Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Proto-magnetars within quasiparticle model

Wang Yi-Nong Chu Peng-Cheng Jiang Yao-Yao Pang Xiao-Di Wang Sheng-Bo Li Pei-Xin

Citation:

Proto-magnetars within quasiparticle model

Wang Yi-Nong, Chu Peng-Cheng, Jiang Yao-Yao, Pang Xiao-Di, Wang Sheng-Bo, Li Pei-Xin
PDF
HTML
Get Citation
  • We investigate the thermodynamical properties of strange quark matter (SQM) at zero/finite temperature and under constant magnetic field within quasiparticle model. The quark matter symmetry energy, energy per baryon, free energy per baryon, anisotropic pressures are also studied and the result indicates that both the effects of temperature and magnetic field can significantly influence the thermodynamical properties of quark matter and proto-quark stars (PQSs). Our result also indicates that the maximum mass and the core temperature of PQSs not only depends on the heating process at the isentropic stages, but also but also the magnetic field strength and orientation distribution inside the magnetar within quasiparticle model.
      Corresponding author: Chu Peng-Cheng, kyois@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975132, 12205158, 11505100) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2022JQ04, ZR2021QA037, ZR2019YQ01)
    [1]

    Glendenning N K 2000 Compact Stars (2nd Ed.) (New York: Spinger-Verlag, Inc.)

    [2]

    Weber F 1999 Pulsars as Astrophyical Laboratories for Nuclear and Particle Physics (London: IOP Publishing Ltd)

    [3]

    Lattimer J M, Prakash M 2004 Science 304 536Google Scholar

    [4]

    Steiner A W, Prakash M, Lattimer J M, Ellis P J 2005 Phys. Rep. 410 325Google Scholar

    [5]

    Ivanenko D, Kurdgelaidze D F 1969 Lett. Nuovo Cimento 2 13Google Scholar

    [6]

    Itoh N 1970 Prog. Theor. Phys. 44 291Google Scholar

    [7]

    Bodmer A R 1971 Phys. Rev. D 4 1601Google Scholar

    [8]

    Witten E 1984 Phys. Rev. D 30 272Google Scholar

    [9]

    Farhi E, Jaffe R L 1984 Phys. Rev. D 30 2379Google Scholar

    [10]

    Alcock C, Farh E, Olinto A 1986 Astrophy. J. 310 261Google Scholar

    [11]

    Weber F 2005 Prog. Part. Nucl. Phys. 54 193Google Scholar

    [12]

    Bombaci I, Parenti I, Vidana I 2004 Astrophy. J. 614 314Google Scholar

    [13]

    Staff J, Ouyed R, Bagchi M 2007 Astrophy. J. 667 340Google Scholar

    [14]

    Herzog T M, Röpke F K 2011 Phys. Rev. D 84 083002Google Scholar

    [15]

    Stephanov M A, Rajagopal K, Shuryak E V 1998 Phys. Rev. Lett. 81 4816Google Scholar

    [16]

    Terazawa H 1979 INS-Report (Tokyo: Univ. of Tokyo) p336

    [17]

    Alford M, Reddy S 2003 Phys. Rev. D 67 074024Google Scholar

    [18]

    Alford M, Jotwani P, Kouvaris C, Kundu J, Rajagopal K 2005 Phys. Rev. D 71 114011Google Scholar

    [19]

    Baldo M 2003 Phys. Lett. B 562 153Google Scholar

    [20]

    Ippolito N D, Ruggieri M, Rischke D H, Sedrakian A, Weber F 2008 Phys. Rev. D 77 023004Google Scholar

    [21]

    Lai X Y, Xu R X 2011 Res. Astron. Astrophys. 11 687Google Scholar

    [22]

    Avellar M G B de, Horvath J E, Paulucci L 2011 Phys. Rev. D 84 043004Google Scholar

    [23]

    Bonanno L, Sedrakian A 2012 A&A 539 A16

    [24]

    Chu P C, Wang B, Jia Y Y, Dong Y M, Wang S M, Li X H, Zhang L, Zhang X M, Ma H Y 2016 Phys. Rev. D 94 123014Google Scholar

    [25]

    Chu P C, Li X H, Wang B, Dong Y M, Jia Y Y, Wang S M, Ma H Y 2017 Eur. Phys. J. C 77 512Google Scholar

    [26]

