Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermoelectric properties of chalcopyrite Cu3Ga5Te9 with Sb non-isoelectronic substitution for Cu and Te

Sun Zheng Chen Shao-Ping Yang Jiang-Feng Meng Qing-Sen Cui Jiao-Lin

Citation:

Thermoelectric properties of chalcopyrite Cu3Ga5Te9 with Sb non-isoelectronic substitution for Cu and Te

Sun Zheng, Chen Shao-Ping, Yang Jiang-Feng, Meng Qing-Sen, Cui Jiao-Lin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Thermoelectric materials, which allow the conversion between heat and electricity, can be directly applied in the fields of cooling and power generation. Here we report an effective approach: non-isoelectronic substitution of Sb for Cu and Te in Cu3Ga5Te9 to increase the Seebeck coefficient and electrical conductivity. This improvement is attributed to the enhancement in carrier concentration n and effective mass as well as the conservation of the carrier mobility μ. The enhancement of the carrier concentration is caused by the hole doping effect due to the drop of the Fermi level into the valence band when Sb occupies the Te lattice sites, and also due to the increase of the copper vacancy (V-1Cu) concentration when Cu content decreases. In addition, the non-isoelectronic substitution can yield extra crystal structure defects. These defects, which are represented by the alterations of anion (Te2-) position displacement (u) and tetragonal deformation (η), directly govern the lattice thermal conductivity (κL) on an atomic scale. The maximum ZT value is 0.6 at 766 K with proper Sb substitution, which is about 25% higher than that of Cu3Ga5Te9. Therefore, we are able to effectively manipulate the electrical and thermal properties through proper selections of the substituting / substituted elements and their quantities, and prove that the non-isoelectronic substitution approach in the chalcopyrite semiconductors is an effective way to improve the thermoelectric performance.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51171084, 50871056), the Ningbo International cooperation Project (Grant Nos. 2011D10012), and the We should also acknowledge the support from Wang Kuancheng Education Foundation.
    [1]

    Pei Y, Shi X Y, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 66 473

    [2]

    Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970

    [3]

    Rhyee J, Lee K H, Lee S M, Cho E, Kim S II, Lee E, Kwon Y S, Shim J H, Kotliar G 2009 Nature 459 965

    [4]

    Liu H L, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder G J 2012 Nature Mater. 11 422

    [5]

    Zhang S B, Wei S H, Zunger A 1997 Phys. Rev. Lett. 78 4059

    [6]

    Wasim S M, Rincó n C, Marí n G, Delgado J M 2000 Appl. Phys. Lett. 77 94

    [7]

    Wei S H, Zhang S B, Zunger A 1998 Appl. Phys. Lett. 72 3199

    [8]

    Ye Z, Cho J Y, Tessema M M, Salvador J R, Waldo R A, Wang H, Cai W 2013 J. Solid State Chem . 201 262

    [9]

    Cui J L, Li Y P, Du Z L, Meng Q S, Zhou H 2013 J. Mater. Chem. A 1 677

    [10]

    Cui J L, Liu X L, Zhang X J, Li Y Y, Deng Y 2011 J. Appl. Phys. 110 023708

    [11]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634

    [12]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [13]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, MuTa H, Yamanaka S 2012 Adv. Mater. 24 3622

    [14]

    Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, MuTa H, Yamanaka S 2011 Appl. Phys. Lett. 98 172104

    [15]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [16]

    Xiao X X, Xie W J, Tang X F, Zhang Q J 2011 Chin. Phys. B 20 087201

    [17]

    Ohtani T, Tachibana Y, Ogura J, Miyake T, Okada Y, Yokota Y 1998 J. Alloys Compd. 279 136

    [18]

    Yao J L, Brunetta C D, Aitken J A 2012 J. Phys.: Condens. Matter 24 086006

    [19]

    Zhang Y P, LI Y, LI C Z, WANG W W, Zhang J Y, Wang R M 2012 Rare Metals 31 168

    [20]

    Wu W, Li Y P, Meng Q S, Sun Z, Ren W, Yang J F, Cui J L 2013 Appl. Phys. Lett. 103 011905

    [21]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882

    [22]

