- 
				In this paper, a 360° continuously scanning circular array antenna is presented. The circular array consists of eight Yagi-Uda monopoles, each one consisting of a driver, a reflector and four directors. When the circular array is fed identically, an azimuthal omnidirectional pattern is obtained. When the circular array is fed with an optimized distribution of excitations that is calculated by the expanded method of maximum power transmission efficiency, an azimuthal directional pattern with maximum directional gain is obtained. The measurement and simulation results indicate that the average gain of the omnidirectional pattern is about 3.78 dBi with azimuthal fluctuation of less than 2.0 dBi, and the maximum gain of the directional pattern is about 11.1 dBi with azimuthal continuously scanning fluctuation of less than 0.4 dBi and front-to-back ratio of larger than 12.5 dB. The reported circular array antenna is featured by high directional gain and 360° azimuthal beam continuous scanning, and it has potential applications in indoor communications.- 
										Keywords:
										
- Yagi-Uda monopole /
- circular array antenna /
- beam scanning /
- expanded method of maximum power transmission efficiency
 [1] Bellofiore S, Balanis C A, Foutz J, Spanisa A S 2002 IEEE Antennas Propag. Mag. 44 145  Google Scholar Google Scholar[2] 蒋基恒, 余世星, 寇娜, 丁召, 张正平 2021 物理学报 70 238401  Google Scholar Google ScholarJiang J H, Yu S X, Kou N, Ding Z Zhang Z P 2021 Acta Phys. Sin. 70 238401  Google Scholar Google Scholar[3] 胡昌海, 王任, 陈传升, 王秉中 2021 物理学报 70 098401  Google Scholar Google ScholarHu C H, Wang R, Chen C S, Wang B Z 2021 Acta Phys. Sin. 70 098401  Google Scholar Google Scholar[4] Yang X D, Geyi W, Sun H C 2017 IEEE Antennas Wirel. Propag. Lett. 16 1824  Google Scholar Google Scholar[5] Wan W, Wen G Y, Gao S 2018 IEEE Access 6 16092  Google Scholar Google Scholar[6] Wen S C, Xu Y Z, Dong Y D 2021 IEEE Antennas Wirel. Propag. Lett. 20 488  Google Scholar Google Scholar[7] Miao X B, Wan W, Duan Z, Wen G Y 2019 IEEE Antennas Wirel. Propag. Lett. 18 752  Google Scholar Google Scholar[8] Taillefer E, Hirata A, Ohira T 2005 IEEE Trans. Antennas Propag. 53 678  Google Scholar Google Scholar[9] Lu J W, Irelan D, Schlub R 2005 IEEE Trans. Antennas Propag. 53 2437  Google Scholar Google Scholar[10] Liu H T, Gao S, Hong Loh T 2011 IEEE Antennas Wirel. Propag. Lett. 10 1349  Google Scholar Google Scholar[11] Liu H T, Gao S, Hong Loh T 2012 IEEE Trans. Antennas Propag. 60 1540  Google Scholar Google Scholar[12] Juan Y, Che W Q, Yang W C, Chen Z N 2017 IEEE Antennas Wirel. Propag. Lett. 16 557  Google Scholar Google Scholar[13] Ababil Hossain M, Bahceci I, Cetiner B A 2017 IEEE Trans. Antennas Propag. 65 6444  Google Scholar Google Scholar[14] Yang Y, Zhu X 2018 IEEE Trans. Antennas Propag. 66 600  Google Scholar Google Scholar[15] Fan H J, Liang X L, Geng J P, Jin R H, Zhou X L 2016 IEEE Trans. Antennas Propag. 64 3228  Google Scholar Google Scholar[16] Ge L, Li M J, Li Y J, Wong H, Luk K M 2018 IEEE Trans. Antennas Propag. 66 1747  Google Scholar Google Scholar[17] Shahidul Alam M, Abbosh A 2016 IET Microw. Antennas Propag. 10 1030  Google Scholar Google Scholar[18] Jin G P, Li M L, Liu D, Zeng G J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1664  Google Scholar Google Scholar[19] Wang P Y, Jin T, Meng F Y, Lyu Y L, Erni D, Wu Q, Zhu L 2018 IEEE Trans. Antennas Propag. 66 627  Google Scholar Google Scholar[20] Kahar M, Kanti Mandal M 2021 IEEE Trans. Antennas Propag. 69 3538  Google Scholar Google Scholar[21] Zhu H L, Wai Cheung S, lp Yuk T 2015 IET Microw. Antennas Propag. 9 1331  Google Scholar Google Scholar[22] Tang M C, Ziolkowski R W 2015 IET Microw. Antennas Propag. 9 1363  Google Scholar Google Scholar[23] 韩亚娟, 张介秋, 李勇峰, 王甲富, 屈绍波, 张安学 2016 物理学报 65 147301  Google Scholar Google ScholarHan Y J, Zhang J Q, Li Y F, Wang F J, Qu S B, Zhang A X 2016 Acta Phys. Sin. 65 147301  Google Scholar Google Scholar[24] Tang M C, Duan Y L, Wu Z T, Chen X M, Li M, Ziolkowski R W 2019 IEEE Trans. Antennas Propag. 67 1467  Google Scholar Google Scholar[25] Wen Y B, Qin P Y, Wei G M, Ziolkowski R W 2022 IEEE Trans. Antennas Propag. 70 6042  Google Scholar Google Scholar[26] Schlub R, Lu J W, Ohira T 2003 IEEE Trans. Antennas Propag. 51 3033  Google Scholar Google Scholar[27] Schlub R, Thiel D V 2004 IEEE Trans. Antennas Propag. 52 1343  Google Scholar Google Scholar[28] Shan L, Wen G Y 2014 IEEE Trans. Antennas Propag. 62 5565  Google Scholar Google Scholar[29] 王身云, 郑淏予, 李阳 2020 物理学报 69 218402  Google Scholar Google ScholarWang S Y, Zheng H Y, Li Y 2020 Acta Phys. Sin. 69 218402  Google Scholar Google Scholar[30] Wen G Y 2021 IEEE Open J. Antennas Propag. 2 412  Google Scholar Google Scholar[31] Wang S Y, Jin X R, Liu P, Geyi W 2022 IEEE Antennas Wirel. Propag. Lett. 21 2512  Google Scholar Google Scholar
- 
				
