Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multi-hop entanglement swapping in quantum networks based on polization-space hyperentanglement

Yang Guang Liu Qi Nie Min Liu Yuan-Hua Zhang Mei-Ling

Citation:

Multi-hop entanglement swapping in quantum networks based on polization-space hyperentanglement

Yang Guang, Liu Qi, Nie Min, Liu Yuan-Hua, Zhang Mei-Ling
PDF
HTML
Get Citation
  • Entanglement swapping (ES) based multi-hop quantum information transmission is a fundamental way to realize long-distance quantum communication. However, in the conventional quantum networks, the entanglement in one degree of freedom (DOF) of photon system is usually used as a quantum channel, showing disadvantages of low capacity and susceptibility to noise. In this paper, we present an efficient multi-hop quantum hyperentanglement swapping (HES) method based on hyperentanglement, which utilizes the entangled photos in polarization and spatial-mode DOFs to establish the hyperentangled multi-hop quantum channel. Taking long-distance hyperentanglement based quantum teleportation for example, we first describe a basic hop by hop HES scheme. Then, in order to reduce the end-to-end delay of this scheme, we propose a simultaneous HES (SHES) scheme, in which the intermediate quantum nodes perform hyperentangled Bell state measurements concurrently. On the basis of this scheme, we further put forward a hierarchical SHES (HSHES) scheme that can reduce the classical information cost. Theoretical analysis and simulation results show that the end-to-end delay of HSHES is similar to that of SHES, meanwhile, the classical information cost of HSHES is much lower than that of SHES, showing a better tradeoff between the two performance metrics. Compared with the traditional ES methods, the scheme proposed in this paper is conductive to meeting the requirements for long-distance hyperentanglement based quantum communication, which has positive significance for building more efficient quantum networks in the future.
      Corresponding author: Liu Qi, valenti_67@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61971348, 61201194) and the Natural Science Basic Research Program of Shaanxi Provence, China (Grant No. 2021JM-464).
    [1]

    Pan J W, Chen Z B, Lu Y C, Weinfurter H, Zeilinger A, Zukowsk M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [2]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [3]

    范桁 2018 物理学报 67 120301Google Scholar

    Fan H 2018 Acta Phys. Sin. 67 120301Google Scholar

    [4]

    Luo Y H, Zhong H S, Erhard M, Wang X L, Peng C L, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, Zeilinger A, Pan J W 2019 Phys. Rev. Lett. 123 070505Google Scholar

    [5]

    Hassanpour S, Houshmand M 2016 Quantum Inf. Process 15 905Google Scholar

    [6]

    Zang P, Song R, Jiang Y 2017 Chinese Journal of Quantum Electronics 34 456

    [7]

    Paulson K G, Panigrahi P K 2019 Phys. Rev. A 100 052325Google Scholar

    [8]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [9]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [10]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [11]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [12]

    曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar

    [13]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Hu X L, Guan J Y, Yu Z W, Xu H, Lin J, Li M J, Chen H, Li H, You, L X, Wang Z, Wang X B, Zhang Q, Pan J W 2020 Phys. Rev. Lett. 124 070501Google Scholar

    [14]

    龙桂鲁, 潘栋 2021 信息通信技术与政策 7 7Google Scholar

    Long G L, Pan D 2021 Telecommunications Network Technology 7 7Google Scholar

    [15]

    Sheng Y B, Guo F G, Long G L 2010 Phys Rev. A 82 032318Google Scholar

    [16]

    Hong C H, Heo J, Lim J I, Yang H J 2014 Chin. Phys. B 23 090309Google Scholar

    [17]

    Wang X L, Cai X D, Su Z E, Cheng M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516Google Scholar

    [18]

    Xu L 2020 Modern Phys Lett. B 34 2050353Google Scholar

    [19]

    彭承志, 潘建伟 2016 中国科学院院刊 31 1096

    Peng C Z, Pan J W 2016 Bulletin of Chinese Academy of Sciences 31 1096

    [20]

