-
The NiAs-type MnTe compound is one of important and environmental friendly p-type thermoelectric materials for generating intermediate temperature powern. The low hole concentration in the pristine MnTe greatly restricts its thermoelectric performance. However, the systematic experimental studies of thermoelectric materials are still lacking so far. In this work, MnTe thin films are grown by molecular beam epitaxy (MBE) technique, and their intrinsic point defect structures are characterized by scanning tunneling microscope (STM). Through the regulation of the intrinsic point defects, the electrical transport performances of MnTe films are remarkably improved. The results show that Mn vacancies (VMn) and Te vacancies (VTe) are the dominant intrinsic point defects in MnTe film. With the increase of the substrate temperature (Tsub) and the decrease of the Mn:Te flux ratio, the hole concentration in MnTe film increases greatly, reaching a maximum value of 21.5 × 1019 cm–3, which is one order of magnitude higher than that of the intrinsic MnTe bulk. This is attributed to the significantly increased concentration of p-type VMn in MnTe film, and thus leads the conductivity (σ) and power factor (PF) to increase remarkably. Finally, the MnTe film grown at Tsub = 280 ℃ and Mn∶Te = 1∶12 obtains the maximum PF of 1.3 μW·cm–1·K–2 at 483 K in all grown films. This study clarifies the characteristics of intrinsic point defects and their relationship with the electrical transport properties of MnTe based compounds, which provides an importantguidance for further optimizing their thermoelectric performances.
[1] Uher, Ctirad 2016 Materials Aspect of Thermoelectricity (New York: Taylor & Francis Group) pp39–94
[2] 陈立东, 刘睿恒, 史迅 2018 热电材料与器件 (北京: 科学出版社) 第16—39页
Chen L D, Liu H R, Si X 2018 Thermoelectric Materials and Devices (Beijing: Science Press) pp16–39 (in Chinese)
[3] Xu Y, Li W, Wang C, Li J, Chen Z, Lin S, Chen Y, Pei Y 2017 J. Mater. Chem. A 5 19143
Google Scholar
[4] Zhao L D, Kanatzidis M G 2016 J. Materiomics 2 101
Google Scholar
[5] Du B S, Jian J K, Liu H T, Liu J, Qiu L 2018 Chin. Phys. B 27 048102
Google Scholar
[6] 王步升, 刘永 2016 物理学报 65 066101
Google Scholar
Wang B S, Yong L 2016 Acta Phys. Sin. 65 066101
Google Scholar
[7] Kriegner D, Reichlova H, Grenzer J, Schmidt W, Ressouche E, Godinho J, Wagner T, Martin S, Shick A, Volobuev V 2017 Phys. Rev. B 96 214418
Google Scholar