    Chu P C, Zhou Y, Chen C, Li X H, Ma H Y 2020 J. Phys. G: Nucl. Part. Phys. 47 085201Google Scholar

    [27]

    Antoniadis J 2013 Science 340 6131

    [28]

    Shahbaz T, Casares J 2018 Astrophys. J. 859 54Google Scholar

    [29]

    Cromartie H T, Fonseca E, Ransom S M, et al. 2020 Nat. Astron. 4 72Google Scholar

    [30]

    Abbott R 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [31]

    Deng Z L 2020 Astrophys. J. 892 4Google Scholar

    [32]

    Deng Z L 2021 Astrophys. J. 909 174Google Scholar

    [33]

    Prakash M, Bombaci I, Prakash M, Ellis P J, Lattimer J M, Knorren R 1997 Phys. Rept. 280 1Google Scholar

    [34]

    Gupta V K, Gupta Asha, Singh S, Anand J D 2003 Int. J. Mod. Phys. D 12 583Google Scholar

    [35]

    Shen J, Zhang Y, Wang B, Su R K 2005 Int. J. Mod. Phys. A 20 7547Google Scholar

    [36]

    Dexheimer V, Torres J R, Menezes D P 2013 Eur. Phys. J. C 73 2569Google Scholar

    [37]

    Dexheimer V, Menezes D P, Strickland M 2014 J. Phys. G: Nucl. Part. Phys. 41 015203Google Scholar

    [38]

    Drago A, Lavagno A, Pagliara G 2014 Phys. Rev. D 89 043014Google Scholar

    [39]

    Drago A, Pagliara G 2016 Eur. Phys. J. A 52 41Google Scholar

    [40]

    Bauswein A, Stergioulas N, Janka H 2016 Eur. Phys. J. A 52 56Google Scholar

    [41]

    Woltjer L 1964 Astrophys. J. 140 1309Google Scholar

    [42]

    Mihara T A 1990 Nature 346 250Google Scholar

    [43]

    Chanmugam G 1992 Annu. Rev. Astron. Astrophys. 30 143Google Scholar

    [44]

    Lai D, Shapiro S L 1991 Astrophys. J. 383 745Google Scholar

    [45]

    Ferrer E J, Incera V, Keith J P, Portillo I, Springsteen P L 2010 Phys. Rev. C 82 065802

    [46]

    Isayev A A, Yang J 2011 Phys. Rev. C 84 065802

    [47]

    Isayev A A, Yang J 2012 Phys. Lett. B 707 163Google Scholar

    [48]

    Isayev A A, Yang J 2013 J. Phys. G: Nucl. Part. Phys. 40 035105Google Scholar

    [49]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys Rev. Lett. 79 2176Google Scholar

    [50]

    Bandyopadhyay D, Pal S, Chakrabarty S 1998 J. Phys. G: Nucl. Part. Phys. 24 1647Google Scholar

    [51]

    Menezes D P, Benghi Pinto M, Avancini S S, et al. 2009 Phys. Rev. C 79 035807Google Scholar

    [52]

    Menezes D P, Benghi Pinto M, Avancini S S, et al. 2009 Phys. Rev. C 80 065805Google Scholar

    [53]

    Ryu C Y, Kim K S, Cheoun Myung-Ki 2010 Phys. Rev. C 82 025804Google Scholar

    [54]

    Ryu C Y, Cheoun Myung-Ki, Kajino T, Maruyama T, Mathews Grant J 2012 Astropart. Phys. 38 25Google Scholar

    [55]

    Zhong S Q, Dai Z G 2020 Astrophys. J. 893 9Google Scholar

    [56]

    Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H, Du Y J 2016 MNRAS 456 55Google Scholar

    [57]

    Gao Z F 2021 Astron. Nachr. 342 369Google Scholar

    [58]

    Zhu C 2016 Mod. Phys. Lett. A 31 1650070

    [59]

    Chodos A, Jaffe R L, Ohnson K, Thorn C B, Weisskopf V F 1974 Phys. Rev. D 9 3471Google Scholar

    [60]

    Alford M, Braby M, Paris M, Reddy S 2005 Astrophys. J. 629 969Google Scholar

    [61]

    Rehberg P, Klevansky S P, Hüfner J 1996 Phys. Rev. C 53 410

    [62]

    Hanauske M, Satarov L M, Mishustin I N, Stocker H, Greiner W 2001 Phys. Rev. D 64 043005Google Scholar

