Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of vibration noise with fixed phase on absolute gravimetry applying vibration isolator

Yao Jia-Min Zhuang Wei Feng Jin-Yang Wang Qi-Yu Zhao Yang Wang Shao-Kai Wu Shu-Qing Li Tian-Chu

Citation:

Effect of vibration noise with fixed phase on absolute gravimetry applying vibration isolator

Yao Jia-Min, Zhuang Wei, Feng Jin-Yang, Wang Qi-Yu, Zhao Yang, Wang Shao-Kai, Wu Shu-Qing, Li Tian-Chu
PDF
HTML
Get Citation
  • Absolute gravimeter, an instrument which is applied to laser interferometry or atom interferometry for measuring the gravitational acceleration g (approximately 9.8 m/s2), plays an important role in metrology, geophysics, geological exploration, etc. To achieve a high accuracy of several microGals (μGal, 1μGal = 1 × 10–8 m/s2), a vertical vibration isolator is widely employed in the absolute gravimeter to protect the reference object (a retro-reflector or a mirror) from being disturbed by ground vibration noises. However, the reference object in vibration isolator may still move due to isolator’s response to the impulse caused by the self-vibration effect in laser-interferometry gravimeter, or the forced vibration of the ferromagnetic component in the isolator under the varying magnetic field of magneto-optical traps (MOTs) in atom-interferometry gravimeter. This vibration of the reference object has a fixed phase relative to the detection of the free-fall of a falling object or atoms, leading an additional systematic error to be introduced into measured g value. In this paper, the physical models of four typical vertical vibration isolators used in the current absolute gravimeters are introduced, i.e. a passive Minus K isolator, a passive Lacoste isolator, a one-stage active isolator, and a double-stage active isolator. The simulation models of these isolators are also created with specific resonance periods. Taking a laser-interferometry gravimeter for example, the responses of these isolators under impulse input are analyzed, proving that the real vibration of the reference object, namely the output of each isolator, has a fixed phase relative to the detection of the fringe signal, which indicates the trajectory of the free-falling object, hence resulting in an additional systematic error. To provide a detailed evaluation, firstly the vibration of the reference object under an impulse, a seismic noise, and a random noise, which represent typical ground vibrations, are obtained by running the simulation. Then the corresponding errors in the calculation of g value are presented. Besides, the experimental results of T-1 laser-interferometry gravimeter at a noisy site in Tsinghua University, with either a Minus K isolator or a Superspring isolator used, are compared with the simulated results. According to the above simulations and experiments, the systematic error introduced by the vibration of resonance object in a Minus K isolator or a one-stage active isolator under impulse can respectively exceed 600 μGal or 10 μGal, while the error with the object in a Lacoste isolator or a double-stage active isolator can be neglected. Therefore, it is better to use a double-stage active vibration isolator in absolute gravimeter to avoid this systematic error and achieve higher measurement accuracy. With more information about the forced vibration in the isolators under varying magnetic fields of MOT, the systematic error introduced by the vibration of reference object can also be specifically evaluated in the future.
      Corresponding author: Zhuang Wei, zhuangwei@nim.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFF0212401, 2016YFF0200206) and the Research Funds for National Institute of Metrology, China (Grant Nos. 29-AKY1922-20, AKYZD2002).
    [1]

    Marson I, Faller J E 1986 J. Phys. E:Sci. Instrum. 19 22Google Scholar

    [2]

    Faller J E 2002 Metrologia 39 425Google Scholar

    [3]

    Steiner R L, Williams E R, Newell D B, Liu R 2005 Metrologia 42 431Google Scholar

    [4]

    Timmen L, Gitlein O, Klemann V, Wolf D 2011 Pure Appl. Geophys. 169 1331Google Scholar

    [5]

    Niebauer T M, Sasagawa G S, Faller J E, Hilt R, Klopping F 1995 Metrologia 32 159Google Scholar

    [6]

    D'Agostino G, Desogus S, Germak A, et al. 2008 Ann. Geophys. 51 39

    [7]

    胡华, 伍康, 申磊, 李刚, 王力军 2012 物理学报 61 099101Google Scholar

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101Google Scholar

    [8]