[8] Ren Y, Jiang Q, Zhang D, Zhou Z, Li X, Xin J, He X 2017 J. Mater. Chem. C 5 5076
Google Scholar
[9] 娄许诺, 邓后权, 李爽, 张青堂, 熊文杰, 唐国栋 2021 无 机 材 料 学 报 36(3)
Lou X N, Deng H Q, Li S, Zhang Q T, Xiong W J, Tang G D 2021 J. Inorg. Mater. 36 (in Chinese)
[10] Deng H, Lou X, Lu W, Zhang J, Li D, Li S, Zhang Q, Zhang X, Chen X, Zhang D 2020 Nano Energy 81 105649
[11] Sreeram P, Ganesan V, Thomas S, Anantharaman M 2020 J. Alloys Compd. 836 155374
Google Scholar
[12] Basit A, Yang J, Jiang Q, Zhou Z, Xin J, Li X, Li S 2019 J. Alloys Compd. 777 968
Google Scholar
[13] Ren Y, Jiang Q, Yang J, Luo Y, Zhang D, Cheng Y, Zhou Z 2016 J. Materiomics 2 172
Google Scholar
[14] Xin J, Yang J, Jiang Q, Li S, Basit A, Hu H, Long Q, Li S, Li X 2019 Nano Energy 57 703
Google Scholar
[15] Dong J, Sun F H, Tang H, Hayashi K, Li H, Shang P P, Miyazaki Y, Li J F 2019 ACS Appl. Mater. Interfaces 11 28221
Google Scholar
[16] Dong J, Pei J, Hayashi K, Saito W, Li H, Cai B, Miyazaki Y, Li J F 2021 J. Materiomics 7 577
Google Scholar
[17] Zhang M, Liu W, Zhang C, Xie S, Li Z, Hua F, Luo J, Wang Z, Wang W, Yan F, Cao Y, Liu Y, Wang Z, Uher C, Tang X 2021 ACS Nano 15 5706
Google Scholar
[18] Watanabe R, Yoshimi R, Shirai M, Tanigaki T, Kawamura M, Tsukazaki A, Takahashi K, Arita R, Kawasaki M, Tokura Y 2018 Appl. Phys. Lett. 113 181602
Google Scholar
[19] Su S H, Chang J T, Chuang P Y, Tsai M C, Peng Y W, Lee M K, Cheng C M, Huang J C 2021 Nanomaterials 11 3322
Google Scholar
[20] He Q L, Yin G, Grutter A J, Pan L, Che X, Yu G, Gilbert D A, Disseler S M, Liu Y, Shafer P, Zhang B, Wu Y, Kirby B J, Arenholz E, Lake R K, Han X, Wang K L 2018 Nat. Commun. 9 2767
Google Scholar
[21] Aliev Z S, Amiraslanov I R, Nasonova D I, Shevelkov A V, Abdullayev N A, Jahangirli Z A, Orujlu E N, Otrokov M M, Mamedov N T, Babanly M B, Chulkov E V 2019 J. Alloys Compd. 789 443
Google Scholar
[22] Islam M F, Canali C M, Pertsova A, Balatsky A, Mahatha S K, Carbone C, Barla A, Kokh K A, Tereshchenko O E, Jiménez E, Brookes N B, Gargiani P, Valvidares M, Schatz S, Peixoto T R F, Bentmann H, Reinert F, Jung J, Bathon T, Fauth K, Bode M, Sessi P 2018 Phys. Rev. B 97 155429
Google Scholar
[23] Li Y, Wang S, Sun B, Chang H, Zhao W, Zhang X, Liu H 2013 ECS Transactions 50 303
[24] Nesbitt H, Banerjee D 1998 Am. Mineral. 83 305
Google Scholar
[25] 何俊, 李梦, 郭立平, 刘传胜, 付德君 2008 核技术 31 438
Google Scholar
He J, Li M, Guo L P, Liu C S, Fu D J 2008 Nucl. Tech. 31 438