    
    
表 1 带开槽局部地板结构的圆形阵列天线结构参数 Table 1. Parameters of the circular array antenna with slotted partial ground. Parameter Values/mm Parameter Values/mm h1 35.0 l2 2.5 h2 22.5 l3 4.0 h3 22.0 l4 26.8 R 120.0 l5 61.2 d1 29.0 w1 10.6 d2 22.0 w2 1.3 d3 16.0 w3 15.0 l1 13.0 w4 2.0 表 2 不同方位定向波束的圆形阵列天线激励分布(最佳幅值和相位) Table 2. Excitations (optimum amplitude and phase) of the circular array antenna for different directional beams. Port Azimuthal angle/(°) 0 15 30 45 1 0.74,∠–96° 0.71,∠–118° 0.60,∠–106° 0.43,∠–119° 2 0.44,∠0° 0.60,∠–80° 0.70,∠–144° 0.75,∠146° 3 0.16,∠114° 0.19,∠26° 0.29,∠–25° 0.43,∠–119° 4 0.10,∠16° 0.09,∠–99° 0.12,∠131° 0.16,∠–7° 5 0, ∠178° 0.03,∠155° 0.04,∠–44° 0.09,∠–116° 6 0.10,∠12° 0.03,∠–18° 0.03,∠106° 0.05,∠56° 7 0.17,∠113° 0.13,∠156° 0.10,∠–155° 0.09,∠–111° 8 0.44,∠0° 0.27,∠0° 0.20,∠0° 0.16,∠0° 表 3 圆形阵列天线性能对比 Table 3. Comparison of the recent work with reported circular arrays. Ref. Working frequency bands/GHz Size of the circular array 
 ($ {\lambda _0} \times {\lambda _0} $)No. of the antenna element No. of beams for 
 360° coverageRealized maximum gain/dBi [5] 0.783—0.886 0.9×0.9 4 16 6.0 [7] 2.32—2.78 0.64×0.64 8 8 8.4 [15] 4.78—5.19 1.9×1.9 6 12 9.2 [16] 1.65—2.75 0.51×0.51 4 4 5.4 [17] 2.35—2.61 0.64×0.64 8 8 4.5 [18] 2.25—3.16 0.61×0.61 4 4 4.1 [19] 0.7—1.2 0.43×0.43 6 6 3.1 [20] 8.8—11.2 3.02×3.02 8 8 5.2 This work 3.26—3.73 2.72×2.72 8 Continuous 11.1 
- 
				