    Liao S K, Cai W Q 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [21]

    赖俊森, 赵文玉, 张海懿 2021 信息通信技术与政策 7 6Google Scholar

    Lai J S, Zhao W Y, Zhang H Y 2021 Telecommunications Network Technology 7 6Google Scholar

    [22]

    聂敏, 张帆, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 040303Google Scholar

    Nie M, Zhang F, Yang G, Zhang M L, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 040303Google Scholar

    [23]

    杨光, 廉保旺, 聂敏 2015 物理学报 64 010303Google Scholar

    Yang G, Lian B W, Nie M 2015 Acta Phys. Sin. 64 010303Google Scholar

    [24]

    杨光, 廉保旺, 聂敏 2015 物理学报 64 240304Google Scholar

    Yang G, Lian B W, Nie M 2015 Acta Phys. Sin. 64 240304Google Scholar

    [25]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910Google Scholar

    [26]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [27]

    Dotsenko I S, Korobka R 2018 Commun. Theor. Phys. 69 143Google Scholar

    [28]

    Li Y H, Li X L, Nie L P, Sang M H 2016 Int. J. Theor. Phys. 55 1820Google Scholar

    [29]

    Tao Y X, Xu J, Zhang Z C 2013 Chin. Phys. B 22 090311Google Scholar

    [30]

    Espoukeh P, Pedram P 2014 Int. J. Theor. Phys. 13 1789

    [31]

    Du Z L, Li X L, Liu X J 2020 Int. J. Theor. Phys. 59 622Google Scholar

    [32]

    Gao X Q, Zhang Z C, Gong Y X, Sheng B, Yu X T 2017 J. Opt. Soc. Am. B-Opt. Phys. 34 142Google Scholar

    [33]

    Cai X F, Yu X T, Shi L H, Zhang Z C 2014 Front. Phys. 9 646Google Scholar

    [34]

    Xiong P Y, Yu X T, Zhang Z C, Zhan H T, Hua J Y 2017 Front. Phys. 12 1

    [35]

    Wang K, Yu X T, Lu S L, Gong X Y 2014 Phys Rev. A 89 022329Google Scholar

    [36]

    Tao Y, Zhang Q, Zhang J, Yin J, Zhao Z, Zukowski M, Chen Z B, Pan J W 2005 Phys. Rev. Lett. 95 240406Google Scholar

    [37]

    郭肖 2020 硕士学位论文 (西安: 西安电子科技大学 )

    Guo X 2020 M. S. Dissertation (Shannxi: Xidian University) (in Chinese)

    [38]

    聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 030301Google Scholar

    Nie M, Wang C X, Yang G, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 030301Google Scholar

    [39]

    张秀再, 徐茜, 刘邦宇 2020 光学学报 40 0327001Google Scholar

    Zhang X Z, Xu Q, Liu B Y 2020 Acta Optica Sinica 40 0327001Google Scholar

    [40]

    Xu J, Chen X G, Xiao H W, Wang P X, Ma M 2021 Appl. Sci. 11 10869Google Scholar

    [41]

    Cabello A 2000 Phys. Rev. Lett. 85 5635Google Scholar

  • 图 1  极化和空间模自由度中超纠缠态产生原理

    Figure 1.  Schematic diagram of the setup to generate hyperentanglement in both polarization and spatial-mode DOFs.

    图 2  超纠缠交换原理

    Figure 2.  Schematic diagram of hyperentanglement swapping.

    图 3  并行超纠缠交换

    Figure 3.  Schematic diagram of simultaneous hyperentanglement swapping.

    图 4  多级并行纠缠交换原理

    Figure 4.  Schematic diagram of hierarchical simultaneous entanglement swapping.

    图 5  隐形传态保真度

    Figure 5.  Teleportation fidelity.

    图 6  隐形传态保真度随跳数及幅值阻尼系数的变化

    Figure 6.  Teleportation fidelity versus the number of hops and the damping factor.

