zhong M, Fang Z, Wan P, Yu G 2019 Nano Lett. 19 1143Google Scholar

    [61]

    Lee D, Lee H, Jeong Y, Ahn Y, Nam G, Lee Y 2016 Adv. Mater. 28 9364Google Scholar

    [62]

    Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, Molina-Lopez F, Lissel F, Liu J, Rabiah N I, Chen Z, Chung J W, Linder C, Toney M F, Murmann B, Bao Z 2017 Sci. Adv. 3 e1602076Google Scholar

    [63]

    Jang H H, Park J S, Choi B 2019 Sens. Actuators, A 286 107Google Scholar

    [64]

    Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I 2014 Adv. Mater. 26 3451Google Scholar

    [65]

    Yang J C, Kim J O, Oh J, Kwon S Y, Sim J Y, Kim D W, Choi H B, Park S 2019 ACS Appl. Mater. Interfaces 11 19472Google Scholar

    [66]

    Qiu L, Liu J Z, Chang S L Y, Wu Y, Li D 2012 Nat. Commun. 3 1241Google Scholar

    [67]

    Cheng Y, Ma Y, Li L, Zhu M, Yue Y, Liu W, Wang L, Jia S, Li C, Qi T, Wang J, Gao Y 2020 ACS Nano 14 2145Google Scholar

    [68]

    Chu Y, Zhong J, Liu H, Ma Y, Liu N, Song Y, Liang J, Shao Z, Sun Y, Dong Y, Wang X, Lin L 2018 Adv. Funct. Mater. 28 1803413Google Scholar

    [69]

    Zhang Z, Zhang Y, Jiang X, Bukhari H, Zhang Z, Han W, Xie E 2019 Carbon 155 71Google Scholar

    [70]

    Gao Y, Ota H, Schaler E W, Chen K, Zhao A, Gao W, Fahad H M, Leng Y, Zheng A, Xiong F, Zhang C, Tai L C, Zhao P, Fearing R S, Javey A 2017 Adv. Mater. 29 1701985Google Scholar

    [71]

    Kim G, Cho S, Chang K, Kim W S, Kang H, Ryu S P, Myoung J, Park J, Park C, Shim W 2017 Adv. Mater. 29 1606120Google Scholar

    [72]

    Zheng M, Li W, Xu M, Xu N, Chen P, Han M, Xie B 2014 Nanoscale 6 3930Google Scholar

    [73]

    Huang C B, Witomska S, Aliprandi A, Stoeckel M A, Bonini M, Ciesielski A, Samorì P 2019 Adv. Mater. 31 1804600Google Scholar

    [74]

    Zhao Y, Song J G, Ryu G H, Ko K Y, Woo W J, Kim Y, Kim D, Lim J H, Lee S, Lee Z, Park J, Kim H 2018 Nanoscale 10 9338Google Scholar

    [75]

    Htwe Y Z N, Chow W S, Suriati G, Thant A A, Mariatti M 2019 Synth. Met. 256 116120Google Scholar

    [76]

    Vuorinen T, Niittynen J, Kankkunen T, Kraft T M, Mäntysalo M 2016 Sci. Rep. 6 35289Google Scholar

    [77]

    Hassan G, Khan M U, Bae J, Shuja A 2020 Sci. Rep. 10 18234Google Scholar

    [78]

    Liu T, Liu M, Dou S, Sun J, Cong Z, Jiang C, Du C, Pu X, Hu W, Wang Z L 2018 ACS Nano 12 2818Google Scholar

    [79]

    Yeo W H, Kim Y S, Lee J, Ameen A, Shi L, Li M, Wang S, Ma R, Jin S H, Kang Z, Huang Y, Rogers J A 2013 Adv. Mater. 25 2773Google Scholar

    [80]

    Wu H, Liu Q, Du W, Li C, Shi G 2018 ACS Appl. Mater. Interfaces 10 3895Google Scholar

    [81]

    Wang Z, Volinsky A A, Gallant N D 2014 J. Appl. Polym. Sci. 131 4105

    [82]