Google Scholar
[26] Biesinger M C, Payne B P, Grosvenor A P, Lau L W M, Gerson A R, Smart R S C 2011 Appl. Surf. Sci. 257 2717
Google Scholar
[27] Iwanowski R J, Heinonen M H, Witkowska B 2010 J. Alloys Compd. 491 13
Google Scholar
[28] 吴海飞, 张寒洁, 廖清, 陆豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模 2009 物理学报 58 1310
Google Scholar
Wu H F, Zhang H J, Liao Q, Lu H, Si J X, Li H Y, Bao S N, Wu H Z, He P M 2009 Acta Phys. Sin. 58 1310
Google Scholar
[29] She X Y, Su X L, Xie H Y, Fu J F, Yan Y, Liu W, Poudeu Poudeu P F, Tang X F 2018 ACS Appl. Mater. Interfaces 10 25519
Google Scholar
[30] Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801
Google Scholar
[31] Netsou A M, Muzychenko D A, Dausy H, Chen T, Song F, Schouteden K, Van Bael M J, Van Haesendonck C 2020 ACS Nano 14 13172
Google Scholar
[32] Zhang M, Liu W, Zhang C, Qiu J, Xie S, Hua F, Cao Y, Li Z, Xie H, Uher C 2020 Appl. Phys. Lett. 117 153902
Google Scholar
[33] 逯旭, 侯绩翀, 张强, 樊建锋, 陈少平, 王晓敏 2021 无机材料学报 36
Lu X, Hou J C, Zhang Q, Fan J F, Chen S P, Wang X M 2021 J. Inorg. Mater. 36 (in Chinese)
[34] Bahk J H, Shakouri A 2016 Phys. Rev. B 93 165209
Google Scholar
[35] Zhang Q, Hou J, Fan J, Chen S, Fan W, Zhang H, Wang W, Wu Y, Xu B 2020 Phys. Chem. Chem. Phys. 22 7012
Google Scholar
期刊类型引用(22)
1. 田立良,池浩,党杰. 一种优化服务器电磁辐射性能的自动展频方法. 信息技术与信息化. 2023(05): 136-139 . 百度学术
2. 孙会琴,王思飞,田铮. 孔阵腔体屏蔽效能BLT方程修正与拓展分析. 电光与控制. 2023(07): 100-105 . 百度学术
3. 张晗,李常贤. 高频有损斜开孔腔体屏蔽效能研究. 微波学报. 2023(06): 12-17+34 . 百度学术
4. 胡小龙,李常贤. 高速列车屏蔽线转移阻抗与屏蔽效能研究. 电子测量技术. 2022(05): 80-85 . 百度学术
5. 张岩,田铮,王川川,杨清熙,王思飞. 双层腔体屏蔽效能随孔缝位置与数量变化规律研究. 电工技术学报. 2022(13): 3350-3360 . 百度学术
6. 于海波,张茂强,张晓波,虞晓阳,熊杰,刘彬. 高集成电力电子设备外壳屏蔽效能评估. 安全与电磁兼容. 2021(01): 69-72+79 . 百度学术
7. 公延飞,陈星彤,高超飞,孙剑. 一种快速预测有损腔体屏蔽效能和谐振模式的解析模型. 电工技术学报. 2021(08): 1569-1578 . 百度学术
8. 叶志红,张杰,周健健,苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报. 2020(06): 47-54 . 百度学术
9. 马振洋,左晶,史春蕾,冯嘉诚,刘旭红. 机载电子设备屏蔽效能测试与优化. 航空学报. 2020(07): 226-233 . 百度学术
10. 王金田,刘雪明,商宝莹,李志勇,穆晓彤. 一种计算任意形状孔缝平均电极化率密度的方法. 电子测量技术. 2019(03): 31-34 . 百度学术
11. 王殿海,石成英,蔡星会,易昭湘. 有内置薄板腔体的HEMP屏蔽效能研究. 微波学报. 2019(01): 87-90 . 百度学术
12. 白婉欣,李天乐,郭安琪,成睿琦,焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报. 2019(10): 64-72 . 百度学术
13. 阎芳,刘旭红,王鹏,马振洋,史春蕾,于新海,赵聪. 高强辐射场下不同孔阵的金属腔体屏蔽效能研究. 电光与控制. 2019(08): 90-94+100 . 百度学术
14. 郝建红,公延飞,蒋璐行,范杰清. 内置电路板的复杂多腔体电磁串扰屏蔽效能的解析研究. 电工技术学报. 2018(03): 670-679 . 百度学术
15. 郝建红,蒋璐行,范杰清,公延飞. 内置介质板的开孔箱体屏蔽效能电磁拓扑模型. 电工技术学报. 2017(09): 101-111 . 百度学术