    图 7  端到端纠缠建立时延随中间节点个数的关系

    Figure 7.  Time delay versus the number of intermediate nodes.

    图 8  单跳距离与端到端时延的关系

    Figure 8.  End to end time delay versus the per-hop length.

    图 9  跳数选择与隐形传态保真度的关系

    Figure 9.  Teleportation fidelity versus the choice of the number of hops.

    图 10  中间节点数与经典信息开销关系

    Figure 10.  Classical costs versus the number of intermediate nodes.

    图 11  每段节点数与经典信息开销的关系

    Figure 11.  Classical costs versus number of intermediate nodes in one segment.

    图 12  跳数与纠缠交换效率的关系

    Figure 12.  Entanglement swapping efficiency versus the number of hops.

    表 1  幺正变换表

    Table 1.  Unitary operations.

    B和C的量子态编码结果AD的量子态Bob的幺正变换
    $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $0000$ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $$ {U_1} = \sigma _I^P \otimes \sigma _I^S $
    $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $0001$ \left| {{\phi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $$ {U_2} = \sigma _I^P \otimes \sigma _Z^S $
    $ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $0010$ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $$ {U_3} = \sigma _Z^P \otimes \sigma _I^S $
    $ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $0011$ \left| {{\phi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $$ {U_4} = \sigma _Z^P \otimes \sigma _Z^S $
    $ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $0100$ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^{\text{ + }}}} \right\rangle _{S} $$ {U_5} = \sigma _X^P \otimes \sigma _I^S $
    $ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $0101$ \left| {{\psi ^{\text{ + }}}} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $$ {U_6} = \sigma _X^P \otimes \sigma _Z^S $
    $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $0110$ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ + }} \right\rangle _{S} $${U_7} = - {{i}}\sigma _Y^P \otimes \sigma _I^S$
    $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $0111$ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\phi ^ - }} \right\rangle _{S} $${U_8} = - {{i}}\sigma _Y^P \otimes \sigma _Z^S$
    $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^{\text{ + }}}} \right\rangle _{S} $1000$ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^{\text{ + }}}} \right\rangle _{S} $$ {U_9} = \sigma _I^P \otimes \sigma _X^S $
    $ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $1001$ \left| {{\phi ^{\text{ + }}}} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $${U_{10} } = \sigma _I^P \otimes - {{i}}\sigma _Y^S$
    $ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ + }} \right\rangle _{S} $1010$ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ + }} \right\rangle _{S} $$ {U_{11}} = \sigma _Z^P \otimes \sigma _X^S $
    $ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $1011$ \left| {{\phi ^ - }} \right\rangle _{p} \left| {{\psi ^ - }} \right\rangle _{S} $${U_{12} } = \sigma _Z^P \otimes - {{i}}\sigma _Y^S$
    $ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $1100$ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $$ {U_{13}} = \sigma _X^P \otimes \sigma _X^S $
    $ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $1101$ \left| {{\psi ^ + }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $${U_{14} } = \sigma _X^P \otimes - {{i}}\sigma _Y^S$
    $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $1110$ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ + }} \right\rangle _{S} $${U_{15} } = - {{i}}\sigma _Y^P \otimes \sigma _X^S$
    $ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $1111$ \left| {{\psi ^ - }} \right\rangle _{P} \left| {{\psi ^ - }} \right\rangle _{S} $${U_{16} } = - {{i}}\sigma _Y^P \otimes - {\rm{i} }\sigma _Y^S$
    DownLoad: CSV