    [63]

    Rüster S B, Rischke D H 2004 Phys. Rev. D 69 045011Google Scholar

    [64]

    Menezes D P, Providencia C, Melrose D B 2006 J. Phys. G 32 1081Google Scholar

    [65]

    Chao J Y, Chu P C, Huang M 2013 Phys. Rev. D 88 054009Google Scholar

    [66]

    Chu P C, Wang X, Chen L W, Huang M 2015 Phys. Rev. D 91 023003Google Scholar

    [67]

    Chu P C, Wang B, Ma H Y, Dong Y M, Chang S L, Zheng C H, Liu J T, Zhang X M 2016 Phys. Rev. D 93 094032Google Scholar

    [68]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 083019Google Scholar

    [69]

    Roberts C D, Williams A G 1994 Prog. Part. Nucl. Phys. 33 477Google Scholar

    [70]

    Zong H S, Chang L, Hou F Y, Sun W M, Liu Y X 2005 Phys. Rev. C 71 015205Google Scholar

    [71]

    Peng G X, Chiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201Google Scholar

    [72]

    Peng G X, Chiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801

    [73]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [74]

    Li A, Peng G X, Lu J F 2011 Res. Astron. Astrophys. 11 482Google Scholar

    [75]

    Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659

    [76]

    Schertler K, Greiner C, Sahu P K, Thoma M H 1998 Nucl. Phys. A 637 451

    [77]

    Chu P C, Chen L W 2014 Astrophys. J. 780 135Google Scholar

    [78]

    Chu P C 2018 Phys. Lett. B 778 447Google Scholar

    [79]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 103001Google Scholar

    [80]

    Schertler K, Greiner C, Thoma M H, Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659Google Scholar

    [81]

    Pisarski R D 1989 Nucl. Phys. A 498 423

    [82]

    Wen X J 2009 J. Phys. G: Nucl. Part. Phys. 36 025011Google Scholar

    [83]

    Zhang Z, Chu P C, Li X H, Liu H, Zhang X M 2021 Phys. Rev. D 103 103021Google Scholar

    [84]

    Chu P C, Jiang Y Y, Liu H, Zhang Z, Zhang X M, Li X H 2021 Eur. Phys. J. C 81 569Google Scholar

    [85]

    Chu P C, Li X H, Liu H, Zhang J W 2021 Phys. Rev. C 104 045805Google Scholar

    [86]

    Chu P C, Zhou Y, Jiang Y Y, Ma H Y, Liu H, Zhang X M 2021 Eur. Phys. J. C 81 93Google Scholar

    [87]

    Steiner A W, Prakash M, Lattimer J M 2001 Phys. Lett. B 509 10Google Scholar

    [88]

    Reddy S, Praskash M, Lattimer J M 1998 Phys. Rev. D 58 013009Google Scholar

    [89]

    Steiner A W, Prakash M, Lattimer J M 2000 Phys. Lett. B 486 239Google Scholar

    [90]

    Menezes D P, Deppman A, Megias E, Castro L B 2015 Eur. Phys. J. A 51 155

    [91]

    Shao G Y 2011 Phys. Lett. B 704 343Google Scholar

    [92]

    Chu P C, Chen L W, Wang X 2014 Phys. Rev. D 90 063013Google Scholar

    [93]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

  • 图 1  基于不同参数的夸克物质对称能

    Figure 1.  Quark matter symmetry energy with different parameter sets

    图 2  零温、有限温度、强磁场下奇异夸克物质的每核子自由能/能量、压强随重子数密度的变化

    Figure 2.  The energy per baryon, free energy per baryon, and the corresponding pressure as functions of baryon density with g-2 in zero temperature, finite temperature, and strong magnetic field cases

    图 3  零温、有限温度、强磁场下奇异夸克物质的组分随重子数密度和磁场的变化

    Figure 3.  The fractions of SQM as functions of baryon density and magnetic fields with g-2 in zero temperature, finite temperature, and strong magnetic field cases

    图 4  不同温度下奇异夸克物质的声速随重子数密度的变化

    Figure 4.  The sound velocity of SQM as functions of baryon density with g-2 at different temperatures

    图 5  零温磁星中心压强以及磁星最大质量与对应半径按径向分布与横向分布随$ B_0 $的变化

    Figure 5.  Pressure for the central density, the maximum mass of magnetar, and the radius of longitudinal orientation case and transverse orientation case as functions of $ B_0 $

