Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improving thermoelectric performance of GeSe compound by crystal structure engineering

Hu Wei-Wei Sun Jin-Chang Zhang Yu Gong Yue Fan Yu-Ting Tang Xin-Feng Tan Gang-Jian

Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Phys. Sin., 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843
Citation: Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian. Improving thermoelectric performance of GeSe compound by crystal structure engineering. Acta Phys. Sin., 2022, 71(4): 047101. doi: 10.7498/aps.71.20211843

Improving thermoelectric performance of GeSe compound by crystal structure engineering

Hu Wei-Wei, Sun Jin-Chang, Zhang Yu, Gong Yue, Fan Yu-Ting, Tang Xin-Feng, Tan Gang-Jian
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In the thermoelectric field, GeSe is a two-dimensional layered semiconductor with a large band gap, intrinsically low carrier concentration and poor thermoelectric figure of merit ZT. In this work, a series of GeSe1–xTex (x = 0, 0.05, 0.15, 0.25, 0.35, 0.45) polycrystalline samples is prepared by melting and quenching combined with spark plasma activation sintering process. The influences of Te content on the phase structure and thermoelectric transport properties of GeSe are systematically studied. The results indicate that with the increase of Te content, the crystal structure of GeSe gradually changes from orthorhombic to rhombohedral structure. This reduces the band gap of the material, and simultaneously increases the carrier concentration and mobility. Meanwhile, the energy band degeneracy of the compound increases significantly because of enhanced crystal symmetry in this process, thereby considerably improving the effective mass of carriers. Altogether, the power factor of the rhombohedral GeSe is increased by about 2 to 3 orders of magnitude compared with that of the orthorhombic phase GeSe. In addition, the rhombohedral phase GeSe has abundant cationic vacancy defects and softened phonons arising from its ferroelectric feature, leading the lattice thermal conductivity to be 60% lower than orthorhombic one. The GeSe0.55Te0.45 sample achieves a peak ZT of 0.75 at 573 K, which is 19 times that of pristine GeSe. Crystal structure engineering could be considered as an effective way of improving the thermoelectric performance of GeSe compounds.
      PACS:
      71.20.Nr(Semiconductor compounds)
      72.20.Pa(Thermoelectric and thermomagnetic effects)
      Corresponding author: Tan Gang-Jian, gtan@whut.edu.cn
    [1]

    Wang Y, Shi Y, Mei D, Chen Z 2017 Appl. Energy 205 710Google Scholar

    [2]

    Kim Y J, Gu H M, Kim C S, Choi H, Lee G, Kim S, Yi K K, Lee S G, Cho B J 2018 Energy 162 526Google Scholar

    [3]

    Tan G, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [4]

    Okazaki A 1958 J. Phys. Soc. Jpn. 13 1151Google Scholar

    [5]

    Sist M, Gatti C, Norby P, Cenedese S, Kasai H, Kato K, Iversen B B 2017 Chem. Eur. J. 23 6888Google Scholar

    [6]

    Kim Y, Choi I-H 2018 J. Korean Phys. Soc. 72 238Google Scholar

    [7]

    Hao S, Shi F, Dravid V P, Kanatzidis M G, Wolverton C 2016 Chem. Mater. 28 3218Google Scholar

    [8]

    Fan Q, Yang J, Cao J, Liu C 2021 R. Soc. Open Sci. 8 201980Google Scholar

    [9]

    Yuan K, Sun Z, Zhang X, Tang D 2019 Sci. Rep. 9 9490Google Scholar

    [10]

    Roychowdhury S, Ghosh T, Arora R, Waghmare U V, Biswas K 2018 Angew. Chem. Int. Ed. 57 15167Google Scholar

    [11]

    Yan M, Geng H, Jiang P, Bao X 2020 J. Energy Chem. 45 83Google Scholar

    [12]

    Zhang X, Shen J, Lin S, Li J, Chen Z, Li W, Pei Y 2016 J. Materiomics 2 331Google Scholar

    [13]

    Huang Z, Miller S A, Ge B, Yan M, Anand S, Wu T, Nan P, Zhu Y, Zhuang W, Snyder G J, Jiang P, Bao X 2017 Angew. Chem. Int. Ed. 56 14113Google Scholar