    表 2  多跳并行幺正变换表

    Table 2.  Multi-hop parallel entanglement swapping unitary operations

    N1, N2, ···NN – 1 测量结果Alice的幺正变换
    $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $$ {U_1} = \sigma _I^P \otimes \sigma _I^S $
    $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $$ {U_2} = \sigma _I^P \otimes \sigma _Z^S $
    $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $$ {U_3} = \sigma _I^P \otimes \sigma _X^S $
    $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $$ {U_4} = \sigma _I^P \otimes - i\sigma _Y^S $
    $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $$ {U_5} = \sigma _I^P \otimes \sigma _I^S $
    $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $$ {U_6} = \sigma _Z^P \otimes \sigma _Z^S $
    $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $$ {U_7} = \sigma _Z^P \otimes \sigma _X^S $
    $ \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $$ {U_8} = \sigma _Z^P \otimes - i\sigma _Y^S $
    $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $$ {U_9} = \sigma _X^P \otimes \sigma _I^S $
    $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $$ {U_{10}} = \sigma _X^P \otimes \sigma _Z^S $
    $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $$ {U_{11}} = \sigma _X^P \otimes \sigma _X^S $
    $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2}} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $$ {U_{12}} = \sigma _X^P \otimes - i\sigma _Y^S $
    $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $$ {U_{13}} = - i\sigma _Y^P \otimes \sigma _I^S $
    $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1}} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $$ {U_{14}} = - i\sigma _Y^P \otimes \sigma _Z^S $
    $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \overline { \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2}} = 1 $$ {U_{15}} = - i\sigma _Y^P \otimes \sigma _X^S $
    $ \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_P^{i2} \otimes \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i1} \cdot \oplus _{i = 1}^{N - 1}{\text{MN}}_S^{i2} = 1 $$ {U_{1{\text{6}}}} = - i\sigma _Y^P \otimes - i\sigma _Y^S $
    DownLoad: CSV
  • [1]

    Pan J W, Chen Z B, Lu Y C, Weinfurter H, Zeilinger A, Zukowsk M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [2]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [3]

    范桁 2018 物理学报 67 120301Google Scholar

    Fan H 2018 Acta Phys. Sin. 67 120301Google Scholar

    [4]

    Luo Y H, Zhong H S, Erhard M, Wang X L, Peng C L, Krenn M, Jiang X, Li L, Liu N L, Lu C Y, Zeilinger A, Pan J W 2019 Phys. Rev. Lett. 123 070505Google Scholar

    [5]

    Hassanpour S, Houshmand M 2016 Quantum Inf. Process 15 905Google Scholar

    [6]

    Zang P, Song R, Jiang Y 2017 Chinese Journal of Quantum Electronics 34 456

    [7]

    Paulson K G, Panigrahi P K 2019 Phys. Rev. A 100 052325Google Scholar

    [8]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441Google Scholar

    [9]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [10]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [11]

    Long G L, Liu X S 2002 Phys. Rev. A 65 032302Google Scholar

    [12]

    曹正文, 赵光, 张爽浩, 冯晓毅, 彭进业 2016 物理学报 65 230301Google Scholar

    Cao Z W, Zhao G, Zhang S H, Feng X Y, Peng J Y 2016 Acta Phys. Sin. 65 230301Google Scholar

    [13]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Hu X L, Guan J Y, Yu Z W, Xu H, Lin J, Li M J, Chen H, Li H, You, L X, Wang Z, Wang X B, Zhang Q, Pan J W 2020 Phys. Rev. Lett. 124 070501Google Scholar

    [14]

    龙桂鲁, 潘栋 2021 信息通信技术与政策 7 7Google Scholar

    Long G L, Pan D 2021 Telecommunications Network Technology 7 7Google Scholar

    [15]

    Sheng Y B, Guo F G, Long G L 2010 Phys Rev. A 82 032318Google Scholar

    [16]

    Hong C H, Heo J, Lim J I, Yang H J 2014 Chin. Phys. B 23 090309Google Scholar

    [17]

    Wang X L, Cai X D, Su Z E, Cheng M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516Google Scholar

    [18]

    Xu L 2020 Modern Phys Lett. B 34 2050353Google Scholar

    [19]

    彭承志, 潘建伟 2016 中国科学院院刊 31 1096

    Peng C Z, Pan J W 2016 Bulletin of Chinese Academy of Sciences 31 1096

    [20]

    Liao S K, Cai W Q 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [21]