[1] Bellofiore S, Balanis C A, Foutz J, Spanisa A S 2002 IEEE Antennas Propag. Mag. 44 145  Google Scholar Google Scholar[2] 蒋基恒, 余世星, 寇娜, 丁召, 张正平 2021 物理学报 70 238401  Google Scholar Google ScholarJiang J H, Yu S X, Kou N, Ding Z Zhang Z P 2021 Acta Phys. Sin. 70 238401  Google Scholar Google Scholar[3] 胡昌海, 王任, 陈传升, 王秉中 2021 物理学报 70 098401  Google Scholar Google ScholarHu C H, Wang R, Chen C S, Wang B Z 2021 Acta Phys. Sin. 70 098401  Google Scholar Google Scholar[4] Yang X D, Geyi W, Sun H C 2017 IEEE Antennas Wirel. Propag. Lett. 16 1824  Google Scholar Google Scholar[5] Wan W, Wen G Y, Gao S 2018 IEEE Access 6 16092  Google Scholar Google Scholar[6] Wen S C, Xu Y Z, Dong Y D 2021 IEEE Antennas Wirel. Propag. Lett. 20 488  Google Scholar Google Scholar[7] Miao X B, Wan W, Duan Z, Wen G Y 2019 IEEE Antennas Wirel. Propag. Lett. 18 752  Google Scholar Google Scholar[8] Taillefer E, Hirata A, Ohira T 2005 IEEE Trans. Antennas Propag. 53 678  Google Scholar Google Scholar[9] Lu J W, Irelan D, Schlub R 2005 IEEE Trans. Antennas Propag. 53 2437  Google Scholar Google Scholar[10] Liu H T, Gao S, Hong Loh T 2011 IEEE Antennas Wirel. Propag. Lett. 10 1349  Google Scholar Google Scholar[11] Liu H T, Gao S, Hong Loh T 2012 IEEE Trans. Antennas Propag. 60 1540  Google Scholar Google Scholar[12] Juan Y, Che W Q, Yang W C, Chen Z N 2017 IEEE Antennas Wirel. Propag. Lett. 16 557  Google Scholar Google Scholar[13] Ababil Hossain M, Bahceci I, Cetiner B A 2017 IEEE Trans. Antennas Propag. 65 6444  Google Scholar Google Scholar[14] Yang Y, Zhu X 2018 IEEE Trans. Antennas Propag. 66 600  Google Scholar Google Scholar[15] Fan H J, Liang X L, Geng J P, Jin R H, Zhou X L 2016 IEEE Trans. Antennas Propag. 64 3228  Google Scholar Google Scholar[16] Ge L, Li M J, Li Y J, Wong H, Luk K M 2018 IEEE Trans. Antennas Propag. 66 1747  Google Scholar Google Scholar[17] Shahidul Alam M, Abbosh A 2016 IET Microw. Antennas Propag. 10 1030  Google Scholar Google Scholar[18] Jin G P, Li M L, Liu D, Zeng G J 2018 IEEE Antennas Wirel. Propag. Lett. 17 1664  Google Scholar Google Scholar[19] Wang P Y, Jin T, Meng F Y, Lyu Y L, Erni D, Wu Q, Zhu L 2018 IEEE Trans. Antennas Propag. 66 627  Google Scholar Google Scholar[20] Kahar M, Kanti Mandal M 2021 IEEE Trans. Antennas Propag. 69 3538  Google Scholar Google Scholar[21] Zhu H L, Wai Cheung S, lp Yuk T 2015 IET Microw. Antennas Propag. 9 1331  Google Scholar Google Scholar[22] Tang M C, Ziolkowski R W 2015 IET Microw. Antennas Propag. 9 1363  Google Scholar Google Scholar[23] 韩亚娟, 张介秋, 李勇峰, 王甲富, 屈绍波, 张安学 2016 物理学报 65 147301  Google Scholar Google ScholarHan Y J, Zhang J Q, Li Y F, Wang F J, Qu S B, Zhang A X 2016 Acta Phys. Sin. 65 147301  Google Scholar Google Scholar[24] Tang M C, Duan Y L, Wu Z T, Chen X M, Li M, Ziolkowski R W 2019 IEEE Trans. Antennas Propag. 67 1467  Google Scholar Google Scholar[25] Wen Y B, Qin P Y, Wei G M, Ziolkowski R W 2022 IEEE Trans. Antennas Propag. 70 6042  Google Scholar Google Scholar[26] Schlub R, Lu J W, Ohira T 2003 IEEE Trans. Antennas Propag. 51 3033  Google Scholar Google Scholar[27] Schlub R, Thiel D V 2004 IEEE Trans. Antennas Propag. 52 1343  Google Scholar Google Scholar[28] Shan L, Wen G Y 2014 IEEE Trans. Antennas Propag. 62 5565  Google Scholar Google Scholar[29] 王身云, 郑淏予, 李阳 2020 物理学报 69 218402  Google Scholar Google ScholarWang S Y, Zheng H Y, Li Y 2020 Acta Phys. Sin. 69 218402  Google Scholar Google Scholar[30] Wen G Y 2021 IEEE Open J. Antennas Propag. 2 412  Google Scholar Google Scholar[31] Wang S Y, Jin X R, Liu P, Geyi W 2022 IEEE Antennas Wirel. Propag. Lett. 21 2512  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 7720
- PDF Downloads: 122
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							 
							 
							 
							 
							 
							 
							 
							 
							 
							