-
Muon scattering imaging technology can be used to detect nuclear material and is of considerable significance in nuclear safety. However, it is difficult to distinguish special nuclear materials from high-Z objects effectively by using the existing muon scattering imaging technologies. Muon-induced neutrons emitted from special nuclear materials can help to identify the existence of special nuclear materials. However, this method has long imaging time and low imaging quality. Multimodal imaging of muon uses both the information about scattering muons penetrating the material and the information about muons stopped by material and generating secondary induced neutrons, which can overcome the shortcomings of single imaging method effectively. The detection model is set up based on Geant4. The simulation programs of muon imaging in coincidence with muon induced neutrons, scattering imaging of muon, and multimodal imaging of muon are developed by using Cosmic-ray Shower Library as particle source, and the imaging algorithms are implemented respectively on the basis of the simulated data. Two imaging models are designed for muon scattering imaging. The first one is a single 235U cube, and the second one is composed of four cubes, namely 235U cube, 239Pu cube, lead cube and aluminum cube. This simulation has completed muon scattering imaging of single cube and four cubes. In the part of muon imaging in coincidence with muon induced neutrons, the neutronic gain of the HEU (90% 235U) plate, LEU (20% 235U) plate, and DU (0.2% 235U) plate, as well as the relationship between the neutronic gain of these three uranium plates and the energy and charged properties of the muon are obtained by simulation, and then two imaging models are set up. The first one is composed of four cubes, namely 235U cube, 239Pu cube, lead cube, and aluminum cube, and the other is comprised of multilayer nuclear components. The 2D and 3D reconstruction results of multi-objects and multilayer nuclear components are obtained through muon imaging in coincidence with muon induced neutrons. Then the multimodal imaging of muon for three cubes is realized in the presence or absence of iron shielding shell. The imaging capabilities are compared with the muon scattering imaging capacities and muon imaging capacities in coincidence with muon induced neutrons. Simulation studies indicate that multimodal imaging of muon based on scattering and secondary induced neutrons can effectively combine the advantages of every single imaging method. The multimodal imaging of muon can take advantage of available information more efficiently, which is helpful in improving the imaging quality. Multimodal imaging of muon not only has the advantages of short imaging time and high imaging quality, but also can distinguish special nuclear material from other high-Z materials clearly, which is vital for detecting special nuclear materials.
-
Keywords:
- cosmic ray muon /
- muon scattering imaging /
- muon induced neutrons /
- multimodal imaging of muon
[1] Mollerach S, Roulet E 2018 Prog. Part. Nucl. Phys. 98 85Google Scholar
[2] 罗小为, 杨燕兴, 李样, 鲍煜, 殳蕾 2020 原子能科学技术 54 2296Google Scholar
Luo X W, Yang Y X, Li Y, Bao Y, Shu L 2020 Atom. Energ. Sci. Technol. 54 2296Google Scholar
[3] 于百蕙 2016 博士学位论文 (北京: 清华大学)