    Tahk D, Lee H H, Khang D Y 2009 Macromolecules 42 7079Google Scholar

    [83]

    Li J, Orrego S, Pan J, He P, Kang S H 2019 Nanoscale 11 2779Google Scholar

    [84]

    Ma Z, Wei A, Ma J, Shao L, Jiang H, Dong D, Ji Z, Wang Q, Kang S 2018 Nanoscale 10 7116Google Scholar

    [85]

    Lee D, Kim J, Kim H, Heo H, Park K, Lee Y 2018 Nanoscale 10 18812Google Scholar

    [86]

    Kou H, Zhang L, Tan Q, Liu G, Dong H, Zhang W, Xiong J 2019 Sci. Rep. 9 3916Google Scholar

    [87]

    Schlicke H, Kunze S, Rebber M, Schulz N, Riekeberg S, Trieu H K, Vossmeyer T 2020 Adv. Funct. Mater. 30 2003381Google Scholar

    [88]

    Schlicke H, Rebber M, Kunze S, Vossmeyer T 2016 Nanoscale 8 183Google Scholar

    [89]

    Tang Y, Gong S, Chen Y, Yap L W, Cheng W 2014 ACS Nano 8 5707Google Scholar

    [90]

    Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W 2014 Nat. Commun. 5 3132Google Scholar

    [91]

    Li Y, Han D, Jiang C, Xie E, Han W 2019 Adv. Mater. Technol. 4 1800504Google Scholar

    [92]

    Wu J, Li H, Lai X, Chen Z, Zeng X 2020 Chem. Eng. J. 386 123998Google Scholar

    [93]

    Azhari S, Termeh Yousefi A, Tanaka H, Khajeh A, Kuredemus N, Mansouri Bigdeli M, Hamidon M N 2017 Sens. Actuators, A 266 158Google Scholar

    [94]

    Chen H, Su Z, Song Y, Cheng X, Chen X, Meng B, Song Z, Chen D, Zhang H 2017 Adv. Funct. Mater. 27 1604434Google Scholar

    [95]

    Mohammad Haniff M A S, Muhammad Hafiz S, Wahid K A A, Endut Z, Wah Lee H, Bien D C S, Abdul Azid I, Abdullah M Z, Ming Huang N, Abdul Rahman S 2015 Sci. Rep. 5 14751Google Scholar

    [96]

    Mattevi C, Kim H, Chhowalla M 2011 J. Mater. Chem. 21 3324Google Scholar

    [97]

    Zhu S E, Ghatkesar M K, Zhang C, Janssen G C A M 2013 Appl. Phys. Lett. 102 161904Google Scholar

    [98]

    Luo N, Huang Y, Liu J, Chen S C, Wong C P, Zhao N 2017 Adv. Mater. 29 1702675Google Scholar

    [99]

    Bae G Y, Pak S W, Kim D, Lee G, Kim D H, Chung Y, Cho K 2016 Adv. Mater. 28 5300Google Scholar

    [100]

    Pang Y, Tian H, Tao L, Li Y, Wang X, Deng N, Yang Y, Ren T L 2016 ACS Appl. Mater. Interfaces 8 26458Google Scholar

    [101]

    Zhu B, Niu Z, Wang H, Leow W R, Wang H, Li Y, Zheng L, Wei J, Huo F, Chen X 2014 Small 10 3625Google Scholar

    [102]

    Yang T, Wang W, Zhang H, Li X, Shi J, He Y, Zheng Q, Li Z, Zhu H 2015 ACS Nano 9 10867Google Scholar

    [103]

    Sheng L, Liang Y, Jiang L, Wang Q, Wei T, Qu L, Fan Z 2015 Adv. Funct. Mater. 25 6545Google Scholar

    [104]

    Shi X, Liu S, Sun Y, Liang J, Chen Y 2018 Adv. Funct. Mater. 28 1800850Google Scholar

    [105]

    Van Lier G, Van Alsenoy C, Van Doren V, Geerlings P 2000 Chem. Phys. Lett. 326 181Google Scholar