    吴书清, 李春剑, 徐进义, 粟多武, 冯金扬, 吉望西 2017 计量学报 38 01Google Scholar

    Wu S Q, Li C J, Xu J Y, Su D W, Feng J Y, Ji W X 2017 Acta Metrol. Sin. 38 01Google Scholar

    [9]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. 67 181Google Scholar

    [10]

    Le Gouët J, Mehlstäubler T, Kim J, Merlet S, Clairon A, Landragin A, Pereira Dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [11]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [12]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [13]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [14]

    Peterson J 1993 Observations and Modeling of Seismic Background Noise (U.S. Geological Survey) Report 93-322

    [15]

    Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908Google Scholar

    [16]

    Cessaro R K, Chan W 1989 J. Geophys. Res. -Solid Earth 94 15555Google Scholar

    [17]

    Chen L L, Luo Q, Zhang H, Duan X C, Zhou M K, Hu Z K 2018 Rev. Sci. Instrum. 89 066105Google Scholar

    [18]

    陈非凡 2007 仪器设计技术基础 (北京: 清华大学出版社) 第410−430页

    Chen F F 2007 Fundamental Technology for Instrument Design (Beijing: Tsinghua Unversity Press) pp410−430 (in Chinese)

    [19]

    International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM), JCGM 2012 https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf [2021-03-29]

    [20]

    李玉和, 郭阳宽 2010 现代精密仪器设计(第2版) (北京: 清华大学出版社) 第57−59页

    Li Y H, Guo Y K 2010 Design of Modern Precision Instrument (2nd Ed.) (Beijing: Tsinghua University Press) pp57−59 (in Chinese)

    [21]

    李哲 2016 博士学位论文 (北京: 清华大学)

    Li Z 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [22]

    LaCoste Jr L J B 1934 Physics 5 178Google Scholar

    [23]

    Stochino A, Abbot B, Aso Y, et al. 2009 Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 598 737Google Scholar

    [24]

    Winterflood J, Blair D G, Slagmolen B 2002 Phys. Lett. A 300 122Google Scholar

    [25]

    Platus D L 1993 Machine Design 65 123

    [26]

    Li G, Hu H, Wu K, Wang G, Wang L J 2014 Rev. Sci. Instrum. 85 104502Google Scholar

    [27]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735Google Scholar

    [28]

    Tang B, Zhou L, Xiong Z, Wang J, Zhan M 2014 Rev. Sci. Instrum. 85 093109Google Scholar

    [29]

    Rinker R L 1983 Ph. D. Dissertation (Boulder: University of Colorado)

    [30]

    Wu K, Li G, Hu H, Wang L 2017 Chin. J. Mech. Eng. 30 164Google Scholar

    [31]

    Wang G, Wu K, Hu H, Li G, Wang L 2016 Rev. Sci. Instrum. 87 105101Google Scholar

    [32]

    Yao J, Wu K, Guo M, Wang G, Wang L 2020 IEEE Trans. Instrum. Meas. 69 2670Google Scholar

    [33]

    要佳敏 2020 博士学位论文 (北京: 清华大学)

    Yao J M 2020 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [34]

    Guo M, Wu K, Yao J, Wen Y, Wang L 2021 IEEE Trans. Instrum. Meas. 70 1004310Google Scholar

    [35]

    Francis O, Baumann H, Ullrich C, et al. 2015 Metrologia 52 07009Google Scholar

    [36]

    FG5-X Absolute Gravimeter User's Manual, Micro-g Lacoste http://microglacoste.com/wp-content/uploads/2018/01/FG5-X-Manual-115060001.pdf [2021-06-03]

  • 图 1  系统误差与随机误差

    Figure 1.  Systematic error and random error.

    图 2  (a) 被动式隔振系统的物理模型; (b) 一级主动式隔振系统的物理模型; (c) 二级主动式隔振系统的物理模型

    Figure 2.  Physical models: (a) Passive vibration isolator; (b) one-stage active vibration isolator; (c) double-stage active vibration isolator

    图 3  自振脉冲输入下隔振系统内参考镜的振动

    Figure 3.  Real vibration of reference retro-reflector in a vibration isolator under the impulse caused by self-vibration effect.

    图 4  仿真程序流程框图

    Figure 4.  Flow chart of the simulation program.