    赖俊森, 赵文玉, 张海懿 2021 信息通信技术与政策 7 6Google Scholar

    Lai J S, Zhao W Y, Zhang H Y 2021 Telecommunications Network Technology 7 6Google Scholar

    [22]

    聂敏, 张帆, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 040303Google Scholar

    Nie M, Zhang F, Yang G, Zhang M L, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 040303Google Scholar

    [23]

    杨光, 廉保旺, 聂敏 2015 物理学报 64 010303Google Scholar

    Yang G, Lian B W, Nie M 2015 Acta Phys. Sin. 64 010303Google Scholar

    [24]

    杨光, 廉保旺, 聂敏 2015 物理学报 64 240304Google Scholar

    Yang G, Lian B W, Nie M 2015 Acta Phys. Sin. 64 240304Google Scholar

    [25]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910Google Scholar

    [26]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [27]

    Dotsenko I S, Korobka R 2018 Commun. Theor. Phys. 69 143Google Scholar

    [28]

    Li Y H, Li X L, Nie L P, Sang M H 2016 Int. J. Theor. Phys. 55 1820Google Scholar

    [29]

    Tao Y X, Xu J, Zhang Z C 2013 Chin. Phys. B 22 090311Google Scholar

    [30]

    Espoukeh P, Pedram P 2014 Int. J. Theor. Phys. 13 1789

    [31]

    Du Z L, Li X L, Liu X J 2020 Int. J. Theor. Phys. 59 622Google Scholar

    [32]

    Gao X Q, Zhang Z C, Gong Y X, Sheng B, Yu X T 2017 J. Opt. Soc. Am. B-Opt. Phys. 34 142Google Scholar

    [33]

    Cai X F, Yu X T, Shi L H, Zhang Z C 2014 Front. Phys. 9 646Google Scholar

    [34]

    Xiong P Y, Yu X T, Zhang Z C, Zhan H T, Hua J Y 2017 Front. Phys. 12 1

    [35]

    Wang K, Yu X T, Lu S L, Gong X Y 2014 Phys Rev. A 89 022329Google Scholar

    [36]

    Tao Y, Zhang Q, Zhang J, Yin J, Zhao Z, Zukowski M, Chen Z B, Pan J W 2005 Phys. Rev. Lett. 95 240406Google Scholar

    [37]

    郭肖 2020 硕士学位论文 (西安: 西安电子科技大学 )

    Guo X 2020 M. S. Dissertation (Shannxi: Xidian University) (in Chinese)

    [38]

    聂敏, 王超旭, 杨光, 张美玲, 孙爱晶, 裴昌幸 2021 物理学报 70 030301Google Scholar

    Nie M, Wang C X, Yang G, Sun A J, Pei C X 2021 Acta Phys. Sin. 70 030301Google Scholar

    [39]

    张秀再, 徐茜, 刘邦宇 2020 光学学报 40 0327001Google Scholar

    Zhang X Z, Xu Q, Liu B Y 2020 Acta Optica Sinica 40 0327001Google Scholar

    [40]

    Xu J, Chen X G, Xiao H W, Wang P X, Ma M 2021 Appl. Sci. 11 10869Google Scholar

    [41]

