Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A three-user fully connected quantum network based on hyperentanglement

LIU Yuankai HOU Yunlong YANG Yilin HOU Liumin LI Yuanhua LIN Jia CHEN Xianfeng

Citation:

A three-user fully connected quantum network based on hyperentanglement

LIU Yuankai, HOU Yunlong, YANG Yilin, HOU Liumin, LI Yuanhua, LIN Jia, CHEN Xianfeng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Hyperentanglement, as a high-dimensional quantum entanglement phenomenon with multiple degrees of freedom, plays a critical role in quantum communication, quantum computing, and high-dimensional quantum state manipulation. Unlike entangled states in a single degree of freedom, hyperentangled states establish entanglement relationships simultaneously in multiple degrees of freedom, such as polarization, path, and orbital angular momentum. Through entanglement-based distribution techniques, high-dimensional quantum information networks can be constructed. On this basis, a fully connected quantum network with hyperentanglement is constructed in this work, and the polarization and time-bin degree-of-freedom hyperentanglement is realized through the process of second-harmonic generation and spontaneous parametric down-conversion in periodically poled lithium niobate (PPLN) waveguide cascades. The hyperentangled state is then multiplexed into a single-mode fiber by using dense wavelength division multiplexing (DWDM) technology for transmission to terminal users. The quality of the entangled states in the two degrees of freedom is characterized using Franson-type interference and photon-pair coincidence measurement techniques. Polarization entangled states are subjected to quantum state tomography, and entanglement distribution technology is employed to achieve long-distance distribution and quantum key transmission within the network. Experimental results show that the two-photon interference visibility of both polarization and time-bin entanglement is greater than 95%, demonstrating the high quality of the hyperentanglement in the network. After 100-km-entanglement distribution, the fidelity of the quantum states in both degrees of freedom remains above 88%, indicating the effectiveness of long-distance entanglement distribution in this network. Additionally, it is verified that this network supports the distribution of quantum keys over a distance of more than 50 km between users. These results confirm the feasibility of a fully connected quantum network with hyperentanglement and demonstrate the potential for constructing large-scale metropolitan networks by using hyperentanglement. As a higher-dimensional entanglement, hyperentangled states can significantly enhance the capacity and efficiency of quantum information processing. Although the quantum communication is still in its early stages of development, achieving stable storage and transmission of entangled states in large-scale metropolitan networks remains a great challenge. By utilizing the frequency conversion properties and high integration characteristics of the periodically poled lithium niobate waveguides, the three-user hyperentangled quantum network constructed in this work provides a new solution for developing the large-scale metropolitan networks with high-dimensional quantum information networks., It is expected to provide a new platform for quantum tasks such as superdense coding and quantum teleportation
  • 图 1  全连接网络架构及实验装置示意图 (a)网络的通信拓扑结构; (b)网络的物理拓扑结构; (c)实验装置示意图

    Figure 1.  Fully connected network architecture and experimental Setup diagram: (a) Communication topology of the network; (b) physical topology of the network; (c) schematic diagram of the experimental setup.

    图 2  time-bin纠缠和偏振纠缠实验结果 (a) CH31&CH33 time-bin纠缠双光子干涉条纹; (b) CH30&CH34 time-bin纠缠双光子干涉条纹; (c) CH29&CH35 time-bin纠缠双光子干涉条纹; (d) CH31&CH33偏振纠缠双光子干涉条纹; (e) CH30&CH34偏振纠缠双光子干涉条纹; (f) CH29&CH35偏振纠缠双光子干涉条纹

    Figure 2.  Experimental results of time-bin entanglement and polarization entanglement: (a) Time-bin entangled biphoton interference fringes for CH31 & CH33; (b) time-bin entangled biphoton interference fringes for CH30 & CH34; (c) time-bin entangled biphoton interference fringes for CH29 & CH35; (d) polarization-entangled biphoton interference fringes for CH31 & CH33; (e) polarization-entangled biphoton interference fringes for CH30 & CH34; (f) polarization-entangled biphoton interference fringes for CH29 & CH35.