    [106]

    Dillon A D, Ghidiu M J, Krick A L, Griggs J, May S J, Gogotsi Y, Barsoum M W, Fafarman A T 2016 Adv. Funct. Mater. 26 4162Google Scholar

    [107]

    Lipatov A, Lu H, Alhabeb M, Anasori B, Gruverman A, Gogotsi Y, Sinitskii A 2018 Sci. Adv. 4 eaat0491Google Scholar

    [108]

    Ma Y, Liu N, Li L, Hu X, Zou Z, Wang J, Luo S, Gao Y 2017 Nat. Commun. 8 1207Google Scholar

    [109]

    Ma Y, Yue Y, Zhang H, Cheng F, Zhao W, Rao J, Luo S, Wang J, Jiang X, Liu Z, Liu N, Gao Y 2018 ACS Nano 12 3209Google Scholar

    [110]

    Wang L, Zhang M, Yang B, Tan J, Ding X 2020 ACS Nano 14 10633Google Scholar

    [111]

    Gao Y, Yan C, Huang H, Yang T, Tian G, Xiong D, Chen N, Chu X, Zhong S, Deng W, Fang Y, Yang W 2020 Adv. Funct. Mater. 30 1909603Google Scholar

    [112]

    Wang Z, Wang S, Zeng J, Ren X, Chee A J Y, Yiu B Y S, Chung W C, Yang Y, Yu A C H, Roberts R C, Tsang A C O, Chow K W, Chan P K L 2016 Small 12 3827Google Scholar

    [113]

    Pan H, Xie G, Pang W, Wang S, Wang Y, Jiang Z, Du X, Tai H 2020 ACS Appl. Mater. Interfaces 12 38805Google Scholar

    [114]

    Teixeira J, Horta-Romarís L, Abad M J, Costa P, Lanceros-Méndez S 2018 Materials & Design 141 1

    [115]

    Han S, Jiao F, Khan Z U, Edberg J, Fabiano S, Crispin X 2017 Adv. Funct. Mater. 27 1703549Google Scholar

    [116]

    Han S, Alvi N U H, Granlöf L, Granberg H, Berggren M, Fabiano S, Crispin X 2019 Adv. Sci 6 1802128Google Scholar

    [117]

    Wagner S, Yim C, McEvoy N, Kataria S, Yokaribas V, Kuc A, Pindl S, Fritzen C P, Heine T, Duesberg G S, Lemme M C 2018 Nano Lett. 18 3738Google Scholar

    [118]

    Si Y, Wang X, Yan C, Yang L, Yu J, Ding B 2016 Adv. Mater. 28 9512Google Scholar

    [119]

    Wang Q, Jian M, Wang C, Zhang Y 2017 Adv. Funct. Mater. 27 1605657Google Scholar

    [120]

    Li X, Fan Y J, Li H Y, Cao J W, Xiao Y C, Wang Y, Liang F, Wang H L, Jiang Y, Wang Z L, Zhu G 2020 ACS Nano 14 9605Google Scholar

    [121]

    He R, Yang P 2006 Nat. Nanotechnol. 1 42Google Scholar

    [122]

    Ghosh R, Song M S, Park J, Tchoe Y, Guha P, Lee W, Lim Y, Kim B, Kim S W, Kim M, Yi G C 2021 Nano Energy 80 105537Google Scholar

    [123]

    Pandey V, Mandal A, Sisle S, Gururajan M P, Dusane R O 2020 Sens. Actuators, A 316 112372Google Scholar

    [124]

    Peng S, Blanloeuil P, Wu S, Wang C H 2018 Adv. Mater. Interfaces 5 1800403Google Scholar

    [125]

    Pang Y, Zhang K, Yang Z, Jiang S, Ju Z, Li Y, Wang X, Wang D, Jian M, Zhang Y, Liang R, Tian H, Yang Y, Ren T L 2018 ACS Nano 12 2346Google Scholar

    [126]

