Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation of zinc cobalt composite microstructures derived from metal-organic-framwork and gas-sensing properties of cyclohexanone

Sun Yong-Jiao Wang Shi-Zhen Zhang Wen-Lei Wang Wen-Da Zhang Wen-Dong Hu Jie

Citation:

Preparation of zinc cobalt composite microstructures derived from metal-organic-framwork and gas-sensing properties of cyclohexanone

Sun Yong-Jiao, Wang Shi-Zhen, Zhang Wen-Lei, Wang Wen-Da, Zhang Wen-Dong, Hu Jie
PDF
HTML
Get Citation
  • Metal-organic-framework(MOF)-derived pure ZnO and ZnO/Co3O4 composite microstructures with different ratios are prepared by the sol-vothermal method. The crystalline structure, morphology and chemical composition for each of the prepared micro-structures are analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscope (XPS), and surface area analyzer respectively. The Gas sensors based on the as-prepared materials are fabricated and their performances of sensing various gases are investigated. The measurement results show that most of the gas sensors exhibit the highest responses to cyclohexanone gas within the test temperature range, and the composite with an appropriate amount of Co3O4 can obviously promote the cyclohexanoe-sensing property of ZnO microstructure. The response values of ZnO/Co3O4 composite microstructures to cyclohexanone first increase and then decrease with Co3O4 content increasing. The ZnO/Co3O4 composite microstructure sensor with a zinc-to-obalt ratio of 1∶0.1 shows that its value of response to cyclohexanone with a volume fraction of 100 × 10–6 at the optimum working temperature (250 ℃) can arrive at 161, which is 6.4 times higher than that of ZnO microstructure under the same condition. Besides, its response and recovery time are 30 s and 35 s, respectively. This excellent detection performance is attributed mainly to the synergy effect between ZnO and Co3O4. The work has an important application value in the high-performance detection of cyclohexanone.
      Corresponding author: Hu Jie, hujie@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61904122, 62171308) and the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D111090)
    [1]

    陈小梅, 陈颖, 袁霞 2021 无机材料学报Google Scholar

    Chen X M, Chen Y, Yuan X 2021 J. Inorg. Mater.Google Scholar

    [2]

    王志峰 2013 中国化工贸易 5 127Google Scholar

    Wang Z F 2013 China Chem. Trade 5 127Google Scholar

    [3]

    Li Z 2018 Chemosensors 6 34Google Scholar

    [4]

    Grazier K M, Swager T M 2013 Anal. Chem. 85 7154Google Scholar

    [5]

    Ong C N, Sia G L, Chia S E 1991 J. Anal. Toxicl. 15 13Google Scholar

    [6]

    Deelder R S, Hendricks P J H 1973 J. Chromatogr. A 83 343Google Scholar

    [7]

    Pijolat C, Pupier C, Sauvan M, Tournier G, Lalauze R 1999 Sens. Actuators B:Chem. 59 195Google Scholar

    [8]

    Gardon M, Guilemany J M 2013 J. Mater. Sci:Mater. Electron. 24 1410Google Scholar

    [9]

    Franke M E, Koplin T J, Simon U 2006 Small 2 36Google Scholar

    [10]

    Liu X, Cheng S T, Liu H, Hu S, Zhang D Q, Ning H S 2012 Sensors 12 9635Google Scholar

    [11]

    Katoch A, Abideen Z U, Kim J H, Kim S S 2016 Sens. Actuators B:Chem. 232 698Google Scholar

    [12]

    Yi G C, Wang C, Park W I 2005 Semicond. Sci. Tech. 20 S22Google Scholar

    [13]

    Meng D, Liu D Y, Wang G S, Shen B, San Y B, Si J P, Meng F L 2019 Appl. Surf. Sci. 463 348Google Scholar

    [14]

    Zhou T T, Zhang T 2021 Small Methods 5 2100515Google Scholar

    [15]

    Rothschild A, Komem Y 2004 J. Appl. Phys. 95 6374Google Scholar

    [16]

    Koo A, Yoo R, Woo S P, Lee H S, Lee W Y 2019 Sens. Actuators B: Chem. 280 109Google Scholar

