Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Exciton lifetime of quantum dots under hydrostatic pressure tuned scattering field Ag nanoparticles

Huang Jun-Hui Li Yuan-He Wang Jian Li Shu-Lun Ni Hai-Qiao Niu Zhi-Chuan Dou Xiu-Ming Sun Bao-Quan

Citation:

Exciton lifetime of quantum dots under hydrostatic pressure tuned scattering field Ag nanoparticles

Huang Jun-Hui, Li Yuan-He, Wang Jian, Li Shu-Lun, Ni Hai-Qiao, Niu Zhi-Chuan, Dou Xiu-Ming, Sun Bao-Quan
PDF
HTML
Get Citation
  • In the past few decades, the studies of exciton emissions coupled with the metal nanoparticles have mainly focused on the enhancing exciton radiation and reducing exciton lifetime by near-field coupling interactions between excitons and metal nanoparticles. Only in recent years has the plasmon-field-induced to extend exciton lifetime (inhibition of the exciton emission) been reported. Experimentally, for observing a long-lifetime exciton state it needs to satisfy a condition of $kz\sim1$, instead of near-field condition of $ kz\ll 1 $, where $k=2{\pi }n/\lambda$ is the wavevector, $ n $ is the refractive index, $ \lambda $ is the wavelength, and $ z $ is the separation distance between the emitter and metal nanoparticle. Thus, in this paper, we tune the exciton emission wavelength by applying hydrostatic pressure to achieve the condition of $kz\sim1$ in order to in detail investigate the coupling between excitons and metal nanoparticles. The studied InAs/GaAs quantum dot (QD) sample is grown by molecular beam epitaxy on a (001) semi-insulating GaAs substrate. After the AlAs sacrificial layer is etched with hydrofluoric acid, the QD film sample is transferred onto an Si substrate covered with Ag nanoparticles. Then the sample is placed in the diamond anvil cell device combined with a piezoelectric ceramic. In this case we can measure the photoluminescence and time-resolved photoluminescence spectra of the QD sample under different pressures. It is found that the observed longest exciton lifetime is $(120\pm 4)\times 10~\rm{n}\rm{s}$ at a pressure of $ 1.38\;\rm{G}\rm{P}\rm{a} $, corresponding the exciton emission wavelength of $ 797.49\;\rm{n}\rm{m} $, which is about $ 1200 $ times longer than the exciton lifetime of $\sim 1\;\rm{n}\rm{s} $ in QDs without the influence of Ag nanoparticles. The experimental results can be understood based on the destructive interference between the quantum dot exciton radiation field and the scattering field of metal nanoparticles. This model proposes a convenient way to increase the emission lifetime of dipoles on a large scale, and is expected to be applied to quantum information processing, optoelectronic applications, fundamental physics researches such as Bose-Einstein condensates.
      Corresponding author: Dou Xiu-Ming, xmdou@semi.ac.cn ; Sun Bao-Quan, bqsun@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61827823, 11974342) .
    [1]

    Drexhage K H 1970 J. Lumin. 1–2 693

    [2]

    Ferioli G, Glicenstein A, Henriet L, Ferrier-Barbut I, Browaeys A 2021 Phys. Rev. X 11 021031

    [3]

    Cipris A, Moreira N A, do Espirito Santo T S, Weiss P, Villas-Boas C J, Kaiser R, Guerin W, Bachelard R 2021 Phys. Rev. Lett. 126 103604Google Scholar

    [4]

    Pineiro Orioli A, Rey A M 2019 Phys. Rev. Lett. 123 223601Google Scholar

    [5]

    Heyde K, Sau J 1986 Phys. Rev. C Nucl. Phys. 33 1050Google Scholar

    [6]

    Zhou Y, Scuri G, Sung J, Gelly R J, Wild D S, De Greve K, Joe A Y, Taniguchi T, Watanabe K, Kim P, Lukin M D, Park H 2020 Phys. Rev. Lett. 124 027401Google Scholar

    [7]