Yu B H 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[4] 何伟波 2019 博士学位论文 (合肥: 中国科学技术大学)
He W B 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[5] Neddermeyer S H, Anderson C D 1937 Phys. Rev. 51 884Google Scholar
[6] Procureur S 2018 Nucl. Instru. and Meth. A 878 169Google Scholar
[7] Bonechi L, Alessandro R D, Giammanco A 2020 Rev. Phys. 5 100038Google Scholar
[8] Chatzidakis S, Liu Z Z, Hayward J P, Scaglione J 2018 Appl. Phys. 123 124903Google Scholar
[9] Ayuso S, Blanco J J, Tejedor J, Herrero R J, Vrublevskyy I, Población O G, Medina J 2021 J. Space Weather Space Clim. 11 13Google Scholar
[10] Erlandson A, Anghel V N P, Godin D, Jewett C, Thompson M 2021 J. Instrum. 16 02024Google Scholar
[11] 智宇, 周静, 陈雷, 李沛玉, 赵明锐, 刘雯迪, 贾世海, 张昀昱, 胡守扬 2020 原子能科学技术 54 990Google Scholar
Zhi Y, Zhou J, Chen L, Li P Y, Zhao M R, Liu W D, Jia S H, Zhang Y Y, Hu S Y 2020 Atom. Energ. Sci. Technol. 54 990Google Scholar
[12] Borozdin K N, Hogan G E, Morris C, Priedhorsky W C, Saunders A, Schultz L J, Teasdale M E 2003 Nature 422 277Google Scholar
[13] 何伟波, 肖洒, 帅茂兵, 赖新春, 安琪 2016 核电子学与探测技术 36 297Google Scholar
He W B, Xiao S, Shuai M B, Lai X C, An Q 2016 Nucl. Electron. Detect. Technol. 36 297Google Scholar
[14] Bacon J D, Borozdin K N, Fabritius II J M, Morris C, Perry J O 2013 Muon Induced Fission Neutrons in Coincidence with Muon Tomography (Los Alamos: Los Alamos National Lab, LA-UR-13-28292 [R])
[15] Guardincerri E, Bacon J, Borozdin K, Matthew D J, Fabritius II J, Hecht A, Milner E C, Miyadera H, Morris C L, Perry J, Poulson D 2015 Nucl. Instrum. Methods A 789 109
[16] Morris C, Durham J M, Guardincerri E, Bacon J D, Wang Z H, Fellows S, Poulson D C, Plaud-Ramos K O, Daughton T M, Johnson O R 2015 A New Method of Passive Counting of Nuclear Missile Warheads-a white paper for the Defense Threat Reduction Agency (Los Alamos: Los Alamos National Lab, LA-UR-15-26068 [R])
[17] Blackwell T B, Kudryavtsev V A 2015 J. Instrum. 10 05006
[18] Hagmann C, Lange D, Verbeke J, Wright D http://nuclear.llnl.gov/simulation/ [2021-4-13]
[19] Schultz L J, Blanpied G S, Borozdin K N, Fraser A M, Hengartner N W, Klimenko A V, Morris C L, Orum C, Sossong M J 2007 IEEE Trans. Image Process. 16 1985Google Scholar
[20] 罗志飞 2016 博士学位论文(北京: 清华大学)
Luo Z F 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[21] Wheeler, John A 1949 Rev. Mod. Phys. 21 133
[22] Oberacker V E, Umar A S, Wells J C, Bottcher C, Strayer M R, Maruhn J A 1993 Phys. Rev. C 48 1297Google Scholar
[23] Gorringe T P, Hertzog D W 2015 Prog. Part. Nucl. Phys. 84 73Google Scholar
[24] 谢仲生, 尹邦华 1996 核反应堆物理分析(下册) (北京: 原子能出版社) 第11页
Xie Z S, Yin B H 1996 Nuclear Reactor Physical Analysis (Vol. 2) (Beijing: Atomic Energy Press) p11 (in Chinese)
[25] Brandt L J 2015 Ph. D. Dissertation (Ohio: Air University)
[26] Fetter S, Valery A F, Miller M, Mozley R, Prilutsky O F, Rodionov S N, Sagdeev R Z 1990 Sci. Global Secur. 1 225Google Scholar
[27] Fetter S, Valery A F, Oleg F, Prilutsky O F, Sagdeev R Z 1990 Sci. Global Secur. 1 255Google Scholar
[28] Hippel F V, Sagdeev R Z, Hafemeister D W 1991 Phys. Today 44 102Google Scholar
-
-
[1] Mollerach S, Roulet E 2018 Prog. Part. Nucl. Phys. 98 85Google Scholar
[2] 罗小为, 杨燕兴, 李样, 鲍煜, 殳蕾 2020 原子能科学技术 54 2296Google Scholar
