-
Hyperentanglement, as a high-dimensional quantum entanglement phenomenon with multiple degrees of freedom, plays a critical role in quantum communication, quantum computing, and high-dimensional quantum state manipulation. Unlike entangled states in a single degree of freedom, hyperentangled states establish entanglement relationships simultaneously in multiple degrees of freedom, such as polarization, path, and orbital angular momentum. Through entanglement-based distribution techniques, high-dimensional quantum information networks can be constructed. On this basis, a fully connected quantum network with hyperentanglement is constructed in this work, and the polarization and time-bin degree-of-freedom hyperentanglement is realized through the process of second-harmonic generation and spontaneous parametric down-conversion in periodically poled lithium niobate (PPLN) waveguide cascades. The hyperentangled state is then multiplexed into a single-mode fiber by using dense wavelength division multiplexing (DWDM) technology for transmission to terminal users. The quality of the entangled states in the two degrees of freedom is characterized using Franson-type interference and photon-pair coincidence measurement techniques. Polarization entangled states are subjected to quantum state tomography, and entanglement distribution technology is employed to achieve long-distance distribution and quantum key transmission within the network. Experimental results show that the two-photon interference visibility of both polarization and time-bin entanglement is greater than 95%, demonstrating the high quality of the hyperentanglement in the network. After 100-km-entanglement distribution, the fidelity of the quantum states in both degrees of freedom remains above 88%, indicating the effectiveness of long-distance entanglement distribution in this network. Additionally, it is verified that this network supports the distribution of quantum keys over a distance of more than 50 km between users. These results confirm the feasibility of a fully connected quantum network with hyperentanglement and demonstrate the potential for constructing large-scale metropolitan networks by using hyperentanglement. As a higher-dimensional entanglement, hyperentangled states can significantly enhance the capacity and efficiency of quantum information processing. Although the quantum communication is still in its early stages of development, achieving stable storage and transmission of entangled states in large-scale metropolitan networks remains a great challenge. By utilizing the frequency conversion properties and high integration characteristics of the periodically poled lithium niobate waveguides, the three-user hyperentangled quantum network constructed in this work provides a new solution for developing the large-scale metropolitan networks with high-dimensional quantum information networks., It is expected to provide a new platform for quantum tasks such as superdense coding and quantum teleportation
-
图 2 time-bin纠缠和偏振纠缠实验结果 (a) CH31&CH33 time-bin纠缠双光子干涉条纹; (b) CH30&CH34 time-bin纠缠双光子干涉条纹; (c) CH29&CH35 time-bin纠缠双光子干涉条纹; (d) CH31&CH33偏振纠缠双光子干涉条纹; (e) CH30&CH34偏振纠缠双光子干涉条纹; (f) CH29&CH35偏振纠缠双光子干涉条纹
Figure 2. Experimental results of time-bin entanglement and polarization entanglement: (a) Time-bin entangled biphoton interference fringes for CH31 & CH33; (b) time-bin entangled biphoton interference fringes for CH30 & CH34; (c) time-bin entangled biphoton interference fringes for CH29 & CH35; (d) polarization-entangled biphoton interference fringes for CH31 & CH33; (e) polarization-entangled biphoton interference fringes for CH30 & CH34; (f) polarization-entangled biphoton interference fringes for CH29 & CH35.
图 3 偏振纠缠态重构密度矩阵的实部和虚部 (a) CH31&CH33偏振纠缠态重构密度矩阵的实部; (b) CH31&CH33偏振纠缠态重构密度矩阵的虚部; (c) CH30&CH34偏振纠缠态重构密度矩阵的实部; (d) CH30&CH34偏振纠缠态重构密度矩阵的虚部; (e) CH29&CH35偏振纠缠态重构密度矩阵的实部; (f) CH29&CH35偏振纠缠态重构密度矩阵的虚部
Figure 3. Real and imaginary parts of the reconstructed density matrix for polarization-entangled states: (a) Real part of the reconstructed density matrix for CH31 & CH33 polarization-entangled states; (b) imaginary part of the reconstructed density matrix for CH31 & CH33 polarization-entangled states; (c) real part of the reconstructed density matrix for CH30 & CH34 polarization-entangled states; (d) imaginary part of the reconstructed density matrix for CH30 & CH34 polarization-entangled states; (e) real part of the reconstructed density matrix for CH29 & CH35 polarization-entangled states; (f) imaginary part of the reconstructed density matrix for CH29 & CH35 polarization-entangled states.