16. 陈珂,杜平安,任丹. 一种基于缝隙天线阻抗的带缝腔体谐振频率计算方法. 电子学报. 2017(01): 232-237 . 百度学术
17. 高雪莲,马士杰,杨凯,李丹. 考虑高次模的孔缝腔体屏蔽效能计算方法. 高电压技术. 2017(10): 3344-3350 . 百度学术
18. 刘宁,张如彬,金杰. 投弃式仪器数据传输信道时频响应求解方法. 电波科学学报. 2016(05): 1009-1015 . 百度学术
19. 阚勇,闫丽萍,赵翔,周海京,刘强,黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报. 2016(03): 88-99 . 百度学术
20. 张玉廷,李冉,高文军,吕争,张华. 等效导纳模型分析航天器VHF/UHF频段屏蔽效能. 宇航学报. 2016(11): 1392-1397 . 百度学术
21. 陈珂,王丹丹,杜平安. 孔缝腔体电磁谐振特性的影响因素分析. 中国科技论文. 2016(20): 2307-2311 . 百度学术
22. 罗静雯,杜平安,任丹,肖培. 基于BLT方程的双层腔体屏蔽效能计算方法. 强激光与粒子束. 2015(11): 166-171 . 百度学术
其他类型引用(16)
-
图 1 (a)六方相MnTe的晶体结构; (b)基板温度为280 ℃ , Sb2Te3∶Te = 1∶1条件下生长Sb2Te3缓冲层的RHEED图谱; (c)基板温度为280 ℃ , Mn∶Te = 1∶9条件下生长的MnTe薄膜的RHEED图谱; (d), (e)不同基板温度和不同Mn∶Te束流比工艺下生长的MnTe薄膜的XRD图谱
Figure 1. (a) Crystal structure of hexagonal MnTe; RHEED patterns of (b) Sb2Te3 buffer layer grown at Tsub = 280 ℃ and Sb2Te3∶Te = 1∶1 and (c) MnTe film grown at Tsub = 280 ℃ and Mn∶Te = 1∶9; XRD patterns of MnTe thin films grown at (d) different Tsub and (e) under different Mn∶Te ratios.
图 3 不同基板温度下生长的MnTe薄膜的原子尺度分辨STM形貌图 (a)Tsub = 260 ℃; (b)Tsub = 280 ℃; (c)—(f)暗凹陷点缺陷与暗三角形缺陷在正负偏压下的STM形貌图; (g) MnTe晶体结构沿c轴的截面图, 其中黄红色粗线条用于示意第二层点缺陷的局域电子态在表面的投影
Figure 3. Atomic resolution STM images of MnTe films grown at different Tsub: (a) Tsub = 260 ℃; (b) Tsub = 280 ℃. (c)–(f) STM images of the dark depressions point defect and dark triangle defect under positive and negative STM tip bias. (g) A cross-sectional sketch of the MnTe crystal structure along the c axis, in which the thick yellow-red line is used to indicate the projection of the local electronic state on the surface from the second layer point defects.
图 4 (a)固定Mn∶Te = 1∶6, 在不同Tsub条件下生长的MnTe薄膜的室温空穴浓度与载流子迁移率; 不同Tsub条件下生长的MnTe薄膜的(b)电导率、(c)Seebeck系数和(d)功率因子随温度的变化关系
Figure 4. Room temperature (a) hole concentration and (p) carrier mobility (μ) of MnTe thin films grown at different Tsub. The temperature dependence of (b) electrical conductivity , (c) Seebeck coefficient and (d) power factor for these MnTe films grown at different Tsub.
图 5 (a)固定Tsub = 280 ℃, 不同Mn∶Te束流比条件下生长的MnTe薄膜的室温空穴浓度与载流子迁移率; 不同Tsub条件下生长的MnTe薄膜的(b)电导率、(c)Seebeck系数和(d)功率因子随温度的变化关系
Figure 5. Room temperature (a) hole concentration and (p) carrier mobility (μ) of MnTe thin films grown at different Tsub. The temperature dependence of (b) electrical conductivity, (c) Seebeck coefficient and (d) power factor for these MnTe films grown at different Tsub.