    Wang K, Lou Z, Wang L, Zhao L, Zhao S, Wang D, Han W, Jiang K, Shen G 2019 ACS Nano 13 9139Google Scholar

    [127]

    Yue Y, Liu N, Liu W, Li M, Ma Y, Luo C, Wang S, Rao J, Hu X, Su J, Zhang Z, Huang Q, Gao Y 2018 Nano Energy 50 79Google Scholar

    [128]

    Lv L, Zhang P, Xu T, Qu L 2017 ACS Appl. Mater. Interfaces 9 22885Google Scholar

    [129]

    Xiao J, Tan Y, Song Y, Zheng Q 2018 J. Mater. Chem. A 6 9074Google Scholar

    [130]

    Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H 2013 Adv. Mater. 25 6692Google Scholar

    [131]

    Cao X, Zhang J, Chen S, Varley R J, Pan K 2020 Adv. Funct. Mater. 30 2003618Google Scholar

    [132]

    Tsui M N, Islam M F 2017 Nanoscale 9 1128Google Scholar

    [133]

    Ding Y, Xu T, Onyilagha O, Fong H, Zhu Z 2019 ACS Appl. Mater. Interfaces 11 6685Google Scholar

    [134]

    Deville S, Saiz E, Nalla R K, Tomsia A P 2006 Science 311 515Google Scholar

    [135]

    Yu S, Li L, Wang J, Liu E, Zhao J, Xu F, Cao Y, Lu C 2020 Adv. Funct. Mater. 30 1907091Google Scholar

    [136]

    Wang Z, Guan X, Huang H, Wang H, Lin W, Peng Z 2019 Adv. Funct. Mater. 29 1807569Google Scholar

    [137]

    Huang Y, Chen Y, Fan X, Luo N, Zhou S, Chen S C, Zhao N, Wong C P 2018 Small 14 1801520Google Scholar

    [138]

    Shin K Y, Lee J S, Jang J 2016 Nano Energy 22 95Google Scholar

    [139]

    Gerratt A P, Michaud H O, Lacour S P 2015 Adv. Funct. Mater. 25 2287Google Scholar

    [140]

    Zhan Z, Lin R, Tran V T, An J, Wei Y, Du H, Tran T, Lu W 2017 ACS Appl. Mater. Interfaces 9 37921Google Scholar

    [141]

    Tee B C K, Chortos A, Berndt A, Nguyen A K, Tom A, McGuire A, Lin Z C, Tien K, Bae W G, Wang H, Mei P, Chou H H, Cui B, Deisseroth K, Ng T N, Bao Z 2015 Science 350 313Google Scholar

