Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Origin of abnormal thermal conductivity in group III-V boron compound semiconductors

Shi Heng-Xian Yang Kai-Ke Luo Jun-Wei

Citation:

Origin of abnormal thermal conductivity in group III-V boron compound semiconductors

Shi Heng-Xian, Yang Kai-Ke, Luo Jun-Wei
PDF
HTML
Get Citation
  • Over the past half-century, according to Moore’s law, the sizes of transistors continue shrinking, and the integrated circuits have approached to their physical limits, which puts forward higher requirements for the thermal dissipation capacity of material. Revealing the physical mechanisms of heat conduction in semiconductors is important for thermal managements of devices. Experimentally, it was found that boron arsenide has a very high thermal conductivity compared with diamond, and boron arsenide has lattice constant close to silicon’s lattice constant, which can be heterogeneously integrated into silicon to solve the thermal management problem. However, group III-V boron compounds show abnormal thermal conductivities: the thermal conductivity of boron arsenide is significantly higher than that of boron phosphide and boron antimonide. Here, we use the first-principles calculation and the Boltzmann transport equation to study the thermal conductivity properties of the group III-V boron compounds. Comparison between the IV and III-V semiconductors shows that the high thermal conductivity of boron arsenide is due mainly to the existence of a large frequency gap between the acoustic and the optical branches. The energy sum of two acoustic phonons is less than energy of one optical phonon, which cannot meet the energy conservation requirements of three-phonon scattering, and then seriously restrict the probability of scattering of three phonons. The high thermal conductivity of diamond is due mainly to its great acoustic phonon group velocity. Although the boron phosphide also has a relatively large acoustic phonon group velocity, the frequency gap is relatively small, which cannot effectively suppress the three-phonon scattering, so the thermal conductivity of boron phosphide is less than that of boron arsenide. Although the frequency gap of boron antimonide is similar to that of boron arsenide, the thermal conductivity of boron antimonide is lower than that of boron arsenide due to its smaller acoustic phonon group velocity and larger coupling matrix element. The research provides a new insight into the design of semiconductor materials with high thermal conductivities.
      Corresponding author: Yang Kai-Ke, kkyang@hunnu.edu.cn ; Luo Jun-Wei, jwluo@semi.ac.cn
    • Funds: Project supported by the Major Instruments Research Program of National Natural Science Foundation of China (Grant No. 61927901), the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 11925407), and the National Natural Science Foundation of China (Grant No. 11804333)
    [1]

    王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东 2019 物理学报 68 090201Google Scholar

    Wang T, Chen H Y, Qiu P F, Shi X, Chen L D 2019 Acta Phys. Sin. 68 090201Google Scholar

    [2]

    张雪冰, 刘乃漳, 姚若河 2020 物理学报 69 157303Google Scholar

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303Google Scholar

    [3]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [4]

    Wei L, Kuo P K, Thomas R L, Anthony T R, Banholzer W F 1993 Phys. Rev. Lett. 70 3764Google Scholar

    [5]

    Lindsay L, Broido D A 2008 J. Phys.: Condens. Matter 20 165209Google Scholar

    [6]

    Holland M G 1964 Phys. Rev. 134 A471Google Scholar

    [7]

    Feng T, Lindsay L, Ruan X 2017 Phys. Rev. B 96 161201Google Scholar

    [8]

    Lindsay L, Broido D A, Mingo N 2009 Phys. Rev. B 80 125407Google Scholar

    [9]

    Yang X, Feng T, Li J, Ruan X 2019 Phys. Rev. B 100 245203Google Scholar

    [10]

    Shiga T, Shiomi J, Ma J, Delaire O, Radzynski T, Lusakowski A, Esfarjani K, Chen G 2012 Phys. Rev. B 85 155203Google Scholar

    [11]

    Chaput L, Togo A, Tanaka I, Hug G 2011 Phys. Rev. B 84 094302Google Scholar

    [12]

    Dames C 2018 Science 361 549Google Scholar

    [13]

    Kang J S, Li M, Wu H, Nguyen H, Hu Y 2018 Science 361 575Google Scholar

    [14]

    Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang P Y, Cahill D G, Lv B 2018 Science 361 579Google Scholar

    [15]

    Tian F, Song B, Chen X, Ravichandran N K, Lv Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T H, Goni M, Ding Z, Sun J, Gamage G A G U, Sun H, Ziyaee H, Huyan S, Deng L, Zhou J, Schmidt A J, Chen S, Chu C W, Huang P Y, Broido D, Shi L, Chen G, Ren Z 2018 Science 361 582Google Scholar