    图 5  4种隔振系统 (a)传递函数伯德图; (b)阶跃响应

    Figure 5.  Four vibration isolators used in simulation: (a) Bode diagrams; (b) step responses.

    图 6  综合振动输入下参考镜振动对光学重力仪引入的(a)单组重力测量误差, (b) 12组重力测量误差, 图(b)中误差条为每组测值的标准差

    Figure 6.  Measurement errors of obtained from (a) one data set and (b) 12 data sets introduced in laser-interferometry absolute gravimeter by the vibration of retro-reflector under impulse, seismic noise and random noise, with the error bar in (b) indicating the standard deviation of each set.

    图 7  参考镜振动对光学重力仪引入的测量误差随测量组数的变化 (a) Minus K型被动隔振系统; (b) Lacoste型被动隔振系统; (c) 一级主动隔振系统; (d) 二级主动隔振系统

    Figure 7.  Measurement errors introduced in laser-interferometry absolute gravimeter by the vibration of retro-reflector, varying with the numbers of data sets used in simulation: (a) Minus K passive vibration isolator; (b) Lacoste passive vibration isolator; (c) one-stage active vibration isolator; (d) double-stage active vibration isolator.

    图 8  实验验证现场图 (a) 干涉仪下方放置Minus K型被动式系统; (b) 干涉仪下方放置Superspring二级主动式系统

    Figure 8.  Picture of absolute gravimeter with (a) Minus K passive vibration isolator or (b) Superspring double-stage active vibration isolator.

    图 9  实际测量结果(a)及相同振动输入下的仿真结果(b)

    Figure 9.  Measurement results (a) and simulation results (b) of g values under the same vibration input.

    表 1  仿真运算参数表

    Table 1.  Parameters used in simulation.

    测量参数数值振动信号参数数值
    单次测量中采集的
    下落物体运动时长/ms
    120信号1: 自振效应导致的脉冲速度/(mm·s–1)0.1
    采集电路触发时刻与下落物体释放瞬间的延时/ms30信号2: 第1种地脉动
    (正弦信号)
    幅值/nm5
    单组测量包含的下落次数100信号2: 第1种地脉动
    (正弦信号)
    频率/Hz0.2
    单组测量期间相邻两次测量的时间间隔/s20信号3: 第2种地脉动
    (正弦信号)
    幅值/nm2
    相邻两组测量的时间间隔/h1信号3: 第2种地脉动
    (正弦信号)
    频率/Hz3
    总测量组数12信号4: 代表随机振动的
    高斯白噪声
    PSD
    /(m2·Hz–1)
    2.5×10–17
    DownLoad: CSV

    表 2  基于12组仿真数据得到的参考镜振动对光学重力仪引入的测量误差(单位: μGal)

    Table 2.  Measurement errors introduced in laser-interferometry absolute gravimeter by the vibration of retro-reflector, obtained from 12 data sets simulated results (unit: μGal)

    隔振类型输入信号
    自振脉冲
    (信号1)
    地脉动及随机振动
    (信号2—4)
    综合振动
    (信号1—4)
    无隔振5.1 ± 15.121.0 ± 74.9–121.8 ± 90.4
    Minus K型
    (被动式)
    655.8 ± 0.42.1 ± 2.0658.5 ± 2.5
    Lacoste型
    (被动式)
    0.0 ± 0.00.0 ± 0.00.0 ± 0.0
    一级主动式–15.9 ± 0.0–0.4 ± 0.2–15.9 ± 0.2
    二级主动式0.0 ± 0.00.0 ± 0.00.0 ± 0.0
    DownLoad: CSV

    表 3  6组实际测量结果(单位: μGal)

    Table 3.  Measurement results obtained from 6 data sets (unit: μGal).

    隔振类型结果类型
    实测结果
    (综合信号)
    仿真结果
    (综合信号)
    无隔振–52.0 ± 110.0–40.7 ± 123.3
    Minus K型(被动式)655.2 ± 77.8656.5 ± 3.3
    一级主动式–16.0 ± 0.3
    Superspring型
    二级主动式
    –6.7 ± 12.60.0 ± 0.0
    DownLoad: CSV

    表 4  采集过程起始时刻改变时的仿真结果(单位: μGal)

    Table 4.  One set of simulated results with different t1 (unit: μGal).