  • [1] Li Yin-Hui, Yin Rong-Yan, Liang Jian-Guo, Li Wei-Dong, Fan Kai, Zhou Yun-Lei. A flexible piezoelectric/pyroelectric dual-function sensor with high temperature resistance. Acta Physica Sinica, 2024, 73(20): 206801. doi: 10.7498/aps.73.20241006
    [2] Chen Zhao, Ma Xin-Xin, Li Tong, Wang Yi-Lin. Optical pressure sensor based on Fano resonance in a coupled resonator system. Acta Physica Sinica, 2024, 73(8): 084205. doi: 10.7498/aps.73.20232025
    [3] Wang Wei, Li Jin-Yang, Mao Guo-Pei, Yang Yan, Gao Zhi-Qiang, Ma Cong, Zhong Xiang-Yu, Shi Qing. Optical fiber high-temperature pressure sensor with weak temperature sensitivity. Acta Physica Sinica, 2024, 73(1): 014208. doi: 10.7498/aps.73.20231155
    [4] Wu Jian, Han Wen, Cheng Zhen-Zhen, Yang Bin, Sun Li-Li, Wang Di, Zhu Cheng-Peng, Zhang Yong, Geng Ming-Xin, Jing Yan. Structure optimization of carbon nanotube ionization sensor based on fluid model. Acta Physica Sinica, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [5] Luo Shi, Wei Da-Peng, Wei Da-Cheng. Applications of two-dimensional materials in bio-sensors. Acta Physica Sinica, 2021, 70(6): 064701. doi: 10.7498/aps.70.20201613
    [6] Xu Qiang, Duan Kang, Xie Hao, Zhang Qin-Rong, Liang Ben-Quan, Peng Zhen-Kai, Li Wei. First principle study on gas sensor mechanism of black-AsP monolayer. Acta Physica Sinica, 2021, 70(15): 157101. doi: 10.7498/aps.70.20201952
    [7] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [8] Tan Pu-Chuan, Zhao Chao-Chao, Fan Yu-Bo, Li Zhou. Research progress of self-powered flexible biomedical sensors. Acta Physica Sinica, 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [9] Hou Xing-Yu, Guo Chuan-Fei. Sensing mechanisms and applications of flexible pressure sensors. Acta Physica Sinica, 2020, 69(17): 178102. doi: 10.7498/aps.69.20200987
    [10] Qiao Xue-Guang, Shao Zhi-Hua, Bao Wei-Jia, Rong Qiang-Zhou. Fiber-optic ultrasonic sensors and applications. Acta Physica Sinica, 2017, 66(7): 074205. doi: 10.7498/aps.66.074205
    [11] Dong Yong-Kang, Zhou Deng-Wang, Teng Lei, Jiang Tao-Fei, Chen Xi. Principle of Brillouin dynamic grating and its applications in optical fiber sensing. Acta Physica Sinica, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [12] Gui Xin, Hu Chen-Chen, Xie Ying, Li Zheng-Ying. Research on distributed intrinsic Fabry-Perot sensors. Acta Physica Sinica, 2015, 64(5): 050704. doi: 10.7498/aps.64.050704
    [13] Sun Xiao-Liang, Chen Chang-Hong, Meng De-Jia, Feng Shi-Gao, Yu Hong-Hao. Split modes of composite metal grating and its application for high performance gas sensor. Acta Physica Sinica, 2015, 64(14): 147302. doi: 10.7498/aps.64.147302
    [14] Chen Li-Xiang, Zhang Yuan-Ying. Research progress on preparation, manipulation, and remote sensing applications of high-order orbital angular momentum of photons. Acta Physica Sinica, 2015, 64(16): 164210. doi: 10.7498/aps.64.164210
    [15] Li Chang-Sheng. Mutual compensation property of electrooptic and magnetooptic effects and its application to sensor. Acta Physica Sinica, 2015, 64(4): 047801. doi: 10.7498/aps.64.047801
    [16] Lu Dan-Feng, Qi Zhi-Mei. Characterization and chemical/biosensing application of a high-sensitivity integrated optical polarimetric interferometer. Acta Physica Sinica, 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [17] Huang Qin, Leng Feng-Chun, Liang Wen-Yao, Dong Jian-Wen, Wang He-Zhou. Sensitive temperature sensor based on phase properties of photonic crystal. Acta Physica Sinica, 2010, 59(6): 4014-4017. doi: 10.7498/aps.59.4014
    [18] Zhou Xiao-Jun, Du Dong, Gong Jun-Jie. Study on spatial resolution of polarized-modes coupling distributed fiber optic sensor. Acta Physica Sinica, 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
    [19] Xu Zhen-Yu, Zhang Ruo-Jing, Gong Yi-Ling. The principles of pressure sensors based on photonic crystal. Acta Physica Sinica, 2004, 53(3): 724-727. doi: 10.7498/aps.53.724
    [20] FAN LIANG-ZAO, XING WEI-FU, JIN RUO-BING. THE DYNAMIC TRANSMITTING PROPERTIES OF A PIEZO-ELECTRIC PRESSURE BAR TRANSDUCER. Acta Physica Sinica, 1977, 26(4): 301-306. doi: 10.7498/aps.26.301
Metrics
  • Abstract views:  26301
  • PDF Downloads:  1358
  • Cited By: 0
Publishing process
  • Received Date:  05 January 2021
  • Accepted Date:  04 February 2021
  • Available Online:  16 May 2021
  • Published Online:  20 May 2021

/

返回文章
返回