-
[1] Konrad T, de Melo F, Tiersch M, Kasztelan C, Aragão A, Buchleitner A 2008 Nat. Phys. 4 99
Google Scholar
[2] Aspelmeyer M, Böhm H R, Gyatso T, Jennewein T, Kaltenbaek R, Lindenthal M, Molina-Terriza G, Poppe A, Resch K, Taraba M, Ursin R, Walther P, Zeilinger A 2003 Science 301 621
Google Scholar
[3] Maring N, Fyrillas A, Pont M, Ivanov E, Stepanov P, Margaria N, Hease W, Pishchagin A, Lemaître A, Sagnes I, Au T H, Boissier S, Bertasi E, Baert A, Valdivia M, Billard M, Acar O, Brieussel A, Mezher R, Wein S C, Salavrakos A, Sinnott P, Fioretto D A, Emeriau P E, Belabas N, Mansfield S, Senellart P, Senellart J, Somaschi N 2024 Nat. Photonics 18 603
Google Scholar
[4] Gisin N, Thew R 2007 Nat. Photonics 1 165
Google Scholar
[5] Li W, Zhang L, Tan H, Lu Y, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, Li Q, Liu Y, Zhang Q, Peng C Z, You L, Xu F, Pan J W 2023 Nat. Photonics 17 416
Google Scholar
[6] Zahidy M, Ribezzo D, De Lazzari C, Vagniluca I, Biagi N, Müller R, Occhipinti T, Oxenløwe L K, Galili M, Hayashi T, Cassioli D, Mecozzi A, Antonelli C, Zavatta A, Bacco D 2024 Nat. Commun. 15 1651
Google Scholar
[7] Ye J, Zoller P 2024 Phys. Rev. Lett. 132 190001
Google Scholar
[8] Guo X, Breum C R, Borregaard J, Izumi S, Larsen M V, Gehring T, Christandl M, Neergaard-Nielsen J S, Andersen U L 2020 Nat. Phys. 16 281
Google Scholar
[9] Qiu X, Zhang D, Ma T, Lin F, Guo H, Zhang W, Chen L 2020 Adv. Quantum Technol. 3 2000073
Google Scholar
[10] Azuma K, Economou S E, Elkouss D, Hilaire P, Jiang L, Lo H K, Tzitrin I 2023 Rev. Mod. Phys. 95 045006
Google Scholar
[11] Liu S, Lv Y, Wang X, Wang J, Lou Y, Jing J 2024 Phys. Rev. Lett. 132 100801
Google Scholar
[12] Zhang Z, Sang Y 2023 Quantum Inf. Process. 22 201
Google Scholar
[13] Peev M, Pacher C, Alléaume R, Barreiro C, Bouda J, Boxleitner W, Debuisschert T, Diamanti E, Dianati M, Dynes J F, Fasel S, Fossier S, Fürst M, Gautier J D, Gay O, Gisin N, Grangier P, Happe A, Hasani Y, Hentschel M, Hübel H, Humer G, Länger T, Legré M, Lieger R, Lodewyck J, Lorünser T, Lütkenhaus N, Marhold A, Matyus T, Maurhart O, Monat L, Nauerth S, Page J B, Poppe A, Querasser E, Ribordy G, Robyr S, Salvail L, Sharpe A W, Shields A J, Stucki D, Suda M, Tamas C, Themel T, Thew R T, Thoma Y, Treiber A, Trinkler P, Tualle-Brouri R, Vannel F, Walenta N, Weier H, Weinfurter H, Wimberger I, Yuan Z L, Zbinden H, Zeilinger A 2009 New J. Phys. 11 075001
Google Scholar
