Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Sb/Bi atom substitution site on electronic transport properties of Mg2Si0.375Sn0.625 alloy

Li Xin Xie Hui Zhang Ya-Long Ma Ying Zhang Jun-Tao Su Heng-Jie

Citation:

Effect of Sb/Bi atom substitution site on electronic transport properties of Mg2Si0.375Sn0.625 alloy

Li Xin, Xie Hui, Zhang Ya-Long, Ma Ying, Zhang Jun-Tao, Su Heng-Jie
PDF
HTML
Get Citation
  • Mg2(Si,Sn)-based thermoelectric materials, which are environmentally friendly and low-cost, have great development potential in a moderate temperature range. Electronic transport properties of Mg2Si1-xSnx alloys can be optimized by doping elements. Doping is still one of the most effective methods of optimizing electronic transport performance, such as carrier concentration, mobility, and effective mass. The most effective doping elements are Sb and Bi. Much attention has been paid to the influence of element type and doping content. Different substitution sites will also greatly affect the electronic transport parameters. In this work, the defect formation energy value of Mg2Si0.375Sn0.625 alloy for substituting Sb atoms and Bi atoms for Sn sties and Si sites, respectively, are calculated by first-principles calculations. The influence on electronic transport parameters is systematically analyzed by combining the calculated results of band structures and density of states. Corresponding component Sb and Bi atoms doped Mg2Si0.375Sn0.625 alloys are prepared by rapid solidification method, and microstructures, Seebeck coefficients, and electrical conductivities of the alloys are measured. Combined with the predicted results by solving the Boltzmann transport equation, electronic transport performances are compared and analyzed. The results indicate that both Sn and Si sites are equally susceptible to Sb and Bi doping, but the Si sites are preferentially substituted due to their lower ∆Ef values. Doped Bi atoms provide a higher electron concentration, and Sb atoms offer higher carrier effective mass. Thus, the maximum σ value of the Mg2Si0.375Sn0.615Bi0.01 alloy is 1620 S/cm. The maximum S value of the Mg2Si0.365Sn0.625Sb0.01 alloy is –228 μV/K. Correspondingly, the highest PF value for this alloy is 4.49 mW/(m·K) at T = 800 K because of the dominant role of S values. Although its power factor is slightly lower, the Mg2Si0.375Sn0.615Sb0.01 alloy is expected to exhibit lower lattice thermal conductivity due to the lattice shrinkage caused by substituting Sb sites for Sn sites. The optimal doping concentration of the Bi-doped alloy is lower than that of the Sb-doped alloy. These results are expected to provide a significant reference for optimizing the experimental performance of Mg2(Si, Sn)-based alloys.
      Corresponding author: Li Xin, lixin005@xaau.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51904219), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JQ-906), and the Youth Innovation Team of Shaanxi Universities, China.
    [1]

    Bahrami A, Schierning G, Nielsch K 2020 Adv. Energy Mater. 10 1904159Google Scholar

    [2]

    Mao J, Chen G, Ren Z F 2021 Nat. Mater. 20 454Google Scholar

    [3]

    赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆 2021 物理学报 70 128401Google Scholar

    Zhao Y H, Zhang R, Zhang B P, Yin Y, Wang M J, Liang D D 2021 Acta Phys. Sin. 70 128401Google Scholar

    [4]

    程立东, 刘瑞恒, 史迅 2018 热电材料与器件 (北京: 科学出版社) 第8—13页

    Cheng L D, Liu R H, Shi X 2018 Thermoelectric Materials and Devices (Beijing: Science Press) pp8–13 (in Chinese)

    [5]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [6]

    Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z F, Chen X J 2019 Nat. Mater. 18 1321Google Scholar

    [7]

    李彩云, 何文科, 王东洋, 张潇, 赵立东 2021 物理学报 70 208401Google Scholar

    Li C Y, He W K, Wang D Y, Zhang X, Zhao L D 2021 Acta Phys. Sin. 70 208401Google Scholar

    [8]

    黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程 2021 物理学报 70 157401Google Scholar

    Huang Q S, Duan B, Chen G, Ye Z C, Li J, Li G D, Zhai P C 2021 Acta Phys. Sin. 70 157401Google Scholar

    [9]

    陈赟斐, 魏锋, 王赫, 赵未昀, 邓元 2021 物理学报 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W Y, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [10]

    Kim M S, Lee W J, Cho K H, Ahn J P, Sung Y M 2016 ACS Nano 10 7197Google Scholar

    [11]

    Zhao Y W, Liu Y, Ma H Y, Deng S P, Wang H Y, Xiong R, Huang S 2021 Ceram. Int. 47 28268Google Scholar