-
[1] Uher, Ctirad 2016 Materials Aspect of Thermoelectricity (New York: Taylor & Francis Group) pp39–94
[2] 陈立东, 刘睿恒, 史迅 2018 热电材料与器件 (北京: 科学出版社) 第16—39页
Chen L D, Liu H R, Si X 2018 Thermoelectric Materials and Devices (Beijing: Science Press) pp16–39 (in Chinese)
[3] Xu Y, Li W, Wang C, Li J, Chen Z, Lin S, Chen Y, Pei Y 2017 J. Mater. Chem. A 5 19143
Google Scholar
[4] Zhao L D, Kanatzidis M G 2016 J. Materiomics 2 101
Google Scholar
[5] Du B S, Jian J K, Liu H T, Liu J, Qiu L 2018 Chin. Phys. B 27 048102
Google Scholar
[6] 王步升, 刘永 2016 物理学报 65 066101
Google Scholar
Wang B S, Yong L 2016 Acta Phys. Sin. 65 066101
Google Scholar
[7] Kriegner D, Reichlova H, Grenzer J, Schmidt W, Ressouche E, Godinho J, Wagner T, Martin S, Shick A, Volobuev V 2017 Phys. Rev. B 96 214418
Google Scholar
[8] Ren Y, Jiang Q, Zhang D, Zhou Z, Li X, Xin J, He X 2017 J. Mater. Chem. C 5 5076
Google Scholar
[9] 娄许诺, 邓后权, 李爽, 张青堂, 熊文杰, 唐国栋 2021 无 机 材 料 学 报 36(3)
Lou X N, Deng H Q, Li S, Zhang Q T, Xiong W J, Tang G D 2021 J. Inorg. Mater. 36 (in Chinese)
[10] Deng H, Lou X, Lu W, Zhang J, Li D, Li S, Zhang Q, Zhang X, Chen X, Zhang D 2020 Nano Energy 81 105649
[11] Sreeram P, Ganesan V, Thomas S, Anantharaman M 2020 J. Alloys Compd. 836 155374
Google Scholar
[12] Basit A, Yang J, Jiang Q, Zhou Z, Xin J, Li X, Li S 2019 J. Alloys Compd. 777 968
Google Scholar
[13] Ren Y, Jiang Q, Yang J, Luo Y, Zhang D, Cheng Y, Zhou Z 2016 J. Materiomics 2 172
Google Scholar
[14] Xin J, Yang J, Jiang Q, Li S, Basit A, Hu H, Long Q, Li S, Li X 2019 Nano Energy 57 703
Google Scholar
[15] Dong J, Sun F H, Tang H, Hayashi K, Li H, Shang P P, Miyazaki Y, Li J F 2019 ACS Appl. Mater. Interfaces 11 28221
Google Scholar
[16] Dong J, Pei J, Hayashi K, Saito W, Li H, Cai B, Miyazaki Y, Li J F 2021 J. Materiomics 7 577
Google Scholar
[17] Zhang M, Liu W, Zhang C, Xie S, Li Z, Hua F, Luo J, Wang Z, Wang W, Yan F, Cao Y, Liu Y, Wang Z, Uher C, Tang X 2021 ACS Nano 15 5706
Google Scholar
[18] Watanabe R, Yoshimi R, Shirai M, Tanigaki T, Kawamura M, Tsukazaki A, Takahashi K, Arita R, Kawasaki M, Tokura Y 2018 Appl. Phys. Lett. 113 181602