Luo X W, Yang Y X, Li Y, Bao Y, Shu L 2020 Atom. Energ. Sci. Technol. 54 2296Google Scholar
[3] 于百蕙 2016 博士学位论文 (北京: 清华大学)
Yu B H 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[4] 何伟波 2019 博士学位论文 (合肥: 中国科学技术大学)
He W B 2019 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[5] Neddermeyer S H, Anderson C D 1937 Phys. Rev. 51 884Google Scholar
[6] Procureur S 2018 Nucl. Instru. and Meth. A 878 169Google Scholar
[7] Bonechi L, Alessandro R D, Giammanco A 2020 Rev. Phys. 5 100038Google Scholar
[8] Chatzidakis S, Liu Z Z, Hayward J P, Scaglione J 2018 Appl. Phys. 123 124903Google Scholar
[9] Ayuso S, Blanco J J, Tejedor J, Herrero R J, Vrublevskyy I, Población O G, Medina J 2021 J. Space Weather Space Clim. 11 13Google Scholar
[10] Erlandson A, Anghel V N P, Godin D, Jewett C, Thompson M 2021 J. Instrum. 16 02024Google Scholar
[11] 智宇, 周静, 陈雷, 李沛玉, 赵明锐, 刘雯迪, 贾世海, 张昀昱, 胡守扬 2020 原子能科学技术 54 990Google Scholar
Zhi Y, Zhou J, Chen L, Li P Y, Zhao M R, Liu W D, Jia S H, Zhang Y Y, Hu S Y 2020 Atom. Energ. Sci. Technol. 54 990Google Scholar
[12] Borozdin K N, Hogan G E, Morris C, Priedhorsky W C, Saunders A, Schultz L J, Teasdale M E 2003 Nature 422 277Google Scholar
[13] 何伟波, 肖洒, 帅茂兵, 赖新春, 安琪 2016 核电子学与探测技术 36 297Google Scholar
He W B, Xiao S, Shuai M B, Lai X C, An Q 2016 Nucl. Electron. Detect. Technol. 36 297Google Scholar
[14] Bacon J D, Borozdin K N, Fabritius II J M, Morris C, Perry J O 2013 Muon Induced Fission Neutrons in Coincidence with Muon Tomography (Los Alamos: Los Alamos National Lab, LA-UR-13-28292 [R])
[15] Guardincerri E, Bacon J, Borozdin K, Matthew D J, Fabritius II J, Hecht A, Milner E C, Miyadera H, Morris C L, Perry J, Poulson D 2015 Nucl. Instrum. Methods A 789 109
[16] Morris C, Durham J M, Guardincerri E, Bacon J D, Wang Z H, Fellows S, Poulson D C, Plaud-Ramos K O, Daughton T M, Johnson O R 2015 A New Method of Passive Counting of Nuclear Missile Warheads-a white paper for the Defense Threat Reduction Agency (Los Alamos: Los Alamos National Lab, LA-UR-15-26068 [R])
[17] Blackwell T B, Kudryavtsev V A 2015 J. Instrum. 10 05006
[18] Hagmann C, Lange D, Verbeke J, Wright D http://nuclear.llnl.gov/simulation/ [2021-4-13]
[19] Schultz L J, Blanpied G S, Borozdin K N, Fraser A M, Hengartner N W, Klimenko A V, Morris C L, Orum C, Sossong M J 2007 IEEE Trans. Image Process. 16 1985Google Scholar
[20] 罗志飞 2016 博士学位论文(北京: 清华大学)
Luo Z F 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)
[21] Wheeler, John A 1949 Rev. Mod. Phys. 21 133
[22] Oberacker V E, Umar A S, Wells J C, Bottcher C, Strayer M R, Maruhn J A 1993 Phys. Rev. C 48 1297Google Scholar
[23] Gorringe T P, Hertzog D W 2015 Prog. Part. Nucl. Phys. 84 73Google Scholar
[24] 谢仲生, 尹邦华 1996 核反应堆物理分析(下册) (北京: 原子能出版社) 第11页
Xie Z S, Yin B H 1996 Nuclear Reactor Physical Analysis (Vol. 2) (Beijing: Atomic Energy Press) p11 (in Chinese)
[25] Brandt L J 2015 Ph. D. Dissertation (Ohio: Air University)
[26] Fetter S, Valery A F, Miller M, Mozley R, Prilutsky O F, Rodionov S N, Sagdeev R Z 1990 Sci. Global Secur. 1 225Google Scholar
[27] Fetter S, Valery A F, Oleg F, Prilutsky O F, Sagdeev R Z 1990 Sci. Global Secur. 1 255Google Scholar
[28] Hippel F V, Sagdeev R Z, Hafemeister D W 1991 Phys. Today 44 102Google Scholar
Catalog
Metrics
- Abstract views: 4881
- PDF Downloads: 102
- Cited By: 0