    图 6  原生星演化中不同阶段的原生磁星质量半径关系

    Figure 6.  Mass-radius relations of the stages along the star evolution line of PQS with g-2 under the density-dependent magnetic field

    图 7  磁场与零磁场下原生星核心温度随中心密度的变化关系

    Figure 7.  The core temperature for the star matter as a function of the central baryon density under zero magnetic field and $ B_0=4\times 10^{18} $ G

    图 8  纵向、横向磁场情况都考虑时, 在g-2参数、$B_0=4\times $$ 10^{18}$G 情况下基于不同$ \theta $角所计算的零温磁星质量半径关系

    Figure 8.  Mass-radius relation for magnetars at zero temperature with g-2 and $ B_0=4\times 10^{18} $G at different $ \theta $.

  • [1]

    Glendenning N K 2000 Compact Stars (2nd Ed.) (New York: Spinger-Verlag, Inc.)

    [2]

    Weber F 1999 Pulsars as Astrophyical Laboratories for Nuclear and Particle Physics (London: IOP Publishing Ltd)

    [3]

    Lattimer J M, Prakash M 2004 Science 304 536Google Scholar

    [4]

    Steiner A W, Prakash M, Lattimer J M, Ellis P J 2005 Phys. Rep. 410 325Google Scholar

    [5]

    Ivanenko D, Kurdgelaidze D F 1969 Lett. Nuovo Cimento 2 13Google Scholar

    [6]

    Itoh N 1970 Prog. Theor. Phys. 44 291Google Scholar

    [7]

    Bodmer A R 1971 Phys. Rev. D 4 1601Google Scholar

    [8]

    Witten E 1984 Phys. Rev. D 30 272Google Scholar

    [9]

    Farhi E, Jaffe R L 1984 Phys. Rev. D 30 2379Google Scholar

    [10]

    Alcock C, Farh E, Olinto A 1986 Astrophy. J. 310 261Google Scholar

    [11]

    Weber F 2005 Prog. Part. Nucl. Phys. 54 193Google Scholar

    [12]

    Bombaci I, Parenti I, Vidana I 2004 Astrophy. J. 614 314Google Scholar

    [13]

    Staff J, Ouyed R, Bagchi M 2007 Astrophy. J. 667 340Google Scholar

    [14]

    Herzog T M, Röpke F K 2011 Phys. Rev. D 84 083002Google Scholar

    [15]

    Stephanov M A, Rajagopal K, Shuryak E V 1998 Phys. Rev. Lett. 81 4816Google Scholar

    [16]

    Terazawa H 1979 INS-Report (Tokyo: Univ. of Tokyo) p336

    [17]

    Alford M, Reddy S 2003 Phys. Rev. D 67 074024Google Scholar

    [18]

    Alford M, Jotwani P, Kouvaris C, Kundu J, Rajagopal K 2005 Phys. Rev. D 71 114011Google Scholar

    [19]

    Baldo M 2003 Phys. Lett. B 562 153Google Scholar

    [20]

    Ippolito N D, Ruggieri M, Rischke D H, Sedrakian A, Weber F 2008 Phys. Rev. D 77 023004Google Scholar

    [21]

    Lai X Y, Xu R X 2011 Res. Astron. Astrophys. 11 687Google Scholar

    [22]

    Avellar M G B de, Horvath J E, Paulucci L 2011 Phys. Rev. D 84 043004Google Scholar

    [23]

    Bonanno L, Sedrakian A 2012 A&A 539 A16

    [24]

    Chu P C, Wang B, Jia Y Y, Dong Y M, Wang S M, Li X H, Zhang L, Zhang X M, Ma H Y 2016 Phys. Rev. D 94 123014Google Scholar

    [25]

    Chu P C, Li X H, Wang B, Dong Y M, Jia Y Y, Wang S M, Ma H Y 2017 Eur. Phys. J. C 77 512Google Scholar

    [26]

    Chu P C, Zhou Y, Chen C, Li X H, Ma H Y 2020 J. Phys. G: Nucl. Part. Phys. 47 085201Google Scholar

    [27]

    Antoniadis J 2013 Science 340 6131

    [28]

    Shahbaz T, Casares J 2018 Astrophys. J. 859 54Google Scholar

    [29]