    Ropp C, Cummins Z, Nah S, Fourkas J T, Shapiro B, Waks E 2015 Nat. Commun. 6 6558Google Scholar

    [8]

    Bužek V 1990 Z. Phys. D At. Mol. Clust. 17 91Google Scholar

    [9]

    Gu Y, Wang L, Ren P, Zhang J, Zhang T, Martin O J, Gong Q 2012 Nano Lett. 12 2488Google Scholar

    [10]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar

    [11]

    Delga A, Feist J, Bravo-Abad J, Garcia-Vidal F J 2014 Phys. Rev. Lett. 112 253601Google Scholar

    [12]

    Gazzano O, Michaelis de Vasconcellos S, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lemaitre A, Senellart P 2011 Phys. Rev. Lett. 107 247402Google Scholar

    [13]

    Evangelou S, Yannopapas V, Paspalakis E 2011 Phys. Rev. A 83 023819Google Scholar

    [14]

    Felici M, Pettinari G, Biccari F, Boschetti A, Younis S, Birindelli S, Gurioli M, Vinattieri A, Gerardino A, Businaro L, Hopkinson M, Rubini S, Capizzi M, Polimeni A 2020 Phys. Rev. B 101 205403Google Scholar

    [15]

    闫晓宏, 牛亦杰, 徐红星, 魏红 2022 物理学报 71 067301Google Scholar

    Yan X H, Niu Y J, Xu H X, Wei H 2022 Acta Phys. Sin. 71 067301Google Scholar

    [16]

    Kuhn S, Hakanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402Google Scholar

    [17]

    Pustovit V N, Shahbazyan T V 2009 Phys. Rev. Lett. 102 077401Google Scholar

    [18]

    Huang J, Ojambati O S, Chikkaraddy R, Sokolowski K, Wan Q, Durkan C, Scherman O A, Baumberg J J 2021 Phys. Rev. Lett. 126 047402Google Scholar

    [19]

    Belacel C, Habert B, Bigourdan F, Marquier F, Hugonin J P, de Vasconcellos S M, Lafosse X, Coolen L, Schwob C, Javaux C, Dubertret B, Greffet J J, Senellart P, Maitre A 2013 Nano Lett. 13 1516Google Scholar

    [20]

    Dey S, Zhou Y, Tian X, Jenkins J A, Chen O, Zou S, Zhao J 2015 Nanoscale 7 6851Google Scholar

    [21]

    张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛 2022 物理学报 71 118101Google Scholar

    Zhang L, Wang H Y, Wang N, Tao C, Zhai X L, Ma P Z, Zhong Y, Liu H T 2022 Acta Phys. Sin. 71 118101Google Scholar

    [22]

    Chen H, Huang J, He X, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2020 ACS Photon. 7 3228Google Scholar

    [23]

    Huang J, Chen H, Zhuo Z, Wang J, Li S, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2021 Chin. Phys. B 30 097805Google Scholar

    [24]

    Zhuo Z, Chen H, Huang J, Li S, Wang J, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2021 J. Phys. Chem. Lett. 12 3485Google Scholar

    [25]

    Carreño F, Antón M A, Arrieta-Yáñez F 2013 Phys. Rev. B 88 195303Google Scholar

    [26]

    Feldman M A, Dumitrescu E F, Bridges D, Chisholm M F, Davidson R B, Evans P G, Hachtel J A, Hu A, Pooser R C, Haglund R F, Lawrie B J 2018 Phys. Rev. B 97 081404Google Scholar

    [27]

    Carreño F, Yannopapas V, Antón M A, Paspalakis E 2019 Phys. Rev. A 100 023802Google Scholar

    [28]

    Hofmann M S, Gluckert J T, Noe J, Bourjau C, Dehmel R, Hogele A 2013 Nat. Nanotechnol. 8 502Google Scholar

    [29]

    Johansen J, Julsgaard B, Stobbe S, Hvam J M, Lodahl P 2010 Phys. Rev. B 81 081304Google Scholar

    [30]

    Palummo M, Bernardi M, Grossman J C 2015 Nano Lett. 15 2794Google Scholar

    [31]