    隔振类型采样起点t1/ms
    343536
    无隔振–84.6 ± 314.7215.6 ± 334.0154.2 ± 294.5
    Minus K型
    (被动式)
    658.6 ± 8.1660.8 ± 9.2660.7 ± 7.7
    一级主动式–16.2 ± 0.7–16.1 ± 0.8–17.3 ± 0.7
    二级主动式0.0 ± 0.00.0 ± 0.00.1 ± 0.0
    DownLoad: CSV

    表 5  下落间隔改变时的仿真结果(单位: μGal)

    Table 5.  One set of simulated results with different drop interval (unit: μGal).

    隔振类型下落间隔/s
    30201073
    无隔振–168.0 ± 328.5215.6 ± 334.0176.7 ± 281.949.7 ± 322.1–281.3 ± 295.2
    Minus K型(被动式)658.5 ± 9.4667.5 ± 8.1631.2 ± 9.2937.9 ± 8.71037.1 ± 8.5
    一级主动式–16.3 ± 0.7–15.4 ± 0.8–15.7 ± 0.7–16.5 ± 0.8–16.8 ± 0.8
    二级主动式0.0 ± 0.00.0 ± 0.00.1 ± 0.00.1 ± 0.00.2 ± 0.0
    DownLoad: CSV

    表 6  使用多种正弦函数模拟地脉动时的仿真结果(单位: μGal)

    Table 6.  One set of simulated results with multiple sinusoidal signals as the seismic noise (unit: μGal)

    隔振类型地脉动信号
    19个正弦信号2个正弦信号
    无隔振226.3 ± 297.3215.6 ± 334.0
    Minus K型(被动式)662.4 ± 8.3644.2 ± 7.8
    一级主动式–15.1 ± 0.8–16.2 ± 0.7
    二级主动式0.1 ± 0.00.0 ± 0.0
    DownLoad: CSV

    表 7  以16次下落的地震计原始数据为输入时的计算结果(单位: μGal)

    Table 7.  Results with the ground vibrations measured during 16 drops as input signal (unit: μGal).

    隔振类型结果类型
    仿真值
    (真实振动信号)
    仿真值
    (设计信号)
    实测值
    无隔振–264.5 ± 849.3–513.9 ± 678.3471.5 ± 676.6
    Minus K型
    (被动式)
    646.0 ± 16.5629.1 ± 18.8876.7 ± 615.6
    一级主动式–12.1 ± 2.5–17.9 ± 1.5
    二级主动式1.8 ± 0.10.0 ± 0.0–20.0 ± 62.6
    DownLoad: CSV
  • [1]

    Marson I, Faller J E 1986 J. Phys. E:Sci. Instrum. 19 22Google Scholar

    [2]

    Faller J E 2002 Metrologia 39 425Google Scholar

    [3]

    Steiner R L, Williams E R, Newell D B, Liu R 2005 Metrologia 42 431Google Scholar

    [4]

    Timmen L, Gitlein O, Klemann V, Wolf D 2011 Pure Appl. Geophys. 169 1331Google Scholar

    [5]

    Niebauer T M, Sasagawa G S, Faller J E, Hilt R, Klopping F 1995 Metrologia 32 159Google Scholar

    [6]

    D'Agostino G, Desogus S, Germak A, et al. 2008 Ann. Geophys. 51 39

    [7]

    胡华, 伍康, 申磊, 李刚, 王力军 2012 物理学报 61 099101Google Scholar

    Hu H, Wu K, Shen L, Li G, Wang L J 2012 Acta Phys. Sin. 61 099101Google Scholar

    [8]

    吴书清, 李春剑, 徐进义, 粟多武, 冯金扬, 吉望西 2017 计量学报 38 01Google Scholar

    Wu S Q, Li C J, Xu J Y, Su D W, Feng J Y, Ji W X 2017 Acta Metrol. Sin. 38 01Google Scholar

    [9]

    Kasevich M, Chu S 1991 Phys. Rev. Lett. 67 181Google Scholar

    [10]

    Le Gouët J, Mehlstäubler T, Kim J, Merlet S, Clairon A, Landragin A, Pereira Dos Santos F 2008 Appl. Phys. B 92 133Google Scholar