    Cromartie H T, Fonseca E, Ransom S M, et al. 2020 Nat. Astron. 4 72Google Scholar

    [30]

    Abbott R 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [31]

    Deng Z L 2020 Astrophys. J. 892 4Google Scholar

    [32]

    Deng Z L 2021 Astrophys. J. 909 174Google Scholar

    [33]

    Prakash M, Bombaci I, Prakash M, Ellis P J, Lattimer J M, Knorren R 1997 Phys. Rept. 280 1Google Scholar

    [34]

    Gupta V K, Gupta Asha, Singh S, Anand J D 2003 Int. J. Mod. Phys. D 12 583Google Scholar

    [35]

    Shen J, Zhang Y, Wang B, Su R K 2005 Int. J. Mod. Phys. A 20 7547Google Scholar

    [36]

    Dexheimer V, Torres J R, Menezes D P 2013 Eur. Phys. J. C 73 2569Google Scholar

    [37]

    Dexheimer V, Menezes D P, Strickland M 2014 J. Phys. G: Nucl. Part. Phys. 41 015203Google Scholar

    [38]

    Drago A, Lavagno A, Pagliara G 2014 Phys. Rev. D 89 043014Google Scholar

    [39]

    Drago A, Pagliara G 2016 Eur. Phys. J. A 52 41Google Scholar

    [40]

    Bauswein A, Stergioulas N, Janka H 2016 Eur. Phys. J. A 52 56Google Scholar

    [41]

    Woltjer L 1964 Astrophys. J. 140 1309Google Scholar

    [42]

    Mihara T A 1990 Nature 346 250Google Scholar

    [43]

    Chanmugam G 1992 Annu. Rev. Astron. Astrophys. 30 143Google Scholar

    [44]

    Lai D, Shapiro S L 1991 Astrophys. J. 383 745Google Scholar

    [45]

    Ferrer E J, Incera V, Keith J P, Portillo I, Springsteen P L 2010 Phys. Rev. C 82 065802

    [46]

    Isayev A A, Yang J 2011 Phys. Rev. C 84 065802

    [47]

    Isayev A A, Yang J 2012 Phys. Lett. B 707 163Google Scholar

    [48]

    Isayev A A, Yang J 2013 J. Phys. G: Nucl. Part. Phys. 40 035105Google Scholar

    [49]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys Rev. Lett. 79 2176Google Scholar

    [50]

    Bandyopadhyay D, Pal S, Chakrabarty S 1998 J. Phys. G: Nucl. Part. Phys. 24 1647Google Scholar

    [51]

    Menezes D P, Benghi Pinto M, Avancini S S, et al. 2009 Phys. Rev. C 79 035807Google Scholar

    [52]

    Menezes D P, Benghi Pinto M, Avancini S S, et al. 2009 Phys. Rev. C 80 065805Google Scholar

    [53]

    Ryu C Y, Kim K S, Cheoun Myung-Ki 2010 Phys. Rev. C 82 025804Google Scholar

    [54]

    Ryu C Y, Cheoun Myung-Ki, Kajino T, Maruyama T, Mathews Grant J 2012 Astropart. Phys. 38 25Google Scholar

    [55]

    Zhong S Q, Dai Z G 2020 Astrophys. J. 893 9Google Scholar

    [56]

    Gao Z F, Li X D, Wang N, Yuan J P, Peng Q H, Du Y J 2016 MNRAS 456 55Google Scholar

    [57]

    Gao Z F 2021 Astron. Nachr. 342 369Google Scholar

    [58]

    Zhu C 2016 Mod. Phys. Lett. A 31 1650070

    [59]

    Chodos A, Jaffe R L, Ohnson K, Thorn C B, Weisskopf V F 1974 Phys. Rev. D 9 3471Google Scholar

    [60]

    Alford M, Braby M, Paris M, Reddy S 2005 Astrophys. J. 629 969Google Scholar

    [61]

    Rehberg P, Klevansky S P, Hüfner J 1996 Phys. Rev. C 53 410

    [62]

    Hanauske M, Satarov L M, Mishustin I N, Stocker H, Greiner W 2001 Phys. Rev. D 64 043005Google Scholar

    [63]

    Rüster S B, Rischke D H 2004 Phys. Rev. D 69 045011Google Scholar

    [64]