    [16]

    Lindsay L, Broido D A, Reinecke T L 2013 Phys. Rev. Lett. 111 025901Google Scholar

    [17]

    Cao R, Deng H X, Luo J W, Wei S H 2019 J. Semicond. 40 042102Google Scholar

    [18]

    Togo A, Chaput L, Tanaka I 2015 Phys. Rev. B 91 094306Google Scholar

    [19]

    Maradudin A A, Fein A E 1962 Phys. Rev. 128 2589Google Scholar

    [20]

    Lax M, Hu P, Narayanamurti V 1981 Phys. Rev. B 23 3095Google Scholar

    [21]

    Ward A, Broido D A, Stewart D A, Deinzer G 2009 Phys. Rev. B 80 125203Google Scholar

    [22]

    Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922Google Scholar

    [23]

    Tian Z, Garg J, Esfarjani K, Shiga T, Shiomi J, Chen G 2012 Phys. Rev. B 85 184303Google Scholar

    [24]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Abeles B 1963 Phys. Rev. 131 1906Google Scholar

    [26]

    Mizokami K, Togo A, Tanaka I 2018 Phys. Rev. B 97 224306Google Scholar

    [27]

    Chaput L 2013 Phys. Rev. Lett. 110 265506Google Scholar

    [28]

    Wang L 2019 J. Semicond. 40 091101Google Scholar

    [29]

    Zheng Q, Li S, Li C, Lv Y, Liu X, Huang P Y, Broido D A, Lv B, Cahill D G 2018 Adv. Funct. Mater. 28 1805116Google Scholar

    [30]

    Kang J S, Wu H, Hu Y 2017 Nano Lett. 17 7507Google Scholar

    [31]

    Kumashiro Y, Mitsuhashi T, Okaya S, Muta F, Koshiro T, Takahashi Y, Mirabayashi M 1989 J. Appl. Phys. 65 2147Google Scholar

    [32]

    Berman R, Hudson P R W, Martinez M 1975 J. Phys. C: Solid State Phys. 8 430Google Scholar

    [33]

    Olson J R, Pohl R O, Vandersande J W, Zoltan A, Anthony T R, Banholzer W F 1993 Phys. Rev. B 47 14850Google Scholar

    [34]

    基泰尔C著 (项金钟, 吴兴惠译) 2005 固体物理导论 (北京: 化学工业出版社) 第71−74页

    Kittel C (translated by Xiang J Z, Wu X H) 2005 Introduction to Solid State Physics (Beijing: Chemical Industry Press) pp71−74 (in Chinese)

    [35]

    Pavone P, Karch K, Schutt O, Strauch D, Windl W, Giannozzi P, Baroni S 1993 Phys. Rev. B 48 3156Google Scholar

    [36]

    Fukumoto A 1990 Phys. Rev. B 42 7462Google Scholar

    [37]

    Harrison W A 2004 Elementary Electronic Structure (Revised Edition) (Singapore: World Scientific Publishing Co Pte Ltd) pp126−128

  • 图 1  (a)半导体材料热导率的第一性原理计算(实线), 不同颜色对应不同材料热导率值. 另外离散点来源于已有文献中实验测量的热导率数据, 其中墨绿色的圆圈[29]、正方形[30]和三角形[31]对应BP; 红色的圆圈[14]、正方形[15]和三角形[13]对应BAs; 黑色的圆圈[15]、正方形[32]和三角形[33]对应金刚石材料. (b) 各种不同半导体材料在单位体积下声子群速度的外积(${v_{\lambda} } \otimes {v_{\lambda} }{{/}}{V_0}$)随晶格振动频率的变化. (c)温度为100 K时各种半导体材料声子弛豫时间随晶格振动频率的变化

    Figure 1.  (a) First-principles calculation of thermal conductivity of semiconductor materials (solid line), different colors correspond to different materials. In addition, the discrete points are derived from the thermal conductivity data measured experimentally in existing literature. The olive circles[29], squares[30] and triangles[31] correspond to BP. Red circles[14], squares[15] and triangles[13] correspond to BAs. Black circles[15], squares[32] and triangles[33] correspond to diamond. (b) Outer product of phonon group velocities per unit volume of various semiconductor materials as a function of frequency(${v_{\lambda} } \otimes {v_{\lambda} }{{/}}{V_0}$). (c) Phonon relaxation time of various semiconductor materials at 100 K as a function of frequency.