    [12]

    Cahana M, Gelbstein Y 2020 Intermetallics 120 106767Google Scholar

    [13]

    Sankhla A, Kamila H, Kelm K, Mueller E, de Boor J 2020 Acta Mater. 199 85Google Scholar

    [14]

    Gao P, Lu X, Berkun I, Schmidt R D, Case E D, Hogan T P 2014 Appl. Phys. Lett. 105 202104Google Scholar

    [15]

    Mao J, Kim H S, Shuai J, Liu Z, He R, Saparamadu U, Tian F, Liu W, Ren Z F 2016 Acta Mater. 103 633Google Scholar

    [16]

    Tan X J, Liu W, Shi H J, Tang X F, Uher C 2012 Phys. Rev. B 85 205212Google Scholar

    [17]

    Li X, Li S M, Feng S K, Zhong H 2018 J. Electron. Mater. 47 1022Google Scholar

    [18]

    Li X, Li S M, Yang B, Feng S K, Zhong H 2018 J. Mater. Sci. Mater. Electron. 29 6245Google Scholar

    [19]

    Li X, Li S M, Feng S K, Zhong H 2018 J. Alloy Compd. 739 705Google Scholar

    [20]

    Fan W H, Chen S P, Zeng B, Zhang Q, Meng Q S, Wang W X, Munir Z A 2017 ACS Appl. Mater. Inter 34 28635Google Scholar

    [21]

    Jiang G Y, He J, Zhu T J, Fu C G, Liu X H, Hu L P, Zhao X B 2014 Adv. Func. Mate. 24 1Google Scholar

    [22]

    Liu W, Tang X F, Li H, Sharp J, Zhou X Y, Uher C 2011 Chem. Mate. 23 5256Google Scholar

    [23]

    Du Z L, Zhu T J, Zhao X B 2012 Mater. Lett. 66 76Google Scholar

    [24]

    Khan A U, Vlachos N, Kyratsi T 2013 Scripta Mater. 69 606Google Scholar

    [25]

    Howlader S, Gupta S, Vasudevan R, Banerjee M K, Sachdev K 2020 Mater. Today Proc. 30 100Google Scholar

    [26]

    Chen X X, Wu H J, Cui J, Xiao Y, Zhang Y, He J Q, Chen Y, Cao J, Cai W, Pennycook S J, Liu Z H, Zhao L D, Sui J H 2018 Nano Energy 52 246Google Scholar

    [27]

    Imasato K, Kang S D, Ohno S, Snyder G J 2018 Mater. Horiz. 5 59Google Scholar

    [28]

    Mao J, Wu Y X, Song S W, Shuai J, Liu Z H, Pei Y Z, Ren Z F 2017 Mater. Today Phys. 3 1Google Scholar

    [29]

    Liu Y, Hu W C, Li D J, Zeng X Q, Xu C S 2013 Phys. Scripta 88 45302Google Scholar

    [30]

    Feng S K, Li S M, Fu H Z 2014 Comp. Mater. Sci. 82 45Google Scholar

    [31]

    Vanderbilt D 1990 Phys. Rev. B Condens. Matter. 41 7892Google Scholar

    [32]

    Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V, Sofo J O 2003 Phys. Rev. B 68 125210Google Scholar

    [33]

    Madsen G K H, Singh D J 2006 Comp. Phys. Commun. 175 67Google Scholar

    [34]

    Chou T L, Mustonen O, Tripathi T S, Karppinen M 2015 J. Phys. Condens. Matter. 28 35802Google Scholar

    [35]

    Chong X Y, Guan P W, Wang Y, Shang S L, Palma J P S, Drymiotis F, Ravi V A, Star K E, Fleurial J, Liu Z K 2018 ACS Appl. Energy Mater. 1 6600Google Scholar

    [36]

    Snyder G J, Toberer E S 2008 Nature Mater. 7 105Google Scholar

    [37]

    Zhang Q, Zheng Y, Su X L, Yin K, Tang X F, Uher C 2015 Scripta Mater. 96 1Google Scholar

    [38]

    Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333Google Scholar

  • 图 1  Mg2(Si, Sn)晶体的晶胞、原胞和超晶胞结构示意图

    Figure 1.  Conventional cell, primitive cell and supercell of Mg2(Si, Sn) crystal.

    图 2  Bi/Sb掺杂的Mg192Si36Sn60晶体的电荷密度分布图

    Figure 2.  Electron density of Bi/Sb doped Mg192Si36Sn60 alloys.