    Menezes D P, Providencia C, Melrose D B 2006 J. Phys. G 32 1081Google Scholar

    [65]

    Chao J Y, Chu P C, Huang M 2013 Phys. Rev. D 88 054009Google Scholar

    [66]

    Chu P C, Wang X, Chen L W, Huang M 2015 Phys. Rev. D 91 023003Google Scholar

    [67]

    Chu P C, Wang B, Ma H Y, Dong Y M, Chang S L, Zheng C H, Liu J T, Zhang X M 2016 Phys. Rev. D 93 094032Google Scholar

    [68]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 083019Google Scholar

    [69]

    Roberts C D, Williams A G 1994 Prog. Part. Nucl. Phys. 33 477Google Scholar

    [70]

    Zong H S, Chang L, Hou F Y, Sun W M, Liu Y X 2005 Phys. Rev. C 71 015205Google Scholar

    [71]

    Peng G X, Chiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201Google Scholar

    [72]

    Peng G X, Chiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801

    [73]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [74]

    Li A, Peng G X, Lu J F 2011 Res. Astron. Astrophys. 11 482Google Scholar

    [75]

    Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659

    [76]

    Schertler K, Greiner C, Sahu P K, Thoma M H 1998 Nucl. Phys. A 637 451

    [77]

    Chu P C, Chen L W 2014 Astrophys. J. 780 135Google Scholar

    [78]

    Chu P C 2018 Phys. Lett. B 778 447Google Scholar

    [79]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 103001Google Scholar

    [80]

    Schertler K, Greiner C, Thoma M H, Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659Google Scholar

    [81]

    Pisarski R D 1989 Nucl. Phys. A 498 423

    [82]

    Wen X J 2009 J. Phys. G: Nucl. Part. Phys. 36 025011Google Scholar

    [83]

    Zhang Z, Chu P C, Li X H, Liu H, Zhang X M 2021 Phys. Rev. D 103 103021Google Scholar

    [84]

    Chu P C, Jiang Y Y, Liu H, Zhang Z, Zhang X M, Li X H 2021 Eur. Phys. J. C 81 569Google Scholar

    [85]

    Chu P C, Li X H, Liu H, Zhang J W 2021 Phys. Rev. C 104 045805Google Scholar

    [86]

    Chu P C, Zhou Y, Jiang Y Y, Ma H Y, Liu H, Zhang X M 2021 Eur. Phys. J. C 81 93Google Scholar

    [87]

    Steiner A W, Prakash M, Lattimer J M 2001 Phys. Lett. B 509 10Google Scholar

    [88]

    Reddy S, Praskash M, Lattimer J M 1998 Phys. Rev. D 58 013009Google Scholar

    [89]

    Steiner A W, Prakash M, Lattimer J M 2000 Phys. Lett. B 486 239Google Scholar

    [90]

    Menezes D P, Deppman A, Megias E, Castro L B 2015 Eur. Phys. J. A 51 155

    [91]

    Shao G Y 2011 Phys. Lett. B 704 343Google Scholar

    [92]