    Cabello A 2000 Phys. Rev. Lett. 85 5635Google Scholar

  • [1] Lai Hong, Ren Li, Huang Zhong-Rui, Wan Lin-Chun. Quantum Network Communication Resource Optimization Scheme Based on Multi-Scale Entanglement Renormalization Ansatz. Acta Physica Sinica, 2024, 73(23): 1-14. doi: 10.7498/aps.73.20241382
    [2] Liu Ran, Wu Ze, Li Yu-Chen, Chen Yu-Quan, Peng Xin-Hua. Experimentally characterizing multiparticle entanglement based on measuring quantum Fisher information. Acta Physica Sinica, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [3] Wei Rong-Yu, Li Jun, Zhang Da-Ming, Wang Wei-Hao. Research on method of constant false alarm rate of entangled state quantum detection system. Acta Physica Sinica, 2022, 71(1): 010303. doi: 10.7498/aps.71.20211121
    [4] Research on Constant False Alarm Detection Method of Entangled State Quantum Detection System. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211121
    [5] Li Juan, Li Jia-Ming, Cai Chun-Xiao, Sun Heng-Xin, Liu Kui, Gao Jiang-Rui. Enhancement of continuous-variable hyperentanglement by optimizing pump mode. Acta Physica Sinica, 2019, 68(3): 034204. doi: 10.7498/aps.68.20181625
    [6] Nie Min, Wei Rong-Yu, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing. An adaptive quantum state-hopping communication strategy based on kangaroo entanglement hopping model. Acta Physica Sinica, 2019, 68(11): 110301. doi: 10.7498/aps.68.20190163
    [7] Zhu Hao-Nan, Wu De-Wei, Li Xiang, Wang Xiang-Lin, Miao Qiang, Fang Guan. Path-entanglement microwave signals detecting method based on entanglement witness. Acta Physica Sinica, 2018, 67(4): 040301. doi: 10.7498/aps.67.20172164
    [8] Zong Xiao-Lan, Yang Ming. Scheme for protecting multipartite quantum entanglement. Acta Physica Sinica, 2016, 65(8): 080303. doi: 10.7498/aps.65.080303
    [9] Ding Dong, He Ying-Qiu, Yan Feng-Li, Gao Ting. Generation of six-photon hyperentangled states. Acta Physica Sinica, 2015, 64(16): 160301. doi: 10.7498/aps.64.160301
    [10] Ren Bao-Cang, Deng Fu-Guo. Hyper-parallel photonic quantum computation and manipulation on hyperentangled states. Acta Physica Sinica, 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [11] Yang Guang, Lian Bao-Wang, Nie Min. Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol. Acta Physica Sinica, 2015, 64(24): 240304. doi: 10.7498/aps.64.240304
    [12] Zhao Jian-Hui, Wang Hai-Tao. Quantum phase transition and ground state entanglement of the quantum spin system: a MERA study. Acta Physica Sinica, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [13] Hu Yao-Hua. Entropy exchange and entanglement in the multi-photon J-C model of a moving atom. Acta Physica Sinica, 2012, 61(12): 120302. doi: 10.7498/aps.61.120302
    [14] Li Wei, Fan Ming-Yu, Wang Guang-Wei. Arbitrated quantum signature scheme based on entanglement swapping. Acta Physica Sinica, 2011, 60(8): 080302. doi: 10.7498/aps.60.080302
    [15] Wang Hai-Xia, Yin Wen, Wang Fang-Wei. Measurement of entanglement in coupled dots. Acta Physica Sinica, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [16] Tang You-Liang, Liu Xiang, Zhang Xiao-Wei, Tang Xiao-Fang. Teleportation of the M-particle entangled state by using one entangled state. Acta Physica Sinica, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [17] Wang Ju-Xia, Yang Zhi-Yong, An Yu-Ying. The entanglement states transfer and preservation in the process of two-level atoms interacting with multi-mode light fields. Acta Physica Sinica, 2007, 56(11): 6420-6426. doi: 10.7498/aps.56.6420
    [18] Feng Fa-Yong, Zhang Qiang. Quantum key distribution based on hyperentanglement swapping. Acta Physica Sinica, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [19] Yang Yu-Guang, Wen Qiao-Yan, Zhu Fu-Chen. Multi-party multi-level quantum key distribution protocol based on entanglement swapping. Acta Physica Sinica, 2005, 54(12): 5544-5548. doi: 10.7498/aps.54.5544
    [20] SHI MING-JUN, DU JIANG-FENG, ZHU DONG-PEI. ENTANGEMENT OF QUANTUM PURE STATES. Acta Physica Sinica, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
Metrics
  • Abstract views:  4555
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  25 November 2021
  • Accepted Date:  11 January 2022
  • Available Online:  21 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回