    图 3  未掺杂 Mg2Si0.375Sn0.625合金单胞(a)和Sb/Bi原子分别取代Si/Sn位(b)—(e)的Mg2Si0.375Sn0.625合金超晶胞的能带结构图

    Figure 3.  Band structures of undoped Mg2Si0.375Sn0.625 conventional cell (a) and the supercells with Sb/Bi doped at different Si/Sn sites (b)–(e).

    图 4  不同掺杂条件下Mg2Si0.375Sn0.625合金的DOS计算结果(a)和各成分合金中不同元素对DOS的贡献(b)—(f)

    Figure 4.  Calculated results of total DOS (a) and the weighting of elements in total DOS (b)–(f) for the Mg2Si0.375Sn0.625 alloys under different doping conditions.

    图 5  快速凝固Mg2Si0.375Sn0.625合金微观组织图(a)以及Mg, Si和Sn元素分布的面扫描结果(b)—(d)

    Figure 5.  Microstructure of rapid solidified Mg2Si0.375Sn0.625 crystal (a) and the elements mapping images of Mg, Si, and Sn (b)–(d).

    图 6  不同掺杂条件下快速凝固Mg2Si0.375Sn0.625合金的粉末XRD图(a)和(111), (220)衍射峰的局部放大图(b)

    Figure 6.  Power XRD patterns of the rapid solidified Mg2Si0.375Sn0.625 crystals under different doping conditions (a) and partial enlarged peaks of (111) and (220) (b).

    图 7  不同掺杂条件下Mg2Si0.375Sn0.625合金Seebeck系数(a)和电导率(b)随温度的变化曲线; T = 800 K时Seebeck系数随载流子浓度的变化曲线(c)和框选部分的局部放大图(d)

    Figure 7.  Temperature dependence of Seebeck coefficient (a) and electrical conductivity (b) of Mg2Si0.375Sn0.625 crystals under different doping conditions. Calculated Seebeck coefficient as a function of carrier concentration (c) and magnified view (d) of the outlined area at T = 800 K.

    图 8  不同s掺杂条件下Mg2Si0.375Sn0.625合金功率因子(a)、热导率(b)和ZT值(c)随温度的变化曲线

    Figure 8.  Temperature dependence of power factor (a), thermal conductivity (b), and ZT (c) of Mg2Si0.375Sn0.625 crystals under different doping conditions.

    表 1  Bi/Sb掺杂Mg192Si36Sn60晶体晶格常数、键长度和Mulliken布居数的计算结果

    Table 1.  Calculated results of lattice constant, bond length and Mulliken population for Bi/Sb doped Mg192Si36Sn60 crystals.

    超晶胞结构晶格常数/Å键类型Mulliken
    布居数
    键长
    度/Å
    形成
    能/eV
    Mg192Si36Sn6018.436Mg—Sn0.262.846
    Mg—Si0.192.748
    Mg192Si36Sn59Sb18.422Mg—Sb0.102.896–1.102
    Mg—Sn0.332.814
    Mg—Si0.222.708
    Mg192Si36Sn59Bi18.442Mg—Bi0.222.963–0.674
    Mg—Sn0.272.849
    Mg—Si0.202.763
    Mg192Si35Sn60Sb18.438Mg—Sb0.142.935–1.337
    Mg—Sn0.302.831
    Mg—Si0.212.727
    Mg19Si35Sn60Bi18.440Mg—Bi0.172.989–0.945
    Mg—Sn0.202.855
    Mg—Si0.202.766
    DownLoad: CSV

    表 2  不同掺杂条件下Mg2Si0.375Sn0.625合金的理论成分和实验所得样品的EDS成分测试结果

    Table 2.  Nominal and measured results of elementary composition of Mg2Si0.375Sn0.625 alloys under different doping conditions

    理论成分元素含量/%实际成分
    MgSiSnSb/Bi
    Mg2Si0.375Sn0.62566.9112.5120.58Mg2.007Si0.375Sn0.618
    Mg2Si0.375Sn0.615Sb0.0166.8212.4320.360.39Mg2.004Si0.373Sn0.611Sb0.012
    Mg2Si0.375Sn0.615Bi0.0166.8812.4120.300.41Mg2.006Si0.372Sn0.609Bi0.013
    Mg2Si0.365Sn0.625Sb0.0166.9312.0120.740.32Mg2.008Si0.360Sn0.623Sb0.009
    Mg2Si0.365Sn0.625Bi0.0166.7712.0720.710.45Mg2.003Si0.362Sn0.621Bi0.014
    DownLoad: CSV
  • [1]