Google Scholar
[19] Su S H, Chang J T, Chuang P Y, Tsai M C, Peng Y W, Lee M K, Cheng C M, Huang J C 2021 Nanomaterials 11 3322
Google Scholar
[20] He Q L, Yin G, Grutter A J, Pan L, Che X, Yu G, Gilbert D A, Disseler S M, Liu Y, Shafer P, Zhang B, Wu Y, Kirby B J, Arenholz E, Lake R K, Han X, Wang K L 2018 Nat. Commun. 9 2767
Google Scholar
[21] Aliev Z S, Amiraslanov I R, Nasonova D I, Shevelkov A V, Abdullayev N A, Jahangirli Z A, Orujlu E N, Otrokov M M, Mamedov N T, Babanly M B, Chulkov E V 2019 J. Alloys Compd. 789 443
Google Scholar
[22] Islam M F, Canali C M, Pertsova A, Balatsky A, Mahatha S K, Carbone C, Barla A, Kokh K A, Tereshchenko O E, Jiménez E, Brookes N B, Gargiani P, Valvidares M, Schatz S, Peixoto T R F, Bentmann H, Reinert F, Jung J, Bathon T, Fauth K, Bode M, Sessi P 2018 Phys. Rev. B 97 155429
Google Scholar
[23] Li Y, Wang S, Sun B, Chang H, Zhao W, Zhang X, Liu H 2013 ECS Transactions 50 303
[24] Nesbitt H, Banerjee D 1998 Am. Mineral. 83 305
Google Scholar
[25] 何俊, 李梦, 郭立平, 刘传胜, 付德君 2008 核技术 31 438
Google Scholar
He J, Li M, Guo L P, Liu C S, Fu D J 2008 Nucl. Tech. 31 438
Google Scholar
[26] Biesinger M C, Payne B P, Grosvenor A P, Lau L W M, Gerson A R, Smart R S C 2011 Appl. Surf. Sci. 257 2717
Google Scholar
[27] Iwanowski R J, Heinonen M H, Witkowska B 2010 J. Alloys Compd. 491 13
Google Scholar
[28] 吴海飞, 张寒洁, 廖清, 陆豪, 斯剑霄, 李海洋, 鲍世宁, 吴惠祯, 何丕模 2009 物理学报 58 1310
Google Scholar
Wu H F, Zhang H J, Liao Q, Lu H, Si J X, Li H Y, Bao S N, Wu H Z, He P M 2009 Acta Phys. Sin. 58 1310
Google Scholar
[29] She X Y, Su X L, Xie H Y, Fu J F, Yan Y, Liu W, Poudeu Poudeu P F, Tang X F 2018 ACS Appl. Mater. Interfaces 10 25519
Google Scholar
[30] Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801
Google Scholar
[31] Netsou A M, Muzychenko D A, Dausy H, Chen T, Song F, Schouteden K, Van Bael M J, Van Haesendonck C 2020 ACS Nano 14 13172
Google Scholar
[32] Zhang M, Liu W, Zhang C, Qiu J, Xie S, Hua F, Cao Y, Li Z, Xie H, Uher C 2020 Appl. Phys. Lett. 117 153902