    Butov L V, Lai C W, Ivanov A L, Gossard A C, Chemla D S 2002 Nature 417 47Google Scholar

    [32]

    Novotny L, Hecht B 2012 Priciples of Nano-Optics (Cambridge: Cambridge University Press) pp335–359

    [33]

    Wu X F, Wei H, Dou X M, Ding K, Yu Y, Ni H Q, Niu Z C, Ji Y, Li S S, Jiang D S, Guo G C, He L X, Sun B Q 2014 Europhys. Lett. 107 27008Google Scholar

    [34]

    李元和, 卓志瑶, 王健, 黄君辉, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权 2022 物理学报 71 067804Google Scholar

    Li Y H, Zhuo Z Y, Wang J, Huang J H, Li S L, Ni H Q, Niu Z C, Dou X M, Sun B Q 2022 Acta Phys. Sin. 71 067804Google Scholar

    [35]

    Yu Y, Shang X J, Li M F, Zha G W, Xu J X, Wang L J, Wang G W, Ni H Q, Dou X, Sun B, Niu Z C 2013 Appl. Phys. Lett. 102 201103Google Scholar

    [36]

    尚向军, 马奔, 陈泽升, 喻颖, 查国伟, 倪海桥, 牛智川 2018 物理学报 67 227801Google Scholar

    Shang X J, Ma B, Chen Z S, Yu Y, Zha G W, Ni H Q, Niu Z C 2018 Acta Phys. Sin. 67 227801Google Scholar

    [37]

    Wu X, Dou X, Ding K, Zhou P, Ni H, Niu Z, Jiang D, Sun B 2013 Appl. Phys. Lett. 103 252108Google Scholar

    [38]

    丁琨, 武雪飞, 窦秀明, 孙宝权 2016 物理学报 65 037701Google Scholar

    Ding K, Wu X F, Dou X M, Sun B Q 2016 Acta Phys. Sin. 65 037701Google Scholar

    [39]

    徐章程, 贾国治, 孙亮, 姚江宏, 许京军, Hvam J M, 王占国 2005 物理学报 54 5367Google Scholar

    Xu Z C, Jia G Z, Sun L, Yao J H, Xu J J, Hvam J M, Wang Z G 2005 Acta Phys. Sin. 54 5367Google Scholar

    [40]

    Itskevich I E, Lyapin S G, Troyan I A, Klipstein P C, Eaves L, Main P C, Henini M 1998 Phys. Rev. B 58 R4250Google Scholar

    [41]

    Wang G, Fafard S, Leonard D, Bowers J E, Merz J L, Petroff P M 1994 Appl. Phys. Lett. 64 2815Google Scholar

    [42]

    Seufert J, Bacher G, Schömig H, Forchel A, Hansen L, Schmidt G, Molenkamp L W 2004 Phys. Rev. B 69 035311Google Scholar

    [43]

    Zhou P Y, Dou X M, Wu X F, Ding K, Luo S, Yang T, Zhu H J, Jiang D S, Sun B Q 2014 J. Appl. Phys. 116 023510Google Scholar

    [44]

    Eisaman M D, Fan J, Migdall A, Polyakov S V 2011 Rev. Sci. Instrum. 82 071101Google Scholar

    [45]

    Weber W H, Ford G W 2004 Phys. Rev. B 70 125429Google Scholar

    [46]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [47]

    Adachi S 2012 Handbook on Optical Constants of Metals (Singapore: World Scientific Publishing ) pp61–68

    [48]

    Adachi S 2012 The Handbook on Optical Constants of Semiconductors (Singapore: World Scientific Publishing) pp153–162

    [49]

    Saglimbeni F, Bianchi S, Gibson G, Bowman R, Padgett M, Di Leonardo R 2016 Opt. Express 24 27009Google Scholar

  • 图 1  (a) InAs/GaAs 量子点样品转移到覆盖了Ag纳米颗粒的Si片上示意图, 其中黄色箭头表示量子点浸润层中激子偶极子与金属纳米颗粒偶极子之间的相互作用; (b)金刚石对顶砧设备示意图, 其中金属垫片和金刚石砧面组成样品的压力腔室, 腔室中放置样品和红宝石

    Figure 1.  (a) Schematic diagram of the InAs/GaAs QD sample transferred onto a Si substrate covered with Ag nanoparticles. The yellow arrow represents the interaction between exciton dipole in WL and the Ag nanoparticles. (b) Schematic diagram of the diamond anvil cell. The pressure chamber consists of a metal gasket and diamond surfaces. The sample and ruby are placed in the chamber.