    [11]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [12]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [13]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [14]

    Peterson J 1993 Observations and Modeling of Seismic Background Noise (U.S. Geological Survey) Report 93-322

    [15]

    Sorrells G G, Douze E J 1974 J. Geophys. Res. 79 4908Google Scholar

    [16]

    Cessaro R K, Chan W 1989 J. Geophys. Res. -Solid Earth 94 15555Google Scholar

    [17]

    Chen L L, Luo Q, Zhang H, Duan X C, Zhou M K, Hu Z K 2018 Rev. Sci. Instrum. 89 066105Google Scholar

    [18]

    陈非凡 2007 仪器设计技术基础 (北京: 清华大学出版社) 第410−430页

    Chen F F 2007 Fundamental Technology for Instrument Design (Beijing: Tsinghua Unversity Press) pp410−430 (in Chinese)

    [19]

    International Vocabulary of Metrology—Basic and General Concepts and Associated Terms (VIM), JCGM 2012 https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf [2021-03-29]

    [20]

    李玉和, 郭阳宽 2010 现代精密仪器设计(第2版) (北京: 清华大学出版社) 第57−59页

    Li Y H, Guo Y K 2010 Design of Modern Precision Instrument (2nd Ed.) (Beijing: Tsinghua University Press) pp57−59 (in Chinese)

    [21]

    李哲 2016 博士学位论文 (北京: 清华大学)

    Li Z 2016 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [22]

    LaCoste Jr L J B 1934 Physics 5 178Google Scholar

    [23]

    Stochino A, Abbot B, Aso Y, et al. 2009 Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 598 737Google Scholar

    [24]

    Winterflood J, Blair D G, Slagmolen B 2002 Phys. Lett. A 300 122Google Scholar

    [25]

    Platus D L 1993 Machine Design 65 123

    [26]

    Li G, Hu H, Wu K, Wang G, Wang L J 2014 Rev. Sci. Instrum. 85 104502Google Scholar

    [27]

    Hensley J M, Peters A, Chu S 1999 Rev. Sci. Instrum. 70 2735Google Scholar

    [28]

    Tang B, Zhou L, Xiong Z, Wang J, Zhan M 2014 Rev. Sci. Instrum. 85 093109Google Scholar

    [29]

    Rinker R L 1983 Ph. D. Dissertation (Boulder: University of Colorado)

    [30]

    Wu K, Li G, Hu H, Wang L 2017 Chin. J. Mech. Eng. 30 164Google Scholar

    [31]

    Wang G, Wu K, Hu H, Li G, Wang L 2016 Rev. Sci. Instrum. 87 105101Google Scholar

    [32]

    Yao J, Wu K, Guo M, Wang G, Wang L 2020 IEEE Trans. Instrum. Meas. 69 2670Google Scholar

    [33]

    要佳敏 2020 博士学位论文 (北京: 清华大学)

    Yao J M 2020 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [34]

    Guo M, Wu K, Yao J, Wen Y, Wang L 2021 IEEE Trans. Instrum. Meas. 70 1004310Google Scholar

    [35]

    Francis O, Baumann H, Ullrich C, et al. 2015 Metrologia 52 07009Google Scholar

    [36]

    FG5-X Absolute Gravimeter User's Manual, Micro-g Lacoste http://microglacoste.com/wp-content/uploads/2018/01/FG5-X-Manual-115060001.pdf [2021-06-03]