    [14]

    Yan M, Tan X, Huang Z, Liu G, Jiang P, Bao X 2018 J. Mater. Chem. A 6 8215Google Scholar

    [15]

    Sarkar D, Ghosh T, Roychowdhury S, Arora R, Sajan S, Sheet G, Waghmare U V, Biswas K 2020 J. Am. Chem. Soc. 142 12237Google Scholar

    [16]

    Li J, Zhang X, Lin S, Chen Z, Pei Y 2017 Chem. Mater. 29 605Google Scholar

    [17]

    Wang Z, Wu H, Xi M, Zhu H, Dai L, Xiong Q, Wang G, Han G, Lu X, Zhou X, Wang G 2020 ACS Appl. Mater. Interfaces 12 41381Google Scholar

    [18]

    Sidharth D, Alagar Nedunchezhian A S, Akilan R, Srivastava A, Srinivasan B, Immanuel P, Rajkumar R, Yalini Devi N, Arivanandhan M, Liu C J, Anbalagan G, Shankar R, Jayavel R 2021 Sustain. Energy Fuels 5 1734Google Scholar

    [19]

    Shaabani L, Aminorroaya-Yamini S, Byrnes J, Akbar Nezhad A, Blake G R 2017 ACS Omega 2 9192Google Scholar

    [20]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [21]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [22]

    黄平, 游理, 梁星, 张继业, 骆军 2019 物理学报 68 077201Google Scholar

    Huang P, You L, Liang X, Zhang J Y, Luo J 2019 Acta Phys. Sin. 68 077201Google Scholar

    [23]

    苏贤礼, 唐新峰, 李涵, 邓书康 2008 物理学报 57 6488Google Scholar

    Su X L, Tang X F, Li H, Deng S G 2008 Acta Phys. Sin. 57 6488Google Scholar

    [24]

    Sun J, Su X, Yan Y, Liu W, Tan G, Tang X 2020 ACS Appl. Energy Mater. 3 2Google Scholar

    [25]

    Zhang W, Chen C, Yao H, Xue W, Li S, Bai F, Huang Y, Li X, Lin X, Cao F, Sui J, Wang S, Yu B, Wang Y, Liu X, Zhang Q 2020 Chem. Mater. 32 6983Google Scholar

    [26]

    Nshimyimana E, Hao S, Su X, Zhang C, Liu W, Yan Y, Uher C, Wolverton C, Kanatzidis M G, Tang X 2020 J. Mater. Chem. A 8 1193Google Scholar

    [27]

    Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis M G, Tang X 2018 J. Am. Chem. Soc. 140 2673Google Scholar

    [28]

    Chen S, Bai H, Li J, Pan W, Jiang X, Li Z, Chen Z, Yan Y, Su X, Wu J, Uher C, Tang X 2020 ACS Appl. Mater. Interfaces 12 19664Google Scholar

    [29]

    Franz R, Wiedemann G 1853 Ann. Phys. 165 497

    [30]

    Pietrak K, Wisniewski T S 2015 J. Power Technol. 95 14

    [31]

    Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare U V, Biswas K 2019 Energy Environ. Sci. 12 589Google Scholar

    期刊类型引用(3)

    1. Yu-Geng Li,Yong-Qiang Liu,Mo-Ran Wang,Wen-Qing Yao,Xiao-Huan Luo,Tu Lyu,Wei-Qin Ao,Chao-Hua Zhang,Fu-Sheng Liu,Li-Peng Hu. Leveraging crystal symmetry for thermoelectric performance optimization in cubic GeSe. Rare Metals. 2024(10): 5332-5345 . 必应学术
    2. 李强,陈硕,刘可可,鲁志强,胡芹,冯利萍,张清杰,吴劲松,苏贤礼,唐新峰. n型Bi_2Te_3基化合物的类施主效应和热电性能. 物理学报. 2023(09): 135-143 . 百度学术
    3. 陈上峰,孙乃坤,张宪民,王凯,李武,韩艳,吴丽君,岱钦. Mn_3As_2掺杂Cd_3As_2纳米结构的制备及热电性能. 物理学报. 2022(18): 237-245 . 百度学术

    其他类型引用(3)

  • 图 1  (a)室温下正交相GeSe的晶体结构; (b)~900 K 正交结构GeSe相变为立方结构

    Figure 1.  (a) Crystal structure of orthorhombic GeSe at 300 K and its evolution with temperature; (b) phase transition to cubic one occurring around 900 K.