    图 3  偏振纠缠态重构密度矩阵的实部和虚部 (a) CH31&CH33偏振纠缠态重构密度矩阵的实部; (b) CH31&CH33偏振纠缠态重构密度矩阵的虚部; (c) CH30&CH34偏振纠缠态重构密度矩阵的实部; (d) CH30&CH34偏振纠缠态重构密度矩阵的虚部; (e) CH29&CH35偏振纠缠态重构密度矩阵的实部; (f) CH29&CH35偏振纠缠态重构密度矩阵的虚部

    Figure 3.  Real and imaginary parts of the reconstructed density matrix for polarization-entangled states: (a) Real part of the reconstructed density matrix for CH31 & CH33 polarization-entangled states; (b) imaginary part of the reconstructed density matrix for CH31 & CH33 polarization-entangled states; (c) real part of the reconstructed density matrix for CH30 & CH34 polarization-entangled states; (d) imaginary part of the reconstructed density matrix for CH30 & CH34 polarization-entangled states; (e) real part of the reconstructed density matrix for CH29 & CH35 polarization-entangled states; (f) imaginary part of the reconstructed density matrix for CH29 & CH35 polarization-entangled states.

    图 4  纠缠保真度与传输距离的关系 (a) time-bin纠缠保真度与传输距离的关系; (b)偏振纠缠保真度与传输距离的关系

    Figure 4.  Relationship between entanglement fidelity and transmission distance: (a) Time-bin entanglement fidelity versus transmission distance; (b) polarization-entangled fidelity versus transmission distance.

    图 5  在超纠缠网络中Alice, Bob和Charlie之间的安全密钥速率随传输距离的变化

    Figure 5.  Secure key rate between Alice, Bob, and Charlie in a hyper-entangled network as a function of transmission distance.

  • [1]

    Konrad T, de Melo F, Tiersch M, Kasztelan C, Aragão A, Buchleitner A 2008 Nat. Phys. 4 99Google Scholar

    [2]

    Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Resch K, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621Google Scholar

    [3]

    Maring N, Fyrillas A, Pont M, Ivanov E, Stepanov P, Margaria N, Hease W, Pishchagin A, Lemaître A, Sagnes I, Au T H, Boissier S, Bertasi E, Baert A, Valdivia M, Billard M, Acar O, Brieussel A, Mezher R, Wein S C, Salavrakos A, Sinnott P, Fioretto D A, Emeriau P E, Belabas N, Mansfield S, Senellart P, Senellart J, Somaschi N 2024 Nat. Photonics 18 603Google Scholar

    [4]

    Gisin N, Thew R 2007 Nat. Photonics 1 165Google Scholar

    [5]

    Li W, Zhang L, Tan H, Lu Y, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, Li Q, Liu Y, Zhang Q, Peng C Z, You L, Xu F, Pan J W 2023 Nat. Photonics 17 416Google Scholar

    [6]

    Zahidy M, Ribezzo D, De Lazzari C, Vagniluca I, Biagi N, Müller R, Occhipinti T, Oxenløwe L K, Galili M, Hayashi T, Cassioli D, Mecozzi A, Antonelli C, Zavatta A, Bacco D 2024 Nat. Commun. 15 1651Google Scholar

    [7]

    Ye J, Zoller P 2024 Phys. Rev. Lett. 132 190001Google Scholar

    [8]

    Guo X, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Christandl M, Neergaard-Nielsen J S, Andersen U L 2020 Nat. Phys. 16 281Google Scholar

    [9]

    Qiu X, Zhang D, Ma T, Lin F, Guo H, Zhang W, Chen L 2020 Adv. Quantum Technol. 3 2000073Google Scholar

    [10]

    Azuma K, Economou S E, Elkouss D, Hilaire P, Jiang L, Lo H K, Tzitrin I 2023 Rev. Mod. Phys. 95 045006Google Scholar

    [11]

    Liu S, Lv Y, Wang X, Wang J, Lou Y, Jing J 2024 Phys. Rev. Lett. 132 100801Google Scholar

    [12]

    Zhang Z, Sang Y 2023 Quantum Inf. Process. 22 201Google Scholar

    [13]

    Peev M, Pacher C, Alléaume R, Barreiro C, Bouda J, Boxleitner W, Debuisschert T, Diamanti E, Dianati M, Dynes J F, Fasel S, Fossier S, Fürst M, Gautier J D, Gay O, Gisin N, Grangier P, Happe A, Hasani Y, Hentschel M, Hübel H, Humer G, Länger T, Legré M, Lieger R, Lodewyck J, Lorünser T, Lütkenhaus N, Marhold A, Matyus T, Maurhart O, Monat L, Nauerth S, Page J B, Poppe A, Querasser E, Ribordy G, Robyr S, Salvail L, Sharpe A W, Shields A J, Stucki D, Suda M, Tamas C, Themel T, Thew R T, Thoma Y, Treiber A, Trinkler P, Tualle-Brouri R, Vannel F, Walenta N, Weier H, Weinfurter H, Wimberger I, Yuan Z L, Zbinden H, Zeilinger A 2009 New J. Phys. 11 075001Google Scholar