    图 2  (a)低温20 K和常压下量子点样品的PL光谱, 激发功率为2.2 μW; 插图为$ 893.78\;\rm{n}\rm{m} $波长的量子点发光谱线的TRPL光谱, 激光为$ 40\;\rm{ }\rm{M}\rm{H}\rm{z} $的脉冲光, 激发功率为1.04 μW, 红色实线为使用单指数衰减函数拟合的结果; (b)在低温 20 K和$ 1.09\;\rm{G}\rm{P}\rm{a} $压力下, 转移后量子点样品的PL光谱, 激发功率为2.2 μW; 插图为$ 825.22\;\rm{n}\rm{m} $波长的发光谱线的TRPL光谱, 激发模式为$ 1\;\rm{M}\rm{H}\rm{z} $ 频率的脉冲光, 激发功率为0.026 μW, 红色实线为类拓展指数衰减函数拟合结果

    Figure 2.  (a) PL spectrum of QD sample at 20 K and atmospheric pressure, excited by a power of 2.2 μW. Inset: TRPL spectrum of QD emission line of $ 893.78\;\rm{n}\rm{m} $ at an excitation power of 1.04 μW in pulsed mode of $ 40\;\rm{M}\rm{H}\rm{z} $. The red solid line represents the single exponential function fitting result. (b) PL spectrum of the transferred QD sample at 20 K and $ 1.09\;\rm{G}\rm{P}\rm{a} $, excited by a power of 2.2 μW. Inset: TRPL spectrum of QD emission line of $ 825.22\;\rm{n}\rm{m} $ at an excitation power of 0.026 μW in pulsed mode of $ 1\rm{ }\rm{M}\rm{H}\rm{z} $. The red solid line represents the stretched-like exponential function fitting result.

    图 3  (a) DAC腔中的压力与PZT电压的函数关系; (b)不同压力下InAs/GaAs量子点样品的PL光谱, 激发功率为2.2 μW, 红色和蓝色虚线箭头分别表示量子点和浸润层发光峰波长蓝移结果; (c)量子点(红色)和浸润层(蓝色)发光峰波长与压力的函数关系

    Figure 3.  (a) Hydrostatic pressure in DAC chamber as a function of applied voltage of PZT; (b) PL spectra of the InAs/GaAs QD sample measured under different pressures at an excitation power of 2.2 μW, the red and blue dashed lines indicate the pressure-induced blue shift of QD and WL emission peaks, respectively; (c) pressure dependences of QD (red) and WL (blue) PL peak wavelengths.

    图 4  (a) InAs/GaAs量子点样品中量子点辐射速率与浸润层发光波长的依赖关系, 其中红色点为不同压力下的实验数据, 蓝色实线为(1)式计算结果; (b)—(d)在图(a)中蓝色圆圈A, BC三个浸润层发光波长 ($ 808.50\;\rm{n}\rm{m} $, $ 797.49\;\rm{ }\rm{n}\rm{m} $$ 769.84\;\rm{ }\rm{n}\rm{m} $) 位置对应的量子点PL 和TRPL光谱(插图), 对应激发光的脉冲频率分别为$ 1\;\rm{ }\rm{M}\rm{H}\rm{z} $, $ 0.25\;\rm{ }\rm{M}\rm{H}\rm{z} $$ 10\;\rm{ }\rm{M}\rm{H}\rm{z} $, 其中插图内红色实线表示类拓展指数函数拟合结果