    图 2  GeSe1–xTex (x = 0—0.45)样品的 (a)粉末XRD图谱; (b) 28°—35°粉末XRD图谱; (c)晶胞参数; (d) GeSe-GeTe赝二元相图

    Figure 2.  (a) Powder XRD patterns of GeSe1–xTex samples (x = 0–0.45); (b) enlarged view of XRD patterns (2θ = 28°–35°); (c) the a, b and c lattice parameters of GeSe1–xTex samples (x = 0–0.45); (d) GeSe-GeTe pseudo-binary phase diagram.

    图 3  GeSe1–xTex(x = 0—0.45)样品末XRD精修图谱与实测图谱: (a) x = 0.15; (b) x = 0.25; (c) x = 0.35

    Figure 3.  Rietveld refinement XRD results of GeSe1–xTex (x = 0–0.45): (a) x = 0.15; (b) x = 0.25; (c) x = 0.35.

    图 4  GeSe1–xTex (x = 0—0.45)化合物的断面FESEM图片 (a) x = 0; (b) x = 0.05; (c) x = 0.15; (d) x = 0.25; (e) x = 0.35; (f) x = 0.45

    Figure 4.  FESEM images of the freshly fractured surface of GeSe1–xTex (x = 0–0.45): (a) x = 0; (b) x = 0.05; (c) x = 0.15; (d) x = 0.25; (e) x = 0.35; (f) x = 0.45.

    图 5  GeSe1–xTex样品的背散射电子像和对应元素的面分布图谱 (a)—(d) x = 0.05; (e)—(h) x = 0.45; (i)—(l) x = 0.15; (m)—(p) x = 0.35

    Figure 5.  Back-scattered electron (BSE) images and corresponding elemental distribution mappings of GeSe1–xTex samples: (a)–(d) x = 0.05; (e)–(h) x = 0.45; (i)–(l) x = 0.15; (m)–(p) x = 0.35.

    图 6  GeSe1–xTex(x = 0—0.45)样品的电输运性质随温度变化曲线: (a) Seebeck系数, 插图为x = 0与x = 0.05样品; (b)电导率, 插图为x = 0与x = 0.05样品

    Figure 6.  Temperature dependence of (a) Seebeck coefficient and (b) electrical conductivity for GeSe1–xTex (x = 0–0.45) samples. Insets are enlarged views for x = 0 and x = 0.05 samples.

    图 7  室温下GeSe1–xTex(x = 0—0.45)样品的(a)载流子浓度(pH)和(b)迁移率(µH)

    Figure 7.  Room temperature (a) carrier concentration (pH) and (b) carrier mobility (µH) versus Te content (x) in GeSe1–xTex (x = 0–0.45) samples.

    图 8  GeSe1–xTex (x = 0—0.45)样品: (a)室温下的Pisarenko曲线和(b)功率因子随温度变化曲线

    Figure 8.  (a) Pisarenko curves at room temperature and (b) temperature dependent power factors of GeSe1–xTex samples.

    图 9  GeSe1–xTex (x = 0—0.45)样品的(a)总热导率和(b)晶格热导率随温度变化曲线

    Figure 9.  Temperature dependence of (a) total and (b) lattice thermal conductivities of GeSe1–xTex (x = 0–0.45) samples.

    图 10  GeSe1–xTex 样品的DSC曲线 (a) x = 0.05; (b) x = 0.15; (c) x = 0.35; (d) x = 0.45

    Figure 10.  DSC curves of GeSe1–xTex samples: (a) x = 0.05, (b) x = 0.15, (c) x = 0.35, (d) x = 0.45.

    图 11  GeSe1–xTex(x = 0—0.45)样品的ZT值随温度变化的关系曲线

    Figure 11.  Temperature dependence of ZT values of GeSe1–xTex (x = 0–0.45) samples.

    表 1  室温下GeSe1–xTex样品中各种物相的质量分数

    Table 1.  Mass fractions of various phases in GeSe1–xTex (x = 0.15, 0.25, 0.35) samples at room temperature.