    Bahrami A, Schierning G, Nielsch K 2020 Adv. Energy Mater. 10 1904159Google Scholar

    [2]

    Mao J, Chen G, Ren Z F 2021 Nat. Mater. 20 454Google Scholar

    [3]

    赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆 2021 物理学报 70 128401Google Scholar

    Zhao Y H, Zhang R, Zhang B P, Yin Y, Wang M J, Liang D D 2021 Acta Phys. Sin. 70 128401Google Scholar

    [4]

    程立东, 刘瑞恒, 史迅 2018 热电材料与器件 (北京: 科学出版社) 第8—13页

    Cheng L D, Liu R H, Shi X 2018 Thermoelectric Materials and Devices (Beijing: Science Press) pp8–13 (in Chinese)

    [5]

    范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰 2021 物理学报 70 137102Google Scholar

    Fan R J, Jiang X Y, Tao Q R, Mei Q C, Tang Y F, Chen Z Q, Su X L, Tang X F 2021 Acta Phys. Sin. 70 137102Google Scholar

    [6]

    Chen L C, Chen P Q, Li W J, Zhang Q, Struzhkin V V, Goncharov A F, Ren Z F, Chen X J 2019 Nat. Mater. 18 1321Google Scholar

    [7]

    李彩云, 何文科, 王东洋, 张潇, 赵立东 2021 物理学报 70 208401Google Scholar

    Li C Y, He W K, Wang D Y, Zhang X, Zhao L D 2021 Acta Phys. Sin. 70 208401Google Scholar

    [8]

    黄青松, 段波, 陈刚, 叶泽昌, 李江, 李国栋, 翟鹏程 2021 物理学报 70 157401Google Scholar

    Huang Q S, Duan B, Chen G, Ye Z C, Li J, Li G D, Zhai P C 2021 Acta Phys. Sin. 70 157401Google Scholar

    [9]

    陈赟斐, 魏锋, 王赫, 赵未昀, 邓元 2021 物理学报 70 207303Google Scholar

    Chen Y F, Wei F, Wang H, Zhao W Y, Deng Y 2021 Acta Phys. Sin. 70 207303Google Scholar

    [10]

    Kim M S, Lee W J, Cho K H, Ahn J P, Sung Y M 2016 ACS Nano 10 7197Google Scholar

    [11]

    Zhao Y W, Liu Y, Ma H Y, Deng S P, Wang H Y, Xiong R, Huang S 2021 Ceram. Int. 47 28268Google Scholar

    [12]

    Cahana M, Gelbstein Y 2020 Intermetallics 120 106767Google Scholar

    [13]

    Sankhla A, Kamila H, Kelm K, Mueller E, de Boor J 2020 Acta Mater. 199 85Google Scholar

    [14]

    Gao P, Lu X, Berkun I, Schmidt R D, Case E D, Hogan T P 2014 Appl. Phys. Lett. 105 202104Google Scholar

    [15]

    Mao J, Kim H S, Shuai J, Liu Z, He R, Saparamadu U, Tian F, Liu W, Ren Z F 2016 Acta Mater. 103 633Google Scholar

    [16]

    Tan X J, Liu W, Shi H J, Tang X F, Uher C 2012 Phys. Rev. B 85 205212Google Scholar

    [17]

    Li X, Li S M, Feng S K, Zhong H 2018 J. Electron. Mater. 47 1022Google Scholar

    [18]

    Li X, Li S M, Yang B, Feng S K, Zhong H 2018 J. Mater. Sci. Mater. Electron. 29 6245Google Scholar

    [19]

    Li X, Li S M, Feng S K, Zhong H 2018 J. Alloy Compd. 739 705Google Scholar

    [20]

    Fan W H, Chen S P, Zeng B, Zhang Q, Meng Q S, Wang W X, Munir Z A 2017 ACS Appl. Mater. Inter 34 28635Google Scholar

    [21]

    Jiang G Y, He J, Zhu T J, Fu C G, Liu X H, Hu L P, Zhao X B 2014 Adv. Func. Mate. 24 1Google Scholar

    [22]

    Liu W, Tang X F, Li H, Sharp J, Zhou X Y, Uher C 2011 Chem. Mate. 23 5256Google Scholar

    [23]

    Du Z L, Zhu T J, Zhao X B 2012 Mater. Lett. 66 76Google Scholar

    [24]

    Khan A U, Vlachos N, Kyratsi T 2013 Scripta Mater. 69 606Google Scholar

    [25]

    Howlader S, Gupta S, Vasudevan R, Banerjee M K, Sachdev K 2020 Mater. Today Proc. 30 100Google Scholar

    [26]