[14] Sasaki M, Fujiwara M, Ishizuka H, Klaus W, Wakui K, Takeoka M, Miki S, Yamashita T, Wang Z, Tanaka A, Yoshino K, Nambu Y, Takahashi S, Tajima A, Tomita A, Domeki T, Hasegawa T, Sakai Y, Kobayashi H, Asai T, Shimizu K, Tokura T, Tsurumaru T, Matsui M, Honjo T, Tamaki K, Takesue H, Tokura Y, Dynes J F, Dixon A R, Sharpe A W, Yuan Z L, Shields A J, Uchikoga S, Legré M, Robyr S, Trinkler P, Monat L, Page J B, Ribordy G, Poppe A, Allacher A, Maurhart O, Länger T, Peev M, Zeilinger A 2011 Opt. Express 19 10387
Google Scholar
[15] Huang Y, Li Y, Qi Z, Yang Y, Zheng Y, Chen X 2023 Quantum Frontiers 2 4
Google Scholar
[16] Jing X, Qian C, Weng C X, Li B H, Chen Z, Wang C Q, Tang J, Gu X W, Kong Y C, Chen T S, Yin H L, Jiang D, Niu B, Lu L L 2024 Sci. Adv. 10 eadp2877
Google Scholar
[17] Qi Z, Huang Y, Lu C, Ni F, Li Y, Zheng Y, Chen X 2023 Phys. Rev. Appl. 19 014045
Google Scholar
[18] Qi Z, Li Y, Huang Y, Feng J, Zheng Y, Chen X 2021 Light Sci. Appl. 10 183
Google Scholar
[19] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015 Nature 518 516
Google Scholar
[20] Wengerowsky S, Joshi S K, Steinlechner F, Hübel H, Ursin R 2018 Nature 564 225
Google Scholar
[21] Treiber A, Poppe A, Hentschel M, Ferrini D, Lorünser T, Querasser E, Matyus T, Hübel H, Zeilinger A 2009 New J. Phys. 11 045013
Google Scholar
[22] Kaiser F, Issautier A, Ngah L A, Alibart O, Martin A, Tanzilli S 2013 Laser Phys. Lett. 10 045202
Google Scholar
[23] Liu B X, Yang Y G, Xu G B, Jiang D H, Zhou Y H, Shi W M, Li D 2024 Physica A 639 129683
Google Scholar
[24] Kim J H, Chae J W, Jeong Y C, Kim Y H 2022 APL Photonics 7 016106
Google Scholar
[25] Huang Y, Qi Z, Yang Y, Zhang Y, Li Y, Zheng Y, Chen X 2025 Laser Photonics Rev. 19 2301026
Google Scholar
[26] Xie Z, Zhong T, Shrestha S, Xu X, Liang J, Gong Y X, Bienfang J C, Restelli A, Shapiro J H, Wong F N C, Wei Wong C 2015 Nat. Phys. 9 536
[27] Luo M X, Li H R, Lai H, Wang X 2016 Sci. Rep. 6 25977
Google Scholar
[28] Luo M X, Li H R, Lai H, Wang X 2016 Phys. Rev. A 93 012332
Google Scholar
[29] Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365
Google Scholar
[30] Prabhu A V, Suri B, Chandrashekar C M 2021 Phys. Rev. A 103 052608
Google Scholar
[31] Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880
Google Scholar
[32] Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419
Google Scholar
[33] Sun Q C, Mao Y L, Jiang Y F, Zhao Q, Chen S J, Zhang W, Zhang W J, Jiang X, Chen T Y, You L X, Li L, Huang Y D, Chen X F, Wang Z, Ma X, Zhang Q, Pan J W 2017 Phys. Rev. A 95 032306
Google Scholar
Metrics
- Abstract views: 344
- PDF Downloads: 8
- Cited By: 0