    Chu P C, Chen L W, Wang X 2014 Phys. Rev. D 90 063013Google Scholar

    [93]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

  • [1] Chu Peng-Cheng, Liu He, Du Xian-Bin. Quark matter and quark star in color-flavor-locked phase. Acta Physica Sinica, 2024, 73(5): 052101. doi: 10.7498/aps.73.20231649
    [2] Ruan Li-Juan, Xu Zhang-Bu, Yang Chi. Global polarization of hyperons and spin alignment of vector mesons in quark matters. Acta Physica Sinica, 2023, 72(11): 112401. doi: 10.7498/aps.72.20230496
    [3] Dong Ai-Jun, Gao Zhi-Fu, Yang Xiao-Feng, Wang Na, Liu Chang, Peng Qiu-He. Modified pressure of relativistic electrons in a superhigh magnetic field. Acta Physica Sinica, 2023, 72(3): 030502. doi: 10.7498/aps.72.20220092
    [4] Zhou Shu-Ying, Shen Wan-Ping, Mao Hong. Analytical solution of surface tension of quark-hadron phase transition. Acta Physica Sinica, 2022, 71(21): 211101. doi: 10.7498/aps.71.20220659
    [5] Gong Wu-Kun, Guo Wen-Jun. Hadron-quark deconfinement phase transition in hybrid stars. Acta Physica Sinica, 2020, 69(24): 242101. doi: 10.7498/aps.69.20200925
    [6] Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun. Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar. Acta Physica Sinica, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [7] Jirimutu, Aodeng, Xue Kang. Construction of Breit quark potential in coordinate space and mass splits of meson and quarkonium. Acta Physica Sinica, 2018, 67(9): 091201. doi: 10.7498/aps.67.20172155
    [8] Bao Tmurbagan, Yang Xing-Qiang, Yu Zi. Self-consistent thermodynamical treatment to strange quark matter with density-dependent bag constant and properties of hybrid stars. Acta Physica Sinica, 2013, 62(1): 012101. doi: 10.7498/aps.62.012101
    [9] Li Ji-Gen, Yan Jun, Zou Bo-Xia, Su Wen-Jie. A sine-Gordon soliton star model with the action of exotic matter and dark energy. Acta Physica Sinica, 2011, 60(5): 050301. doi: 10.7498/aps.60.050301
    [10] Huang Jin-Shu, Luo Peng-Hui, Lu Gong-Ru. Bottom quark pair production in γγ collision. Acta Physica Sinica, 2009, 58(12): 8166-8173. doi: 10.7498/aps.58.8166
    [11] Lai Xiang-Jun, Luo Zhi-Quan, Liu Jing-Jing, Liu Hong-Lin. Quark phase transition in supernova and the effect of quark mass on the process. Acta Physica Sinica, 2008, 57(3): 1535-1541. doi: 10.7498/aps.57.1535
    [12] Chen Hong, Mei Hua, Shen Peng-Nian, Jiang Huan-Qing. Heavy quarkonium mass spectra in a relativistic quark model. Acta Physica Sinica, 2005, 54(3): 1136-1141. doi: 10.7498/aps.54.1136
    [13] He Ze-Jun, Long Jia-Li, Ma Guo-Liang, Ma Yu-Gang, Zhang Jia-Ju, Liu Bo. Intermediate mass dilepton production in a chemically non-equilibrated quark-glu on matter. Acta Physica Sinica, 2003, 52(11): 2831-2835. doi: 10.7498/aps.52.2831
    [14] He Ze-Jun, Zhou Wen-Jie, Jiang Wei-Zhou, Zhang Jia-Ju, Liu Bo. . Acta Physica Sinica, 2002, 51(6): 1312-1316. doi: 10.7498/aps.51.1312
    [15] DAI ZI-GAO, LU TAN. COOLING OF A STRANGE STAR. Acta Physica Sinica, 1994, 43(2): 198-204. doi: 10.7498/aps.43.198
    [16] DAI ZI-GAO, LU TAN, PENG QIU-HE. PHASE TRANSITION OF NONSTRANGE-STRANGE QUARK MATTER IN THE INTERIOR OF A NEUTRON STAR. Acta Physica Sinica, 1993, 42(8): 1210-1215. doi: 10.7498/aps.42.1210
    [17] XIE FENG-XIAN. CALCULATION OF THE SPECTRA FOR TOPPONIUM WITH A NONZERO GLUON EFFECTIVE MASS. Acta Physica Sinica, 1987, 36(6): 778-784. doi: 10.7498/aps.36.778
    [18] HE QI-ZHI, YANG JIAN-HUA, CHENG GUO-JUN, YANG RONG-FU. A SEARCH FOR π-N INTERACTION BY QUARK MODEL. Acta Physica Sinica, 1985, 34(1): 1-9. doi: 10.7498/aps.34.1
    [19] HE ZUO-XIU, LIN DA-HANG, ZHAO PEI-ZHEN. QUARKONIUM POTENTIAL MODEL WITH A NON-ZERO GLUON EFFECTIVE MASS. Acta Physica Sinica, 1982, 31(4): 525-531. doi: 10.7498/aps.31.525
    [20] WANG JIA-ZHU, BI PIN-ZHEN, YIN PENG-CHENG. PROLATE ELLIPSOLIDAL BAG MODEL FOR THE HADRON WITH HEAVY QUARKNIUM. Acta Physica Sinica, 1981, 30(12): 1707-1712. doi: 10.7498/aps.30.1707
Metrics
  • Abstract views:  2037
  • PDF Downloads:  47
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2022
  • Accepted Date:  18 October 2022
  • Available Online:  21 October 2022
  • Published Online:  20 November 2022

/

返回文章
返回