    图 2  (a)金刚石 (紫色)的晶格振动谱; (b) BAs (红色)和Si (墨绿色)的晶格振动谱; (c) BP (黑色)和BSb (蓝色)的晶格振动谱; (d) BP, BAs, BSb和Si的声子寿命或弛豫时间

    Figure 2.  (a) Lattice vibration spectrum of diamond (violet); (b) lattice vibration spectrum of boron arsenide (red) and silicon (olive); (c) lattice vibration spectra of boron phosphide (black) and boron antimonide (blue); (d) phonon lifetime of boron phosphide, boron arsenide, boron antimony and silicon.

    图 3  BP, BAs和BSb的耦合矩阵元随晶格振动频率的变化

    Figure 3.  Coupling matrix element of BP, BAs and BSb as a function of frequency.

    图 4  (a) BAs和GaAs的晶格振动谱; (b) BP, BAs, BSb, GaP, GaAs的单位体积下群速度外积

    Figure 4.  (a) Lattice vibration spectra of boron arsenide and gallium arsenide; (b) outer product of group velocities per unit volume of boron phosphide, boron arsenide, boron antimony, gallium phosphide and gallium arsenide.

    表 1  BP, BAs, BSb以及Si的横向光学模式最大振动频率(${\omega _{{\rm{TO}}}}$)、横向声学模式最大振动频率(${\omega _{{\rm{TA}}}}$)、频率间隙($\varDelta = {\omega _{{\rm{TO}}}} - {\omega _{{\rm{TA}}}}$)、组成化合物的元素的原子质量(m, M)、C

    Table 1.  Maximum vibration frequency of transverse optical mode, maximum vibration frequency of transverse acoustic mode, frequency gap, atomic mass of elements of compound and elastic force constant of boron phosphide, boron arsenide, boron antimonide and silicon.

    物理量BAsBPBSbSi
    ${\omega _{{\rm{TO}}}}$/THz19.1922.6016.9014.84
    ${\omega _{{\rm{TA}}}}$/THz8.9315.156.4811.09
    Δ/THz10.267.4510.423.75
    m/amu10.810.810.828.09
    M/amu74.9530.97121.828.09
    $\left( {\sqrt {\tfrac{ {\rm{1} } }{m} } - \sqrt {\tfrac{ {\rm{1} } }{M} } } \right)$/amu–0.50.1880.1240.2130
    力常数C/(eV·Å–2)15.291119.098212.300412.3523
    $\sqrt C $/(eV0.5·Å–1)3.9104.3703.5073.514
    DownLoad: CSV

    表 2  各族元素原子p轨道能量(单位为Ry), 其中列出了具体的元素名称

    Table 2.  Atomic p orbital energies of each group of elements (in Ry), and the specific names of the elements are listed.

    原子轨
    道能量
    IIA或IIB族IIIA族IVA族VA族VIA族
    2pBeBCNO
    –0.1608–0.2795–0.4044–0.5382–0.6819
    3pMgAlSiPS
    –0.1068–0.2103–0.3125–0.4174–0.5288
    4pZnGaGeAsSe
    –0.0964–0.2073–0.3040–0.3985–0.4956
    5pCdInSnSbTe
    –0.1034–0.2044–0.2907–0.3734–0.4557
    6pHgTlPbBiPo
    –0.0928–0.1957–0.2788–0.3569–0.4335
    DownLoad: CSV
  • [1]

    王拓, 陈弘毅, 仇鹏飞, 史迅, 陈立东 2019 物理学报 68 090201Google Scholar

    Wang T, Chen H Y, Qiu P F, Shi X, Chen L D 2019 Acta Phys. Sin. 68 090201Google Scholar

    [2]

    张雪冰, 刘乃漳, 姚若河 2020 物理学报 69 157303Google Scholar

    Zhang X B, Liu N Z, Yao R H 2020 Acta Phys. Sin. 69 157303Google Scholar

    [3]

    Slack G A 1973 J. Phys. Chem. Solids 34 321Google Scholar

    [4]

    Wei L, Kuo P K, Thomas R L, Anthony T R, Banholzer W F 1993 Phys. Rev. Lett. 70 3764Google Scholar

    [5]

    Lindsay L, Broido D A 2008 J. Phys.: Condens. Matter 20 165209Google Scholar

    [6]

    Holland M G 1964 Phys. Rev. 134 A471Google Scholar

    [7]

    Feng T, Lindsay L, Ruan X 2017 Phys. Rev. B 96 161201Google Scholar

    [8]