    Figure 4.  (a) Dependence of QD radiation rate and WL emission wavelength for the transferred InAs/GaAs QD sample, the red dots are experimental data under different hydrostatic pressures and the blue solid line represents the calculated result based on Eq. (1); (b)–(d) PL and TRPL spectra (Inset) of QD for the experimental condition of WL wavelengths at $ 808.50 $, $ 797.49 $and $ 769.84\;\rm{n}\rm{m} $, respectively, corresponding to the data points A, B and C in Fig. 4(a), with a laser excitation repetition rate of $ 1\;\rm{M}\rm{H}\rm{z} $, $ 0.25\;\rm{M}\rm{H}\rm{z} $, and $ 10\;\rm{ }\rm{M}\rm{H}\rm{z} $ respectively. The red solid lines in inset represent the stretched-like exponential function fitting results.

  • [1]

    Drexhage K H 1970 J. Lumin. 1–2 693

    [2]

    Ferioli G, Glicenstein A, Henriet L, Ferrier-Barbut I, Browaeys A 2021 Phys. Rev. X 11 021031

    [3]

    Cipris A, Moreira N A, do Espirito Santo T S, Weiss P, Villas-Boas C J, Kaiser R, Guerin W, Bachelard R 2021 Phys. Rev. Lett. 126 103604Google Scholar

    [4]

    Pineiro Orioli A, Rey A M 2019 Phys. Rev. Lett. 123 223601Google Scholar

    [5]

    Heyde K, Sau J 1986 Phys. Rev. C Nucl. Phys. 33 1050Google Scholar

    [6]

    Zhou Y, Scuri G, Sung J, Gelly R J, Wild D S, De Greve K, Joe A Y, Taniguchi T, Watanabe K, Kim P, Lukin M D, Park H 2020 Phys. Rev. Lett. 124 027401Google Scholar

    [7]

    Ropp C, Cummins Z, Nah S, Fourkas J T, Shapiro B, Waks E 2015 Nat. Commun. 6 6558Google Scholar

    [8]

    Bužek V 1990 Z. Phys. D At. Mol. Clust. 17 91Google Scholar

    [9]

    Gu Y, Wang L, Ren P, Zhang J, Zhang T, Martin O J, Gong Q 2012 Nano Lett. 12 2488Google Scholar

    [10]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar

    [11]

    Delga A, Feist J, Bravo-Abad J, Garcia-Vidal F J 2014 Phys. Rev. Lett. 112 253601Google Scholar

    [12]

    Gazzano O, Michaelis de Vasconcellos S, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lemaitre A, Senellart P 2011 Phys. Rev. Lett. 107 247402Google Scholar

    [13]

    Evangelou S, Yannopapas V, Paspalakis E 2011 Phys. Rev. A 83 023819Google Scholar

    [14]

    Felici M, Pettinari G, Biccari F, Boschetti A, Younis S, Birindelli S, Gurioli M, Vinattieri A, Gerardino A, Businaro L, Hopkinson M, Rubini S, Capizzi M, Polimeni A 2020 Phys. Rev. B 101 205403Google Scholar

    [15]

    闫晓宏, 牛亦杰, 徐红星, 魏红 2022 物理学报 71 067301Google Scholar

    Yan X H, Niu Y J, Xu H X, Wei H 2022 Acta Phys. Sin. 71 067301Google Scholar

    [16]

    Kuhn S, Hakanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 017402Google Scholar

    [17]

    Pustovit V N, Shahbazyan T V 2009 Phys. Rev. Lett. 102 077401Google Scholar

    [18]

    Huang J, Ojambati O S, Chikkaraddy R, Sokolowski K, Wan Q, Durkan C, Scherman O A, Baumberg J J 2021 Phys. Rev. Lett. 126 047402Google Scholar

    [19]

    Belacel C, Habert B, Bigourdan F, Marquier F, Hugonin J P, de Vasconcellos S M, Lafosse X, Coolen L, Schwob C, Javaux C, Dubertret B, Greffet J J, Senellart P, Maitre A 2013 Nano Lett. 13 1516Google Scholar

    [20]