    Berman R 1976 Thermal Conduction in Solids (Clarendon Press, Oxford University)

  • [1]

    Pei Y, Shi X Y, LaLonde A, Wang H, Chen L, Snyder G J 2011 Nature 66 473

    [2]

    Vineis C J, Shakouri A, Majumdar A, Kanatzidis M G 2010 Adv. Mater. 22 3970

    [3]

    Rhyee J, Lee K H, Lee S M, Cho E, Kim S II, Lee E, Kwon Y S, Shim J H, Kotliar G 2009 Nature 459 965

    [4]

    Liu H L, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T, Snyder G J 2012 Nature Mater. 11 422

    [5]

    Zhang S B, Wei S H, Zunger A 1997 Phys. Rev. Lett. 78 4059

    [6]

    Wasim S M, Rincó n C, Marí n G, Delgado J M 2000 Appl. Phys. Lett. 77 94

    [7]

    Wei S H, Zhang S B, Zunger A 1998 Appl. Phys. Lett. 72 3199

    [8]

    Ye Z, Cho J Y, Tessema M M, Salvador J R, Waldo R A, Wang H, Cai W 2013 J. Solid State Chem . 201 262

    [9]

    Cui J L, Li Y P, Du Z L, Meng Q S, Zhou H 2013 J. Mater. Chem. A 1 677

    [10]

    Cui J L, Liu X L, Zhang X J, Li Y Y, Deng Y 2011 J. Appl. Phys. 110 023708

    [11]

    Poudel B, Hao Q, Ma Y, Lan Y C, Minnich A, Yu B, Yan X, Wang D Z, Muto A, Vashaee D, Chen X Y, Liu J M, Dresselhaus M S, Chen G, Ren Z F 2008 Science 320 634

    [12]

    Hsu K F, Loo S, Guo F, Chen W, Dyck J S, Uher C, Hogan T, Polychroniadis E K, Kanatzidis M G 2004 Science 303 818

    [13]

    Plirdpring T, Kurosaki K, Kosuga A, Day T, Firdosy S, Ravi V, Snyder G J, Harnwunggmoung A, Sugahara T, Ohishi Y, MuTa H, Yamanaka S 2012 Adv. Mater. 24 3622

    [14]

    Plirdpring T, Kurosaki K, Kosuga A, Ishimaru M, Harnwunggmoung A, Sugahara T, Ohishi Y, MuTa H, Yamanaka S 2011 Appl. Phys. Lett. 98 172104

    [15]

    Snyder G J, Toberer E S 2008 Nat. Mater. 7 105

    [16]

    Xiao X X, Xie W J, Tang X F, Zhang Q J 2011 Chin. Phys. B 20 087201

    [17]

    Ohtani T, Tachibana Y, Ogura J, Miyake T, Okada Y, Yokota Y 1998 J. Alloys Compd. 279 136

    [18]

    Yao J L, Brunetta C D, Aitken J A 2012 J. Phys.: Condens. Matter 24 086006

    [19]

    Zhang Y P, LI Y, LI C Z, WANG W W, Zhang J Y, Wang R M 2012 Rare Metals 31 168

    [20]

    Wu W, Li Y P, Meng Q S, Sun Z, Ren W, Yang J F, Cui J L 2013 Appl. Phys. Lett. 103 011905

    [21]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 29 1882

    [22]

    Berman R 1976 Thermal Conduction in Solids (Clarendon Press, Oxford University)

  • [1] Deng Shan-shan, Song Ping, Liu Xiao-he, Yao Sen, Zhao Qian-yi. The magnetic susceptibility of Mn3Sn single crystal is enhanced under GPa-level uniaxial stress. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240287
    [2] Chen Jin-Feng, Zhu Lin-Fan. Electron collision cross section data in plasma etching modeling. Acta Physica Sinica, 2024, 73(9): 095201. doi: 10.7498/aps.73.20231598
Metrics
  • Abstract views:  4997
  • PDF Downloads:  709
  • Cited By: 0
Publishing process
  • Received Date:  09 October 2013
  • Accepted Date:  24 November 2013
  • Published Online:  05 March 2014

/

返回文章
返回