    [14]

    Sasaki M, Fujiwara M, Ishizuka H, Klaus W, Wakui K, Takeoka M, Miki S, Yamashita T, Wang Z, Tanaka A, Yoshino K, Nambu Y, Takahashi S, Tajima A, Tomita A, Domeki T, Hasegawa T, Sakai Y, Kobayashi H, Asai T, Shimizu K, Tokura T, Tsurumaru T, Matsui M, Honjo T, Tamaki K, Takesue H, Tokura Y, Dynes J F, Dixon A R, Sharpe A W, Yuan Z L, Shields A J, Uchikoga S, Legré M, Robyr S, Trinkler P, Monat L, Page J B, Ribordy G, Poppe A, Allacher A, Maurhart O, Länger T, Peev M, Zeilinger A 2011 Opt. Express 19 10387Google Scholar

    [15]

    Huang Y, Li Y, Qi Z, Yang Y, Zheng Y, Chen X 2023 Quantum Frontiers 2 4Google Scholar

    [16]

    Jing X, Qian C, Weng C X, Li B H, Chen Z, Wang C Q, Tang J, Gu X W, Kong Y C, Chen T S, Yin H L, Jiang D, Niu B, Lu L L 2024 Sci. Adv. 10 eadp2877Google Scholar

    [17]

    Qi Z, Huang Y, Lu C, Ni F, Li Y, Zheng Y, Chen X 2023 Phys. Rev. Appl. 19 014045Google Scholar

    [18]

    Qi Z, Li Y, Huang Y, Feng J, Zheng Y, Chen X 2021 Light Sci. Appl. 10 183Google Scholar

    [19]

    Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516Google Scholar

    [20]

    Wengerowsky S, Joshi S K, Steinlechner F, Hübel H, Ursin R 2018 Nature 564 225Google Scholar

    [21]

    Treiber A, Poppe A, Hentschel M, Ferrini D, Lorünser T, Querasser E, Matyus T, Hübel H, Zeilinger A 2009 New J. Phys. 11 045013Google Scholar

    [22]

    Kaiser F, Issautier A, Ngah L A, Alibart O, Martin A, Tanzilli S 2013 Laser Phys. Lett. 10 045202Google Scholar

    [23]

    Liu B X, Yang Y G, Xu G B, Jiang D H, Zhou Y H, Shi W M, Li D 2024 Physica A 639 129683Google Scholar

    [24]

    Kim J H, Chae J W, Jeong Y C, Kim Y H 2022 APL Photonics 7 016106Google Scholar

    [25]

    Huang Y, Qi Z, Yang Y, Zhang Y, Li Y, Zheng Y, Chen X 2025 Laser Photonics Rev. 19 2301026Google Scholar

    [26]

    Xie Z, Zhong T, Shrestha S, Xu X, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N C, Wei Wong C 2015 Nat. Phys. 9 536

    [27]

    Luo M X, Li H R, Lai H, Wang X 2016 Sci. Rep. 6 25977Google Scholar

    [28]

    Luo M X, Li H R, Lai H, Wang X 2016 Phys. Rev. A 93 012332Google Scholar

    [29]

    Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365Google Scholar

    [30]

    Prabhu A V, Suri B, Chandrashekar C M 2021 Phys. Rev. A 103 052608Google Scholar

    [31]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar

    [32]

    Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419Google Scholar

    [33]

    Sun Q C, Mao Y L, Jiang Y F, Zhao Q, Chen S J, Zhang W, Zhang W J, Jiang X, Chen T Y, You L X, Li L, Huang Y D, Chen X F, Wang Z, Ma X, Zhang Q, Pan J W 2017 Phys. Rev. A 95 032306Google Scholar