    Dey S, Zhou Y, Tian X, Jenkins J A, Chen O, Zou S, Zhao J 2015 Nanoscale 7 6851Google Scholar

    [21]

    张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛 2022 物理学报 71 118101Google Scholar

    Zhang L, Wang H Y, Wang N, Tao C, Zhai X L, Ma P Z, Zhong Y, Liu H T 2022 Acta Phys. Sin. 71 118101Google Scholar

    [22]

    Chen H, Huang J, He X, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2020 ACS Photon. 7 3228Google Scholar

    [23]

    Huang J, Chen H, Zhuo Z, Wang J, Li S, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2021 Chin. Phys. B 30 097805Google Scholar

    [24]

    Zhuo Z, Chen H, Huang J, Li S, Wang J, Ding K, Ni H, Niu Z, Jiang D, Dou X, Sun B 2021 J. Phys. Chem. Lett. 12 3485Google Scholar

    [25]

    Carreño F, Antón M A, Arrieta-Yáñez F 2013 Phys. Rev. B 88 195303Google Scholar

    [26]

    Feldman M A, Dumitrescu E F, Bridges D, Chisholm M F, Davidson R B, Evans P G, Hachtel J A, Hu A, Pooser R C, Haglund R F, Lawrie B J 2018 Phys. Rev. B 97 081404Google Scholar

    [27]

    Carreño F, Yannopapas V, Antón M A, Paspalakis E 2019 Phys. Rev. A 100 023802Google Scholar

    [28]

    Hofmann M S, Gluckert J T, Noe J, Bourjau C, Dehmel R, Hogele A 2013 Nat. Nanotechnol. 8 502Google Scholar

    [29]

    Johansen J, Julsgaard B, Stobbe S, Hvam J M, Lodahl P 2010 Phys. Rev. B 81 081304Google Scholar

    [30]

    Palummo M, Bernardi M, Grossman J C 2015 Nano Lett. 15 2794Google Scholar

    [31]

    Butov L V, Lai C W, Ivanov A L, Gossard A C, Chemla D S 2002 Nature 417 47Google Scholar

    [32]

    Novotny L, Hecht B 2012 Priciples of Nano-Optics (Cambridge: Cambridge University Press) pp335–359

    [33]

    Wu X F, Wei H, Dou X M, Ding K, Yu Y, Ni H Q, Niu Z C, Ji Y, Li S S, Jiang D S, Guo G C, He L X, Sun B Q 2014 Europhys. Lett. 107 27008Google Scholar

    [34]

    李元和, 卓志瑶, 王健, 黄君辉, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权 2022 物理学报 71 067804Google Scholar

    Li Y H, Zhuo Z Y, Wang J, Huang J H, Li S L, Ni H Q, Niu Z C, Dou X M, Sun B Q 2022 Acta Phys. Sin. 71 067804Google Scholar

    [35]

    Yu Y, Shang X J, Li M F, Zha G W, Xu J X, Wang L J, Wang G W, Ni H Q, Dou X, Sun B, Niu Z C 2013 Appl. Phys. Lett. 102 201103Google Scholar

    [36]

    尚向军, 马奔, 陈泽升, 喻颖, 查国伟, 倪海桥, 牛智川 2018 物理学报 67 227801Google Scholar

    Shang X J, Ma B, Chen Z S, Yu Y, Zha G W, Ni H Q, Niu Z C 2018 Acta Phys. Sin. 67 227801Google Scholar

    [37]

    Wu X, Dou X, Ding K, Zhou P, Ni H, Niu Z, Jiang D, Sun B 2013 Appl. Phys. Lett. 103 252108Google Scholar

    [38]

    丁琨, 武雪飞, 窦秀明, 孙宝权 2016 物理学报 65 037701Google Scholar

    Ding K, Wu X F, Dou X M, Sun B Q 2016 Acta Phys. Sin. 65 037701Google Scholar

    [39]