    [17]

    Qi T, Yang X, Sun J 2019 Sens. Actuators B:Chem. 283 93Google Scholar

    [18]

    Lee C S, Dai Z F, Jeong S Y, Kwak C H, Kim B Y, Kim D H, Jang H W, Park J S, Lee J H 2016 Chem. Eur. J. 22 7102Google Scholar

    [19]

    Nie S, Dastan D, Li J, Zhou W D, Wu S S, Zhou Y W, Yin X T 2021 J. Phys. Chem. Solid 150 109864Google Scholar

    [20]

    Li B, Liu J Y, Liu Q, Chen R R, Zhang H S, Yu J, Song D L, Li J Q, Zhang M L, Wang J 2019 Appl. Surf. Sci. 475 700Google Scholar

    [21]

    Xiong Y, Liu W D, Qiao X R, Song X J, Wang S C, Zhang X L, Wang X Z, Tian J 2021 Sens. Actuators B: Chem. 346 130486Google Scholar

    [22]

    Bai S L, Guo J, Xiang X, Luo R X, Li D Q, Chen A F, Liu C C 2017 Sens. Actuators B: Chem. 245 359Google Scholar

    [23]

    Shingange K, Tshbalala Z P, Nteaeaborwa O M, Motaung D E, Mhlongo G H 2016 J. Colloid Interf. Sci. 479 127Google Scholar

    [24]

    Yun S, Lee J, Chung J, Lim S 2010 J. Phys. Chem. Solid 71 1724Google Scholar

    [25]

    Jing H Y, Song X D, Ren S Z, Shi Y T, An Y L, Yang Y, Feng M Q, Ma S B, Hao C 2016 Electrochim. Acta 213 252Google Scholar

    [26]

    Sakai G, Matsunaga N, Shimanoe K, Yamzoe N 2001 Sens. Actuators B 80 125Google Scholar

    [27]

    Suematsu K, Shin Y, Hua Z Q, Yoshida K, Yuasa M, Kida T, Shimanoe K 2014 ACS Appl. Mater. Interfaces 6 5319Google Scholar

    [28]

    Kida T, Kuroiwa T, Yuasa M, Shimanoe K, Yamazoe N 2008 Sens. Actuators B:Chem. 134 928Google Scholar

    [29]

    Ahn M W, Park K S, Heo J H, Kim D W, Choi K J, Park J G 2009 Sens. Actuators B:Chem. 138 168Google Scholar

    [30]

    Scott R W J, Yang S M, Chabanis G, Coombs N, Williams D E, Ozin G A 2001 Adv. Mater. 13 1468Google Scholar

    [31]

    Liu L, Li S C, Zhuang J, Wang L Y, Zhang J B, Li H Y, Liu Z, Han Y, Jiang X X, Zhang P 2011 Sens. Actuators B: Chem. 155 728

    [32]

    Sahay P P, Nath R K 2008 Sens. Actuators B: Chem. 133 222Google Scholar

    [33]

    Zhou T T, Zhang T, Deng J N, Zhang R, Lou Z, Wang L L 2017 Sens. Actuators B: Chem. 242 369Google Scholar

    [34]

    Doan T L H, Kim J Y, Lee J H, Nguyen L H T, Dang Y T, Bui K B T, Pham A T T, Mirzaei A, Phan T B, Kim S S 2021 Sens. Actuators B: Chem. 348 130684Google Scholar

    [35]

    Kim H R, Haensch A, Kim II D, Barsan N, Weimar U, Lee J H 2011 Adv. Funct. Mater. 21 4456Google Scholar

  • 图 1  ZnO和ZnO/Co3O4复合微结构的XRD图谱

    Figure 1.  XRD patterns of ZnO and ZnO/Co3O4 composite microstructures.

    图 2  (a) ZnO, (b) Zn1Co0.05, (c) Zn1Co0.1, (d) Zn1Co0.2和(e) Zn1Co1复合微结构的SEM图和(f) Zn1Co0.1的EDS图谱

    Figure 2.  SEM images of (a) ZnO, (b) Zn1Co0.05, (c) Zn1Co0.1, (d) Zn1Co0.2 and (e) Zn1Co1 composite microstructures and EDS patterns of (f) Zn1Co0.1.