    样品组分(GeSe1–xTex)质量分数/%
    正交相菱方相
    x = 0.1580.919.1
    x = 0.2558.541.5
    x = 0.3511.288.8
    DownLoad: CSV
  • [1]

    Wang Y, Shi Y, Mei D, Chen Z 2017 Appl. Energy 205 710Google Scholar

    [2]

    Kim Y J, Gu H M, Kim C S, Choi H, Lee G, Kim S, Yi K K, Lee S G, Cho B J 2018 Energy 162 526Google Scholar

    [3]

    Tan G, Zhao L D, Kanatzidis M G 2016 Chem. Rev. 116 12123Google Scholar

    [4]

    Okazaki A 1958 J. Phys. Soc. Jpn. 13 1151Google Scholar

    [5]

    Sist M, Gatti C, Norby P, Cenedese S, Kasai H, Kato K, Iversen B B 2017 Chem. Eur. J. 23 6888Google Scholar

    [6]

    Kim Y, Choi I-H 2018 J. Korean Phys. Soc. 72 238Google Scholar

    [7]

    Hao S, Shi F, Dravid V P, Kanatzidis M G, Wolverton C 2016 Chem. Mater. 28 3218Google Scholar

    [8]

    Fan Q, Yang J, Cao J, Liu C 2021 R. Soc. Open Sci. 8 201980Google Scholar

    [9]

    Yuan K, Sun Z, Zhang X, Tang D 2019 Sci. Rep. 9 9490Google Scholar

    [10]

    Roychowdhury S, Ghosh T, Arora R, Waghmare U V, Biswas K 2018 Angew. Chem. Int. Ed. 57 15167Google Scholar

    [11]

    Yan M, Geng H, Jiang P, Bao X 2020 J. Energy Chem. 45 83Google Scholar

    [12]

    Zhang X, Shen J, Lin S, Li J, Chen Z, Li W, Pei Y 2016 J. Materiomics 2 331Google Scholar

    [13]

    Huang Z, Miller S A, Ge B, Yan M, Anand S, Wu T, Nan P, Zhu Y, Zhuang W, Snyder G J, Jiang P, Bao X 2017 Angew. Chem. Int. Ed. 56 14113Google Scholar

    [14]

    Yan M, Tan X, Huang Z, Liu G, Jiang P, Bao X 2018 J. Mater. Chem. A 6 8215Google Scholar

    [15]

    Sarkar D, Ghosh T, Roychowdhury S, Arora R, Sajan S, Sheet G, Waghmare U V, Biswas K 2020 J. Am. Chem. Soc. 142 12237Google Scholar

    [16]

    Li J, Zhang X, Lin S, Chen Z, Pei Y 2017 Chem. Mater. 29 605Google Scholar

    [17]

    Wang Z, Wu H, Xi M, Zhu H, Dai L, Xiong Q, Wang G, Han G, Lu X, Zhou X, Wang G 2020 ACS Appl. Mater. Interfaces 12 41381Google Scholar

    [18]

    Sidharth D, Alagar Nedunchezhian A S, Akilan R, Srivastava A, Srinivasan B, Immanuel P, Rajkumar R, Yalini Devi N, Arivanandhan M, Liu C J, Anbalagan G, Shankar R, Jayavel R 2021 Sustain. Energy Fuels 5 1734Google Scholar

    [19]

    Shaabani L, Aminorroaya-Yamini S, Byrnes J, Akbar Nezhad A, Blake G R 2017 ACS Omega 2 9192Google Scholar

    [20]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [21]

    Cao Y, Su X, Meng F, Bailey T P, Zhao J, Xie H, He J, Uher C, Tang X 2020 Adv. Funct. Mater. 30 2005861Google Scholar

    [22]

    黄平, 游理, 梁星, 张继业, 骆军 2019 物理学报 68 077201Google Scholar

    Huang P, You L, Liang X, Zhang J Y, Luo J 2019 Acta Phys. Sin. 68 077201Google Scholar

    [23]

    苏贤礼, 唐新峰, 李涵, 邓书康 2008 物理学报 57 6488Google Scholar

    Su X L, Tang X F, Li H, Deng S G 2008 Acta Phys. Sin. 57 6488Google Scholar

    [24]