  • [1] MA Jun, OUYANG Penghui, CAI Yaqiang, JIANG Qingquan, HE Qing, WEI Lianfu. Controllable microwave photon transmissions in microwave quantum networks by elastic scattering. Acta Physica Sinica, doi: 10.7498/aps.74.20250404
    [2] GUO Pengliang, XI Shun, GAO Chengyan. Hyperentanglement W state concentration for polarization-time-bin photon systems with linear optics. Acta Physica Sinica, doi: 10.7498/aps.74.20241642
    [3] LI Tao, WANG Xueqi, XIE Zhihao. Research progress of nonlocal entanglement generation based on quantum multiplexing. Acta Physica Sinica, doi: 10.7498/aps.74.20250589
    [4] Chen Yue, Liu Chang-Jie, Zheng Yi-Jia, Cao Yuan, Guo Ming-Xuan, Zhu Jia-Li, Zhou Xing-Yu, Yu Xiao-Song, Zhao Yong-Li, Wang Qin. On-demand provisioning strategy for inter-domain key services in multi-domain cross-protocol quantum networks. Acta Physica Sinica, doi: 10.7498/aps.73.20240819
    [5] Lai Hong, Ren Li, Huang Zhong-Rui, Wan Lin-Chun. Quantum network communication resource optimization scheme based on multi-scale entanglement renormalization ansatz. Acta Physica Sinica, doi: 10.7498/aps.73.20241382
    [6] Yang Guang, Liu Qi, Nie Min, Liu Yuan-Hua, Zhang Mei-Ling. Multi-hop entanglement swapping in quantum networks based on polization-space hyperentanglement. Acta Physica Sinica, doi: 10.7498/aps.71.20212173
    [7] He Zhen-Xing, Fan Xing-Kui, Chu Peng-Cheng, Ma Hong-Yang. Anonymous communication scheme based on quantum walk on Cayley graph. Acta Physica Sinica, doi: 10.7498/aps.69.20200333
    [8] Yang Tian-Shu, Zhou Zong-Quan, Li Chuan-Feng, Guo Guang-Can. Multimode solid-state quantum memory. Acta Physica Sinica, doi: 10.7498/aps.68.20182207
    [9] He Ying-Qiu, Ding Dong, Peng Tao, Yan Feng-Li, Gao Ting. Generation of four-photon hyperentangled state using spontaneous parametric down-conversion source with the second-order term. Acta Physica Sinica, doi: 10.7498/aps.67.20172230
    [10] Liu Yan, Li Jian-Jun, Gao Dong-Yang, Zhai Wen-Chao, Hu You-Bo, Guo Yuan-Yuan, Xia Mao-Peng, Zheng Xiao-Bing. Research on the time-correlation characterisrtic of correlated photon circles generated by the type-I spontaneous parametric down-conversion. Acta Physica Sinica, doi: 10.7498/aps.65.194211
    [11] Ren Bao-Cang, Deng Fu-Guo. Hyper-parallel photonic quantum computation and manipulation on hyperentangled states. Acta Physica Sinica, doi: 10.7498/aps.64.160303
    [12] Yang Guang, Lian Bao-Wang, Nie Min. Characteristics of multi-hop noisy quantum entanglement channel and optimal relay protocol. Acta Physica Sinica, doi: 10.7498/aps.64.240304
    [13] Ma Hong-Yang, Qin Guo-Qing, Fan Xing-Kui, Chu Peng-Cheng. Quantum network direct communication protocol over noisy channel. Acta Physica Sinica, doi: 10.7498/aps.64.160306
    [14] Hu Hua-Peng, Wang Jin-Dong, Huang Yu-Xian, Liu Song-Hao, Lu Wei. Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source. Acta Physica Sinica, doi: 10.7498/aps.59.287
    [15] Fu Bang, Deng Wen-Ji. General solutions to spin transportation of electrons through equilateral polygon quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.59.2739
    [16] Lu Zong-Gui, Liu Hong-Jun, Jing Feng, Zhao Wei, Wang Yi-Shan, Peng Zhi-Tao. Theoretical analysis of spectral properties of parametric fluorescence via spontaneous parametric down-conversion. Acta Physica Sinica, doi: 10.7498/aps.58.4689
    [17] Li Peng, Deng Wen-Ji. Exact solutions to the transportation of electrons through equilateral polygonal quantum rings with Rashba spin-orbit interaction. Acta Physica Sinica, doi: 10.7498/aps.58.2713
    [18] Feng Fa-Yong, Zhang Qiang. Quantum key distribution based on hyperentanglement swapping. Acta Physica Sinica, doi: 10.7498/aps.56.1924
    [19] Ji Ling-Ling, Wu Ling-An. Generation of two-photon entangled states through a cascaded nonlinear optical process in a quasiperiodic optical superlattice. Acta Physica Sinica, doi: 10.7498/aps.54.736
    [20] Sun Li-Qun, Zhang Yan-Peng, Liu Ya-Fang, Tang Tian-Tong, Yang Zhao-Jin, Xiang Shi-Ming. . Acta Physica Sinica, doi: 10.7498/aps.49.724
Metrics
  • Abstract views:  345
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2025
  • Accepted Date:  06 May 2025
  • Available Online:  10 May 2025
  • /

    返回文章
    返回