Google Scholar
[33] 逯旭, 侯绩翀, 张强, 樊建锋, 陈少平, 王晓敏 2021 无机材料学报 36
Lu X, Hou J C, Zhang Q, Fan J F, Chen S P, Wang X M 2021 J. Inorg. Mater. 36 (in Chinese)
[34] Bahk J H, Shakouri A 2016 Phys. Rev. B 93 165209
Google Scholar
[35] Zhang Q, Hou J, Fan J, Chen S, Fan W, Zhang H, Wang W, Wu Y, Xu B 2020 Phys. Chem. Chem. Phys. 22 7012
Google Scholar
期刊类型引用(22)
1. 田立良,池浩,党杰. 一种优化服务器电磁辐射性能的自动展频方法. 信息技术与信息化. 2023(05): 136-139 . 百度学术
2. 孙会琴,王思飞,田铮. 孔阵腔体屏蔽效能BLT方程修正与拓展分析. 电光与控制. 2023(07): 100-105 . 百度学术
3. 张晗,李常贤. 高频有损斜开孔腔体屏蔽效能研究. 微波学报. 2023(06): 12-17+34 . 百度学术
4. 胡小龙,李常贤. 高速列车屏蔽线转移阻抗与屏蔽效能研究. 电子测量技术. 2022(05): 80-85 . 百度学术
5. 张岩,田铮,王川川,杨清熙,王思飞. 双层腔体屏蔽效能随孔缝位置与数量变化规律研究. 电工技术学报. 2022(13): 3350-3360 . 百度学术
6. 于海波,张茂强,张晓波,虞晓阳,熊杰,刘彬. 高集成电力电子设备外壳屏蔽效能评估. 安全与电磁兼容. 2021(01): 69-72+79 . 百度学术
7. 公延飞,陈星彤,高超飞,孙剑. 一种快速预测有损腔体屏蔽效能和谐振模式的解析模型. 电工技术学报. 2021(08): 1569-1578 . 百度学术
8. 叶志红,张杰,周健健,苟丹. 有耗介质层上多导体传输线的电磁耦合时域分析方法. 物理学报. 2020(06): 47-54 . 百度学术
9. 马振洋,左晶,史春蕾,冯嘉诚,刘旭红. 机载电子设备屏蔽效能测试与优化. 航空学报. 2020(07): 226-233 . 百度学术
10. 王金田,刘雪明,商宝莹,李志勇,穆晓彤. 一种计算任意形状孔缝平均电极化率密度的方法. 电子测量技术. 2019(03): 31-34 . 百度学术
11. 王殿海,石成英,蔡星会,易昭湘. 有内置薄板腔体的HEMP屏蔽效能研究. 微波学报. 2019(01): 87-90 . 百度学术
12. 白婉欣,李天乐,郭安琪,成睿琦,焦重庆. 平面波照射下无限大导体板上周期孔阵屏蔽效能的解析研究. 物理学报. 2019(10): 64-72 . 百度学术
13. 阎芳,刘旭红,王鹏,马振洋,史春蕾,于新海,赵聪. 高强辐射场下不同孔阵的金属腔体屏蔽效能研究. 电光与控制. 2019(08): 90-94+100 . 百度学术
14. 郝建红,公延飞,蒋璐行,范杰清. 内置电路板的复杂多腔体电磁串扰屏蔽效能的解析研究. 电工技术学报. 2018(03): 670-679 . 百度学术
15. 郝建红,蒋璐行,范杰清,公延飞. 内置介质板的开孔箱体屏蔽效能电磁拓扑模型. 电工技术学报. 2017(09): 101-111 . 百度学术
16. 陈珂,杜平安,任丹. 一种基于缝隙天线阻抗的带缝腔体谐振频率计算方法. 电子学报. 2017(01): 232-237 . 百度学术
17. 高雪莲,马士杰,杨凯,李丹. 考虑高次模的孔缝腔体屏蔽效能计算方法. 高电压技术. 2017(10): 3344-3350 . 百度学术
18. 刘宁,张如彬,金杰. 投弃式仪器数据传输信道时频响应求解方法. 电波科学学报. 2016(05): 1009-1015 . 百度学术
19. 阚勇,闫丽萍,赵翔,周海京,刘强,黄卡玛. 基于电磁拓扑的多腔体屏蔽效能快速算法. 物理学报. 2016(03): 88-99 . 百度学术
20. 张玉廷,李冉,高文军,吕争,张华. 等效导纳模型分析航天器VHF/UHF频段屏蔽效能. 宇航学报. 2016(11): 1392-1397 . 百度学术
21. 陈珂,王丹丹,杜平安. 孔缝腔体电磁谐振特性的影响因素分析. 中国科技论文. 2016(20): 2307-2311 . 百度学术
22. 罗静雯,杜平安,任丹,肖培. 基于BLT方程的双层腔体屏蔽效能计算方法. 强激光与粒子束. 2015(11): 166-171 . 百度学术
其他类型引用(16)
Catalog
Metrics
- Abstract views: 7794
- PDF Downloads: 269
- Cited By: 38