    Sun J, Su X, Yan Y, Liu W, Tan G, Tang X 2020 ACS Appl. Energy Mater. 3 2Google Scholar

    [25]

    Zhang W, Chen C, Yao H, Xue W, Li S, Bai F, Huang Y, Li X, Lin X, Cao F, Sui J, Wang S, Yu B, Wang Y, Liu X, Zhang Q 2020 Chem. Mater. 32 6983Google Scholar

    [26]

    Nshimyimana E, Hao S, Su X, Zhang C, Liu W, Yan Y, Uher C, Wolverton C, Kanatzidis M G, Tang X 2020 J. Mater. Chem. A 8 1193Google Scholar

    [27]

    Zheng Z, Su X, Deng R, Stoumpos C, Xie H, Liu W, Yan Y, Hao S, Uher C, Wolverton C, Kanatzidis M G, Tang X 2018 J. Am. Chem. Soc. 140 2673Google Scholar

    [28]

    Chen S, Bai H, Li J, Pan W, Jiang X, Li Z, Chen Z, Yan Y, Su X, Wu J, Uher C, Tang X 2020 ACS Appl. Mater. Interfaces 12 19664Google Scholar

    [29]

    Franz R, Wiedemann G 1853 Ann. Phys. 165 497

    [30]

    Pietrak K, Wisniewski T S 2015 J. Power Technol. 95 14

    [31]

    Banik A, Ghosh T, Arora R, Dutta M, Pandey J, Acharya S, Soni A, Waghmare U V, Biswas K 2019 Energy Environ. Sci. 12 589Google Scholar