    徐章程, 贾国治, 孙亮, 姚江宏, 许京军, Hvam J M, 王占国 2005 物理学报 54 5367Google Scholar

    Xu Z C, Jia G Z, Sun L, Yao J H, Xu J J, Hvam J M, Wang Z G 2005 Acta Phys. Sin. 54 5367Google Scholar

    [40]

    Itskevich I E, Lyapin S G, Troyan I A, Klipstein P C, Eaves L, Main P C, Henini M 1998 Phys. Rev. B 58 R4250Google Scholar

    [41]

    Wang G, Fafard S, Leonard D, Bowers J E, Merz J L, Petroff P M 1994 Appl. Phys. Lett. 64 2815Google Scholar

    [42]

    Seufert J, Bacher G, Schömig H, Forchel A, Hansen L, Schmidt G, Molenkamp L W 2004 Phys. Rev. B 69 035311Google Scholar

    [43]

    Zhou P Y, Dou X M, Wu X F, Ding K, Luo S, Yang T, Zhu H J, Jiang D S, Sun B Q 2014 J. Appl. Phys. 116 023510Google Scholar

    [44]

    Eisaman M D, Fan J, Migdall A, Polyakov S V 2011 Rev. Sci. Instrum. 82 071101Google Scholar

    [45]

    Weber W H, Ford G W 2004 Phys. Rev. B 70 125429Google Scholar

    [46]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [47]

    Adachi S 2012 Handbook on Optical Constants of Metals (Singapore: World Scientific Publishing ) pp61–68

    [48]

    Adachi S 2012 The Handbook on Optical Constants of Semiconductors (Singapore: World Scientific Publishing) pp153–162

    [49]

    Saglimbeni F, Bianchi S, Gibson G, Bowman R, Padgett M, Di Leonardo R 2016 Opt. Express 24 27009Google Scholar