    Lindsay L, Broido D A, Mingo N 2009 Phys. Rev. B 80 125407Google Scholar

    [9]

    Yang X, Feng T, Li J, Ruan X 2019 Phys. Rev. B 100 245203Google Scholar

    [10]

    Shiga T, Shiomi J, Ma J, Delaire O, Radzynski T, Lusakowski A, Esfarjani K, Chen G 2012 Phys. Rev. B 85 155203Google Scholar

    [11]

    Chaput L, Togo A, Tanaka I, Hug G 2011 Phys. Rev. B 84 094302Google Scholar

    [12]

    Dames C 2018 Science 361 549Google Scholar

    [13]

    Kang J S, Li M, Wu H, Nguyen H, Hu Y 2018 Science 361 575Google Scholar

    [14]

    Li S, Zheng Q, Lv Y, Liu X, Wang X, Huang P Y, Cahill D G, Lv B 2018 Science 361 579Google Scholar

    [15]

    Tian F, Song B, Chen X, Ravichandran N K, Lv Y, Chen K, Sullivan S, Kim J, Zhou Y, Liu T H, Goni M, Ding Z, Sun J, Gamage G A G U, Sun H, Ziyaee H, Huyan S, Deng L, Zhou J, Schmidt A J, Chen S, Chu C W, Huang P Y, Broido D, Shi L, Chen G, Ren Z 2018 Science 361 582Google Scholar

    [16]

    Lindsay L, Broido D A, Reinecke T L 2013 Phys. Rev. Lett. 111 025901Google Scholar

    [17]

    Cao R, Deng H X, Luo J W, Wei S H 2019 J. Semicond. 40 042102Google Scholar

    [18]

    Togo A, Chaput L, Tanaka I 2015 Phys. Rev. B 91 094306Google Scholar

    [19]

    Maradudin A A, Fein A E 1962 Phys. Rev. 128 2589Google Scholar

    [20]

    Lax M, Hu P, Narayanamurti V 1981 Phys. Rev. B 23 3095Google Scholar

    [21]

    Ward A, Broido D A, Stewart D A, Deinzer G 2009 Phys. Rev. B 80 125203Google Scholar

    [22]

    Broido D A, Malorny M, Birner G, Mingo N, Stewart D A 2007 Appl. Phys. Lett. 91 231922Google Scholar

    [23]

    Tian Z, Garg J, Esfarjani K, Shiga T, Shiomi J, Chen G 2012 Phys. Rev. B 85 184303Google Scholar

    [24]

    Blochl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [25]

    Abeles B 1963 Phys. Rev. 131 1906Google Scholar

    [26]

    Mizokami K, Togo A, Tanaka I 2018 Phys. Rev. B 97 224306Google Scholar

    [27]

    Chaput L 2013 Phys. Rev. Lett. 110 265506Google Scholar

    [28]

    Wang L 2019 J. Semicond. 40 091101Google Scholar

    [29]

    Zheng Q, Li S, Li C, Lv Y, Liu X, Huang P Y, Broido D A, Lv B, Cahill D G 2018 Adv. Funct. Mater. 28 1805116Google Scholar

    [30]

    Kang J S, Wu H, Hu Y 2017 Nano Lett. 17 7507Google Scholar

    [31]

    Kumashiro Y, Mitsuhashi T, Okaya S, Muta F, Koshiro T, Takahashi Y, Mirabayashi M 1989 J. Appl. Phys. 65 2147Google Scholar

    [32]

    Berman R, Hudson P R W, Martinez M 1975 J. Phys. C: Solid State Phys. 8 430Google Scholar

    [33]

    Olson J R, Pohl R O, Vandersande J W, Zoltan A, Anthony T R, Banholzer W F 1993 Phys. Rev. B 47 14850Google Scholar

    [34]

    基泰尔C著 (项金钟, 吴兴惠译) 2005 固体物理导论 (北京: 化学工业出版社) 第71−74页

    Kittel C (translated by Xiang J Z, Wu X H) 2005 Introduction to Solid State Physics (Beijing: Chemical Industry Press) pp71−74 (in Chinese)

    [35]

    Pavone P, Karch K, Schutt O, Strauch D, Windl W, Giannozzi P, Baroni S 1993 Phys. Rev. B 48 3156Google Scholar

    [36]

    Fukumoto A 1990 Phys. Rev. B 42 7462Google Scholar

    [37]