  • [1] Liu JunJie, Zuo HuiLing, Tan Xin, Dong JianSheng. Anisotropic energy funneling effect in wrinkled monolayer GeSe. Acta Physica Sinica, 2024, 73(23): . doi: 10.7498/aps.20241155
    [2] Liu Jun-Jie, Zuo Hui-Ling, Tan Xin, Dong Jian-Sheng. Anisotropic energy funneling effect in wrinkled monolayer GeSe. Acta Physica Sinica, 2024, 73(23): 236801. doi: 10.7498/aps.73.20241155
    [3] Chen Shang-Feng, Sun Nai-Kun, Zhang Xian-Min, Wang Kai, Li Wu, Han Yan, Wu Li-Jun, Dai Qin. Preparation and thermoelectric properties of Mn3As2-doped Cd3As2 nanostructures. Acta Physica Sinica, 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [4] Zi Peng, Bai Hui, Wang Cong, Wu Yu-Tian, Ren Pei-An, Tao Qi-Rui, Wu Jin-Song, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric performance of AgyIn3.33–y/3Se5 compounds. Acta Physica Sinica, 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [5] Li Meng-Rong, Ying Peng-Zhan, Li Xie, Cui Jiao-Lin. Improvement of thermoelectric performance of SnTe-based solid solution by entropy engineering. Acta Physica Sinica, 2022, 71(23): 237302. doi: 10.7498/aps.71.20221247
    [6] Fan Ren-Jie, Jiang Xian-Yan, Tao Qi-Rui, Mei Qi-Cai, Tang Ying-Fei, Chen Zhi-Quan, Su Xian-Li, Tang Xin-Feng. Structure and thermoelectric properties of In1+xTe compounds. Acta Physica Sinica, 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [7] Crystal Structure Engineering as a Means of Boosting the Thermoelectric Performance of GeSe. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211843
    [8] Zou Ping, Lü Dan, Xu Gui-Ying. Microstructure and thermoelectric property of (Bi1–xTbx)2(Te0.9Se0.1)3 fabricated by high pressure sintering technique. Acta Physica Sinica, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [9] Zhang Dong, Lou Wen-Kai, Chang Kai. Theoretical progress of polarized interfaces in semiconductors. Acta Physica Sinica, 2019, 68(16): 167101. doi: 10.7498/aps.68.20191239
    [10] Sun Zheng, Chen Shao-Ping, Yang Jiang-Feng, Meng Qing-Sen, Cui Jiao-Lin. Thermoelectric properties of chalcopyrite Cu3Ga5Te9 with Sb non-isoelectronic substitution for Cu and Te. Acta Physica Sinica, 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [11] Zhang He, Luo Jun, Zhu Hang-Tian, Liu Quan-Lin, Liang Jing-Kui, Rao Guang-Hui. Phase stability, crystal structure and thermoelectric properties of Cu doped AgSbTe2. Acta Physica Sinica, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [12] Liu Jian, Wang Chun-Lei, Su Wen-Bin, Wang Hong-Chao, Zhang Jia-Liang, Mei Liang-Mo. Influence of niobium doping on crystal structure and thermoelectric property of reduced titanium dioxide ceramics. Acta Physica Sinica, 2011, 60(8): 087204. doi: 10.7498/aps.60.087204
    [13] Huang Duo-Hui, Wang Fan-Hou, Cheng Xiao-Hong, Wan Ming-Jie, Jiang Gang. The study of structure characteristics of GeTe and GeSe molecules under the external electric field. Acta Physica Sinica, 2011, 60(12): 123101. doi: 10.7498/aps.60.123101
    [14] Zhou Long, Li Han, Su Xian-Li, Tang Xin-Feng. Effects of In doping on crystal structure and thermoelectric properties of n-type skutterudites. Acta Physica Sinica, 2010, 59(10): 7219-7224. doi: 10.7498/aps.59.7219
    [15] Guo Quan-Sheng, Li Han, Su Xian-Li, Tang Xin-Feng. Microstructure and themoelectric properties of p-type filled skutterudite Ce0.3Fe1.5Co2.5Sb12 prepared by melt-spinning method. Acta Physica Sinica, 2010, 59(9): 6666-6672. doi: 10.7498/aps.59.6666
    [16] Wang Shan-Yu, Xie Wen-Jie, Li Han, Tang Xin-Feng. Microstructures and thermoelectric properties of n-type melting spun(Bi0.85Sb0.15)2(Te1-xSex)3 compounds. Acta Physica Sinica, 2010, 59(12): 8927-8933. doi: 10.7498/aps.59.8927
    [17] Su Xian-Li, Tang Xin-Feng, Li Han. Effects of melt spinning process on microstructure and thermoelectric properties of n-type InSb compounds. Acta Physica Sinica, 2010, 59(4): 2860-2866. doi: 10.7498/aps.59.2860
    [18] Cao Wei-Qiang, Deng Shu-Kang, Tang Xin-Feng, Li Peng. The effects of melt spinning process on microstructure and thermoelectric properties of Zn-doped type-I clathrates. Acta Physica Sinica, 2009, 58(1): 612-618. doi: 10.7498/aps.58.612
    [19] Su Xian-Li, Tang Xin-Feng, Li Han, Deng Shu-Kang. Structure and thermoelectric properties of n-type GaxCo4Sb12 skutterudite compounds. Acta Physica Sinica, 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
  • 期刊类型引用(3)

    1. Yu-Geng Li,Yong-Qiang Liu,Mo-Ran Wang,Wen-Qing Yao,Xiao-Huan Luo,Tu Lyu,Wei-Qin Ao,Chao-Hua Zhang,Fu-Sheng Liu,Li-Peng Hu. Leveraging crystal symmetry for thermoelectric performance optimization in cubic GeSe. Rare Metals. 2024(10): 5332-5345 . 必应学术
    2. 李强,陈硕,刘可可,鲁志强,胡芹,冯利萍,张清杰,吴劲松,苏贤礼,唐新峰. n型Bi_2Te_3基化合物的类施主效应和热电性能. 物理学报. 2023(09): 135-143 . 百度学术
    3. 陈上峰,孙乃坤,张宪民,王凯,李武,韩艳,吴丽君,岱钦. Mn_3As_2掺杂Cd_3As_2纳米结构的制备及热电性能. 物理学报. 2022(18): 237-245 . 百度学术

    其他类型引用(3)

Metrics
  • Abstract views:  7386
  • PDF Downloads:  174
  • Cited By: 6
Publishing process
  • Received Date:  05 October 2021
  • Accepted Date:  09 November 2021
  • Available Online:  19 February 2022
  • Published Online:  20 February 2022

/

返回文章
返回