  • [1] Li Qiao-Li, Li Shen-Shen, Xiao Ji-Jun, Chen Zhao-Xu. First-principles study on the structure and stability of (H2dabco)[K(ClO4)3] under hydrostatic pressure. Acta Physica Sinica, 2024, 73(14): 143101. doi: 10.7498/aps.73.20240477
    [2] Su Yu-Hang, Zhang Lian, Tao Can, Wang Ning, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Spontaneous emission enhancement and directional emission by an optical nanonatenna array on a metallic mirror. Acta Physica Sinica, 2023, 72(7): 078101. doi: 10.7498/aps.72.20222007
    [3] Li Yuan-He, Zhuo Zhi-Yao, Wang Jian, Huang Jun-Hui, Li Shu-Lun, Ni Hai-Qiao, Niu Zhi-Chuan, Dou Xiu-Ming, Sun Bao-Quan. Controlling exciton spontaneous emission of quantum dots by Au nanoparticles. Acta Physica Sinica, 2022, 71(6): 067804. doi: 10.7498/aps.71.20211863
    [4] Gao Li-Ke, Zhao Xian-Hao, Diao Xin-Feng, Tang Tian-Yu, Tang Yan-Lin. First-principles study of photoelectric properties of CsSnBr3 under hydrostatic pressure. Acta Physica Sinica, 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [5] Controlling Exciton Spontaneous Emission of Quantum Dots by Au nanoparticles. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211863
    [6] Zhang Zhi-Wei,  Zhao Cui-Lan,  Sun Bao-Quan. 1.3 μm single photon emission from InAs/GaAs quantum dots. Acta Physica Sinica, 2018, 67(23): 237802. doi: 10.7498/aps.67.20181592
    [7] Luo Yi, Wang Xiao-Lin, Zhang Han-Wei, Su Rong-Tao, Ma Peng-Fei, Zhou Pu, Jiang Zong-Fu. Amplified spontaneous emission characteristics and locations of high temperature vulnerable point in fiber amplifiers. Acta Physica Sinica, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [8] Zhang Wei, Shi Zhen-Wu, Huo Da-Yun, Guo Xiao-Xiang, Peng Chang-Si. Effects of in-situ surface modification by pulsed laser on InAs/GaAs (001) quantum dot growth. Acta Physica Sinica, 2016, 65(11): 117801. doi: 10.7498/aps.65.117801
    [9] Su Dan, Dou Xiu-Ming, Ding Kun, Wang Hai-Yan, Ni Hai-Qiao, Niu Zhi-Chuan, Sun Bao-Quan. Extraction efficiency enhancement of single InAs quantum dot emission through light scattering on the Au nanoparticles. Acta Physica Sinica, 2015, 64(23): 235201. doi: 10.7498/aps.64.235201
    [10] Wang Yuan, Dong Rui-Xin, Yan Xun-Ling. Organic memristive devices based on DNA embedded in silver nanoparticles layer. Acta Physica Sinica, 2015, 64(4): 048402. doi: 10.7498/aps.64.048402
    [11] Xue Bing, Xu Yin-Sheng, Li Yan-Yuan, Qi Jia-Ni, Lu Shan-Shan, Lu Ke-Lun, Chen Li-Yan, Zhang Shao-Qian, Dai Shi-Xun. Ag nanoparticles enhanced 2 um luminescences of Ho3+/Tm3+ codoped bismuth germanate glasses. Acta Physica Sinica, 2014, 63(10): 107802. doi: 10.7498/aps.63.107802
    [12] Li Wen-Sheng, Sun Bao-Quan. Optical transition of the charged excitons in InAs single quantum dots. Acta Physica Sinica, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [13] Lu Zhi-Peng, Zhu Wen-Jun, Lu Tie-Cheng. Ab initio study of the bcc-to-hcp transition mechanism in Fe under pressure. Acta Physica Sinica, 2013, 62(5): 056401. doi: 10.7498/aps.62.056401
    [14] Wang Wen-Fang, Chen Ke, Wu Jing-Da, Wen Jin-Hui, Lai Tian-Shu. Influence of long lifetime absorption process on the measurement of ultrafast carrier dynamics. Acta Physica Sinica, 2011, 60(11): 117802. doi: 10.7498/aps.60.117802
    [15] Song Yu-Xin, Yu Zhong-Yuan, Liu Yu-Min. Influences of flux and interruption on InAs/GaAs quantum dot superlattice growth. Acta Physica Sinica, 2008, 57(4): 2399-2403. doi: 10.7498/aps.57.2399
    [16] Hu Liang-Jun, Chen Yong-Hai, Ye Xiao-Ling, Wang Zhan-Guo. Electrical and optical properties of InAs/GaAs quantum dots doped by high energy Mn implantation. Acta Physica Sinica, 2007, 56(8): 4930-4935. doi: 10.7498/aps.56.4930
    [17] Tang Nai-Yun, Chen Xiao-Shuang, Lu Wei. Hydrostatic pressure coefficients of the photoluminescence of InAs/GaAs quantum dots. Acta Physica Sinica, 2005, 54(5): 2277-2281. doi: 10.7498/aps.54.2277
    [18] CHENG JI-XIN, SHI QIANG, SHUANG FENG, ZHU QING-SHI. MAKING LOCAL MODE VIBRATION LONG LIVED BY THE INTERACTION BETWEEN A STRONG MONO-COLOR LASER FIELD AND MOLECULES. Acta Physica Sinica, 1997, 46(5): 852-861. doi: 10.7498/aps.46.852
    [19] CHENG JI-XIN, SHI QIANG, SHUANG FENG, ZHU QING-SHI. MAKING LOCAL MODE VIBRATION LONG LIVED BY THE INTERACTION BETWEEN A STRONG MULTI-COLOR LASER FIELD AND MOLECULES. Acta Physica Sinica, 1997, 46(6): 1079-1087. doi: 10.7498/aps.46.1079
    [20] Su Fang, Xie Bin, Zhao Ming-Wen, Wu Xi-Jun. . Acta Physica Sinica, 1995, 44(5): 755-762. doi: 10.7498/aps.44.755
Metrics
  • Abstract views:  3904
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  06 July 2022
  • Accepted Date:  07 August 2022
  • Available Online:  12 December 2022
  • Published Online:  24 December 2022

/

返回文章
返回