    图 3  Zn1Co0.1复合微结构的氮吸附-脱附等温曲线与孔径分布曲线(插图)

    Figure 3.  Nitrogen adsorption-desorption isotherm and pore-size distribution curve (inset) of Zn1Co0.1 composite microstructure.

    图 4  Zn1Co0.1复合微结构的XPS图谱(a), Zn 2p (b), O 1s (c)和Co 2p (d)

    Figure 4.  XPS spectra of Zn1Co0.1 composite microstructure (a), Zn 2p (b), O 1s (c) and Co 2p (d).

    图 5  (a)—(e)ZnO和ZnO/Co3O4复合微结构的在不同温度下对7种体积分数为100 × 10–6不同气体的响应值, (f)在不同温度下对体积分数为100 × 10–6环己酮气体的响应曲线

    Figure 5.  (a)–(e) Response vaules of ZnO and ZnO/Co3O4 composite microstructures to 100 × 10–6 (volume fraction) 7 kinds of different gases at different temperatures, and (f) response curves to 100 × 10–6 (volume fraction) cyclohexanone gas at different temperatures.

    图 6  ZnO和ZnO/Co3O4复合微结构的在250 ℃时对体积分数为100 × 10–6环己酮气体的响应恢复曲线

    Figure 6.  Response-recovery curves of ZnO and ZnO/Co3O4 composite microstructures to 100 × 10–6 (volume fraction) cyclohexanone at 250 ℃.

    图 7  (a) ZnO和ZnO/Co3O4复合微结构在250 ℃时对不同浓度环己酮气体的响应恢复曲线, (b)传感器响应-环己酮浓度关系及(c)其对数形式关系

    Figure 7.  (a) Response-recovery curves of ZnO and ZnO/Co3O4 composite microstructures to various concentration of cyclohexanone at 250 ℃; (b) the relationship curves of the responses-cyclohexanone concentrations and (c) relationship in logarithm form.

    图 8  ZnO/Co3O4复合微结构在(a)空气中和(b)环己酮气体中的能带示意图

    Figure 8.  The energy band diagrams of ZnO/Co3O4 composite microstructures (a) in air and (b) in cyclohexanone.

  • [1]

    陈小梅, 陈颖, 袁霞 2021 无机材料学报Google Scholar

    Chen X M, Chen Y, Yuan X 2021 J. Inorg. Mater.Google Scholar

    [2]

    王志峰 2013 中国化工贸易 5 127Google Scholar

    Wang Z F 2013 China Chem. Trade 5 127Google Scholar

    [3]

    Li Z 2018 Chemosensors 6 34Google Scholar

    [4]

    Grazier K M, Swager T M 2013 Anal. Chem. 85 7154Google Scholar

    [5]

    Ong C N, Sia G L, Chia S E 1991 J. Anal. Toxicl. 15 13Google Scholar

    [6]

    Deelder R S, Hendricks P J H 1973 J. Chromatogr. A 83 343Google Scholar

    [7]

    Pijolat C, Pupier C, Sauvan M, Tournier G, Lalauze R 1999 Sens. Actuators B:Chem. 59 195Google Scholar

    [8]

    Gardon M, Guilemany J M 2013 J. Mater. Sci:Mater. Electron. 24 1410Google Scholar

    [9]

    Franke M E, Koplin T J, Simon U 2006 Small 2 36Google Scholar

    [10]

    Liu X, Cheng S T, Liu H, Hu S, Zhang D Q, Ning H S 2012 Sensors 12 9635Google Scholar

    [11]

    Katoch A, Abideen Z U, Kim J H, Kim S S 2016 Sens. Actuators B:Chem. 232 698Google Scholar

    [12]

    Yi G C, Wang C, Park W I 2005 Semicond. Sci. Tech. 20 S22Google Scholar

    [13]

    Meng D, Liu D Y, Wang G S, Shen B, San Y B, Si J P, Meng F L 2019 Appl. Surf. Sci. 463 348Google Scholar