    Harrison W A 2004 Elementary Electronic Structure (Revised Edition) (Singapore: World Scientific Publishing Co Pte Ltd) pp126−128

  • [1] Zheng Jian-Jun, Zhang Li-Ping. Monolayer Cu2X (X=S, Se): excellent thermoelectric material with low lattice thermal conductivity. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20220015
    [2] Zheng Cui-Hong, Yang Jian, Xie Guo-Feng, Zhou Wu-Xing, Ouyang Tao. Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [3] Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin. Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt). Acta Physica Sinica, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [4] Effect of ion irradiation on thermal conductivity of phosphorene and underlying mechanism. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211857
    [5] Tang Dao-Sheng, Hua Yu-Chao, Zhou Yan-Guang, Cao Bing-Yang. Thermal conductivity modeling of GaN films. Acta Physica Sinica, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [6] Huo Long-Hua, Xie Guo-Feng. Mechanism of phonon scattering by under-coordinated atoms on surface. Acta Physica Sinica, 2019, 68(8): 086501. doi: 10.7498/aps.68.20190194
    [7] Feng Dai-Li, Feng Yan-Hui, Shi Jun. Lattice Boltzamn model of phonon heat conduction in mesoporous composite material. Acta Physica Sinica, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [8] Liu Ying-Guang, Zhang Shi-Bing, Han Zhong-He, Zhao Yu-Jin. Influence of grain size on the thermal conduction of nanocrystalline copper. Acta Physica Sinica, 2016, 65(10): 104401. doi: 10.7498/aps.65.104401
    [9] Gan Yu-Lin, Wang Li, Su Xue-Qiong, Xu Si-Wei, Kong Le, Shen Xiang. Thermal conductivity measurement on GeSbSe glasses:Raman scattering spectra method. Acta Physica Sinica, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [10] Li Jing, Feng Yan-Hui, Zhang Xin-Xin, Huang Cong-Liang, Yang Mu. Thermal conductivities of metallic nanowires with considering surface and grain boundary scattering. Acta Physica Sinica, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [11] Huang Cong-Liang, Feng Yan-Hui, Zhang Xin-Xin, Li Jing, Wang Ge, Chou Ai-Hui. Thermal conductivity of metallic nanoparticle. Acta Physica Sinica, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [12] Bao Hua. Prediction of lattice thermal conductivity of solid argon from anharmonic lattice dynamics method. Acta Physica Sinica, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [13] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [14] Tang Xin-Feng, Du Bao-Li, Xu Jing-Jing, Yan Yong-Gao. Synthesis and thermoelectric properties of nonstoichiometric AgSbTe2+ x compounds. Acta Physica Sinica, 2011, 60(1): 018403. doi: 10.7498/aps.60.018403
    [15] Xu Lu-Jia, Hu Ming, Yang Hai-Bo, Yang Meng-Lin, Zhang Jie. Study on thermal conductivity of porous silicon thermal isolation layer based on micro-structure mathematical model. Acta Physica Sinica, 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [16] Wang Jian-Li, Xiong Guo-Ping, Gu Ming, Zhang Xing, Liang Ji. A study on the thermal conductivity of multiwalled carbon nanotube/polypropylene composite. Acta Physica Sinica, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [17] Hou Quan-Wen, Cao Bing-Yang, Guo Zeng-Yuan. Thermal conductivity of carbon nanotube: From ballistic to diffusive transport. Acta Physica Sinica, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [18] Li Shi-Bin, Wu Zhi-Ming, Yuan Kai, Liao Nai-Man, Li Wei, Jiang Ya-Dong. Study on thermal conductivity of hydrogenated amorphous silicon films. Acta Physica Sinica, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [19] Wu Guo-Qiang, Kong Xian-Ren, Sun Zhao-Wei, Wang Ya-Hui. Molecular dynamics simulation on the out-of plane thermal conductivity of argon crystal thin films. Acta Physica Sinica, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [20] Wu Bai-Mei, Li Bo, Yang Dong-Sheng, Zheng Wei-Hua, Li Shi-Yan, Cao Lie-Zhao, Chen Xian-Hui. The thermal/electronic transport properties of new superconductor MgB2 and MgCNi3. Acta Physica Sinica, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
Metrics
  • Abstract views:  6866
  • PDF Downloads:  273
  • Cited By: 0
Publishing process
  • Received Date:  25 April 2021
  • Accepted Date:  09 May 2021
  • Available Online:  07 June 2021
  • Published Online:  20 July 2021

/

返回文章
返回