  • [1] Cai Rong-Gen, Li Li, Wang Shao-Jiang. Hubble-constant crisis. Acta Physica Sinica, 2023, 72(23): 239801. doi: 10.7498/aps.72.20231270
    [2] Liu Hai-Ping, Zhang Shi-Cheng, Men Ling-Ling, He Zhen-Qiang. Theoretical analysis and experimental evaluation of vibration isolation system with broadband characteristic for laser tracker. Acta Physica Sinica, 2022, 71(16): 160701. doi: 10.7498/aps.71.20220307
    [3] Che Hao, Li An, Fang Jie, Ge Gui-Guo, Gao Wei, Zhang Ya, Liu Chao, Xu Jiang-Ning, Chang Lu-Bin, Huang Chun-Fu, Gong Wen-Bin, Li Dong-Yi, Chen Xi, Qin Fang-Jun. Ship-borne dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(11): 113701. doi: 10.7498/aps.71.20220113
    [4] Cheng Bing, Chen Pei-Jun, Zhou Yin, Wang Kai-Nan, Zhu Dong, Chu Li, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Experiment on dynamic absolute gravity measurement based on cold atom gravimeter. Acta Physica Sinica, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [5] Wang Kai-Nan, Xu Han, Zhou Yin, Xu Yun-Peng, Song Wei, Tang Hong-Zhi, Wang Qiao-Wei, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Cheng Bing, Li De-Zhao, Qiao Zhong-Kun, Wu Bin, Lin Qiang. Research on rapid surveying and mapping of outfield absolute gravity based on vehicle-mounted atomic gravimeter. Acta Physica Sinica, 2022, 71(15): 159101. doi: 10.7498/aps.71.20220267
    [6] Yao Jia-Min, Zhuang Wei, Feng Jin-Yang, Wang Qi-Yu, Zhao Yang, Wang Shao-Kai, Wu Shu-Qing, Li Tian-Chu. A coefficient searching based vibration correction method. Acta Physica Sinica, 2022, 71(11): 119101. doi: 10.7498/aps.71.20220037
    [7] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [8] Experiment and study on absolute gravity dynamic motion measurement based on cold atom gravimete. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211449
    [9] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [10] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Wu Li-Ming, Wang Kai-Nan, Wang He-Lin, Wang Zhao-Ying, Wang Xiao-Long, Lin Qiang. Influence of Raman laser sidebands effect on the measurement accuracy of cold atom gravimeter. Acta Physica Sinica, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [11] Chen Bin, Long Jin-Bao, Xie Hong-Tai, Chen Luo-Kan, Chen Shuai. A mobile three-dimensional active vibration isolator and its application to cold atom interferometry. Acta Physica Sinica, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [12] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [13] Luo Dong-Yun, Cheng Bing, Zhou Yin, Wu Bin, Wang Xiao-Long, Lin Qiang. Ultra-low frequency active vibration control for cold atom gravimeter based on sliding-mode robust algorithm. Acta Physica Sinica, 2018, 67(2): 020702. doi: 10.7498/aps.67.20171884
    [14] Yi Hong, Li Song, Ma Yue, Huang Ke, Zhou Hui, Shi Guang-Yuan. On-orbit calibration of satellite laser altimeters based on footprint detection. Acta Physica Sinica, 2017, 66(13): 134206. doi: 10.7498/aps.66.134206
    [15] Wang Guan, Hu Hua, Wu Kang, Li Gang, Wang Li-Jun. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure. Acta Physica Sinica, 2016, 65(20): 200702. doi: 10.7498/aps.65.200702
    [16] Zhang Jing, Xu Dao-Lin, Li Ying-Li, Zhou Jia-Xi. Line spectrum chaotification of a double-layer vibration isolation floating raft system under multi-source excitation. Acta Physica Sinica, 2014, 63(18): 180505. doi: 10.7498/aps.63.180505
    [17] Yang Jin-Hui, Song Jun-Qiang. Study on the mean absolute growth of model error for chaos system. Acta Physica Sinica, 2012, 61(22): 220510. doi: 10.7498/aps.61.220510
    [18] Hu Hua, Wu Kang, Shen Lei, Li Gang, Wang Li-Jun. A new high precision absolute gravimeter. Acta Physica Sinica, 2012, 61(9): 099101. doi: 10.7498/aps.61.099101
    [19] Zhao Yan-Ying, Yang Ru-Ming. Using delayed feedback to control the band of saturation control in an auto-parametric dynamical system. Acta Physica Sinica, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304.2
    [20] Xu Feng, Lu Ming-Zhu, Wan Ming-Xi, Fang Fei. System errors of a 256-element high intensity focused ultrasound phased array and precise control of multi-focus patterns. Acta Physica Sinica, 2010, 59(2): 1349-1356. doi: 10.7498/aps.59.1349
Metrics
  • Abstract views:  4135
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2021
  • Accepted Date:  10 June 2021
  • Available Online:  15 August 2021
  • Published Online:  05 November 2021

/

返回文章
返回