    [14]

    Zhou T T, Zhang T 2021 Small Methods 5 2100515Google Scholar

    [15]

    Rothschild A, Komem Y 2004 J. Appl. Phys. 95 6374Google Scholar

    [16]

    Koo A, Yoo R, Woo S P, Lee H S, Lee W Y 2019 Sens. Actuators B: Chem. 280 109Google Scholar

    [17]

    Qi T, Yang X, Sun J 2019 Sens. Actuators B:Chem. 283 93Google Scholar

    [18]

    Lee C S, Dai Z F, Jeong S Y, Kwak C H, Kim B Y, Kim D H, Jang H W, Park J S, Lee J H 2016 Chem. Eur. J. 22 7102Google Scholar

    [19]

    Nie S, Dastan D, Li J, Zhou W D, Wu S S, Zhou Y W, Yin X T 2021 J. Phys. Chem. Solid 150 109864Google Scholar

    [20]

    Li B, Liu J Y, Liu Q, Chen R R, Zhang H S, Yu J, Song D L, Li J Q, Zhang M L, Wang J 2019 Appl. Surf. Sci. 475 700Google Scholar

    [21]

    Xiong Y, Liu W D, Qiao X R, Song X J, Wang S C, Zhang X L, Wang X Z, Tian J 2021 Sens. Actuators B: Chem. 346 130486Google Scholar

    [22]

    Bai S L, Guo J, Xiang X, Luo R X, Li D Q, Chen A F, Liu C C 2017 Sens. Actuators B: Chem. 245 359Google Scholar

    [23]

    Shingange K, Tshbalala Z P, Nteaeaborwa O M, Motaung D E, Mhlongo G H 2016 J. Colloid Interf. Sci. 479 127Google Scholar

    [24]

    Yun S, Lee J, Chung J, Lim S 2010 J. Phys. Chem. Solid 71 1724Google Scholar

    [25]

    Jing H Y, Song X D, Ren S Z, Shi Y T, An Y L, Yang Y, Feng M Q, Ma S B, Hao C 2016 Electrochim. Acta 213 252Google Scholar

    [26]

    Sakai G, Matsunaga N, Shimanoe K, Yamzoe N 2001 Sens. Actuators B 80 125Google Scholar

    [27]

    Suematsu K, Shin Y, Hua Z Q, Yoshida K, Yuasa M, Kida T, Shimanoe K 2014 ACS Appl. Mater. Interfaces 6 5319Google Scholar

    [28]

    Kida T, Kuroiwa T, Yuasa M, Shimanoe K, Yamazoe N 2008 Sens. Actuators B:Chem. 134 928Google Scholar

    [29]

    Ahn M W, Park K S, Heo J H, Kim D W, Choi K J, Park J G 2009 Sens. Actuators B:Chem. 138 168Google Scholar

    [30]

    Scott R W J, Yang S M, Chabanis G, Coombs N, Williams D E, Ozin G A 2001 Adv. Mater. 13 1468Google Scholar

    [31]

    Liu L, Li S C, Zhuang J, Wang L Y, Zhang J B, Li H Y, Liu Z, Han Y, Jiang X X, Zhang P 2011 Sens. Actuators B: Chem. 155 728

    [32]

    Sahay P P, Nath R K 2008 Sens. Actuators B: Chem. 133 222Google Scholar

    [33]

    Zhou T T, Zhang T, Deng J N, Zhang R, Lou Z, Wang L L 2017 Sens. Actuators B: Chem. 242 369Google Scholar

    [34]

    Doan T L H, Kim J Y, Lee J H, Nguyen L H T, Dang Y T, Bui K B T, Pham A T T, Mirzaei A, Phan T B, Kim S S 2021 Sens. Actuators B: Chem. 348 130684Google Scholar

    [35]

    Kim H R, Haensch A, Kim II D, Barsan N, Weimar U, Lee J H 2011 Adv. Funct. Mater. 21 4456Google Scholar

Metrics
  • Abstract views:  5831
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  17 November 2021
  • Accepted Date:  13 January 2022
  • Available Online:  16 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回