    Chen X X, Wu H J, Cui J, Xiao Y, Zhang Y, He J Q, Chen Y, Cao J, Cai W, Pennycook S J, Liu Z H, Zhao L D, Sui J H 2018 Nano Energy 52 246Google Scholar

    [27]

    Imasato K, Kang S D, Ohno S, Snyder G J 2018 Mater. Horiz. 5 59Google Scholar

    [28]

    Mao J, Wu Y X, Song S W, Shuai J, Liu Z H, Pei Y Z, Ren Z F 2017 Mater. Today Phys. 3 1Google Scholar

    [29]

    Liu Y, Hu W C, Li D J, Zeng X Q, Xu C S 2013 Phys. Scripta 88 45302Google Scholar

    [30]

    Feng S K, Li S M, Fu H Z 2014 Comp. Mater. Sci. 82 45Google Scholar

    [31]

    Vanderbilt D 1990 Phys. Rev. B Condens. Matter. 41 7892Google Scholar

    [32]

    Scheidemantel T J, Ambrosch-Draxl C, Thonhauser T, Badding J V, Sofo J O 2003 Phys. Rev. B 68 125210Google Scholar

    [33]

    Madsen G K H, Singh D J 2006 Comp. Phys. Commun. 175 67Google Scholar

    [34]

    Chou T L, Mustonen O, Tripathi T S, Karppinen M 2015 J. Phys. Condens. Matter. 28 35802Google Scholar

    [35]

    Chong X Y, Guan P W, Wang Y, Shang S L, Palma J P S, Drymiotis F, Ravi V A, Star K E, Fleurial J, Liu Z K 2018 ACS Appl. Energy Mater. 1 6600Google Scholar

    [36]

    Snyder G J, Toberer E S 2008 Nature Mater. 7 105Google Scholar

    [37]

    Zhang Q, Zheng Y, Su X L, Yin K, Tang X F, Uher C 2015 Scripta Mater. 96 1Google Scholar

    [38]

    Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333Google Scholar

  • [1] Yan Zhi, Fang Cheng, Wang Fang, Xu Xiao-Hong. First-principles calculations of structural and magnetic properties of SmCo3 alloys doped with transition metal elements. Acta Physica Sinica, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [3] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [4] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [5] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [6] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [7] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [8] Zhu Hai-Zhe, Ruan Ying, Gu Qian-Qian, Yan Na, Dai Fu-Ping. Rapid solidification mechanism and magnetic properties of Ni-Fe-Ti alloy prepared in drop tube. Acta Physica Sinica, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [9] Xia Zhen-Chao, Wang Wei-Li, Luo Sheng-Bao, Wei Bing-Bo. Rapid solidification mechanism and magnetic property of ternary equiatomic Fe33.3Cu33.3Sn33.3 alloy. Acta Physica Sinica, 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [10] Zhang Zhao-Fu, Geng Zhao-Hui, Wang Peng, Hu Yao-Qiao, Zheng Yu-Fei, Zhou Tie-Ge. Properties of 5d atoms doped boron nitride nanotubes:a first-principles calculation and molecular orbital analysis. Acta Physica Sinica, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [11] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [12] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [13] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [14] Wang Zhi-Gang, Zhang Yang, Wen Yu-Hua, Zhu Zi-Zhong. First-principles calculation of structural stability and electronic properties of ZnO atomic chains. Acta Physica Sinica, 2010, 59(3): 2051-2056. doi: 10.7498/aps.59.2051
    [15] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [16] Xu Jin-Feng, Fan Yu-Fang, Chen Wei, Zhai Qiu-Ya. Characterization of rapidly solidified Cu-Pb hypermonotectic alloys. Acta Physica Sinica, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [17] Hou Qing-Yu, Zhang Yue, Chen Yue, Shang Jia-Xiang, Gu Jing-Hua. Effects of the concentration of oxygen vacancy of anatase on electric conducting performance studied by frist principles calculations. Acta Physica Sinica, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [18] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] Zhai Qiu-Ya, Yang Yang, Xu Jin-Feng, Guo Xue-Feng. Electrical resistivity and mechanical properties of rapidly solidified Cu-Sn hypoperitectic alloys. Acta Physica Sinica, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [20] Xu Jin-Feng, Wei Bing-Bo. Electrical property of rapidly solidified Co-Cu peritectic alloys. Acta Physica Sinica, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
Metrics
  • Abstract views:  4066
  • PDF Downloads:  49
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2022
  • Accepted Date:  12 September 2022
  • Available Online:  02 December 2022
  • Published Online:  24 December 2022

/

返回文章
返回