-
Air-lasing is a cavityless coherent radiation generated in free space from air constituents as the gain medium, featuring significant advantages such as high collimation, high coherence and high intensity. Benefited from the long-range filamentation of high-power ultrashort laser pulses propagating in air, the air-laser can be induced remotely which provides an ideal light source for atmospheric remote sensing and chemical specie-resolved detection. Thanks to the coherent atomic/molecular excitation process accompanying the generation of air laser, remote sensing based on air-laser has high spectral resolution and high detection sensitivity, which is recently proved to be a powerful tool for important applications such as trace molecule detection, greenhouse gas monitoring and industrial pollutant detection. In this short review, the physical mechanism of air laser is briefly introduced, and various applications of air laser remote sensing are reviewed emphatically, and the future research is prospected.
-
Keywords:
- Remote Sensing /
- Air Lasing /
- Raman Spectroscopy /
- High Field Laser Physics
-
[1] Yao J, Cheng Y 2020Chin. J. Laser. 470500005(in Chinese)[姚金平,程亚2020中国激光470500005]
[2] Chin S L, Xu H L, Cheng Y, Xu Z Z, Yamanouchi K 2013Chin. Opt. Lett. 11 013201
[3] Polynkin P, ChengY 2018Air lasing (Cham:Springer International Publishing) p139
[4] Luo Q, Liu W W, Chin S L 2003Appl. Phys. B 76 337
[5] Dogariu A, Michael J B, Scully M O, Miles R B 2011Science 331442
[6] Yao J P, Zeng B, Xu H L, Li G H, Chu W, Ni J L, Zhang H S, Chin S L, Cheng Y, Xu Z Z 2011Phys. Rev. A 84 051802
[7] Hemmer P R, Miles R B, Polynkin P, Siebert T, Sokolov A V, Sprangle P, Scully M O 2011P. Natl. Acad. Sci. USA 108 3130
[8] Traverso A J, Sanchez-Gonzalez R, Yuan L Q, Wang K, Voronine D V, Zheltikov A M, Rostovtsev Y, Sautenkov V A, Sokolov A V, North S W, Scully M O 2012P. Natl. Acad. Sci. USA 109 15185
[9] Malevich P N, Kartashov D, Pu Z, Alisauskas S, Pugzlys A, Baltuska A, Giniunas L, Danielius R, Zheltikov A, Marangoni M, Cerullo G 2012Opt. Express 20 18784
[10] Malevich P N, Maurer R, Kartashov D, Alisauskas S, Lanin A A, Zheltikov A M, Marangoni M, Cerullo G, Baltuska A, Pugzlys A 2015Opt. Lett. 40 2469
[11] Yuan L Q, Liu Y, Yao J P, Cheng Y 2019Adv. Quantum Tech. 21900080
[12] Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995Opt. Lett. 20 73
[13] Couairon A, Mysyrowicz A 2007Phys. Reports 441 47
[14] Fu Y, Cao J C, Yamanouchi K, Xu H L 2022Ultrafast Sci. 9867028
[15] Zhang F B, Xie H Q, Yuan L, Zhang Z H, Fu B T, Yu S P, Li G H, Zhang N, Lu X, Yao J P, Cheng Y, Xu Z Z 2022Opt. Lett. 47 481
[16] Ni J L, Chu W, Zhang H S, Zeng B, Yao J P, Qiao L L, Li G H, Jing C R, Xie H Q, Xu H L, Cheng Y, Xu Z Z 2014Opt. Lett. 39 2250
[17] Liu Z X, Yao J P, Zhang H S, Xu B, Chen J M, Zhang F B, Zhang Z H, Wan Y X, Chu W, Wang Z H, Cheng Y 2020Phys. Rev. A 101 043404
[18] Zhao X D, Nolte S, Ackermann R 2020Opt. Lett. 45 3661
[19] Zhang Z H, Zhang F B, Xu B, Xie H Q, Fu B T, Lu X, Zhang N, Yu S P, Yao J P, Cheng Y, Xu Z Z 2022 Ultrafast Science 20229761458
[20] Laurain A, Scheller M, Polynkin P. 2014Phys. Rev. Lett. 113 253901
[21] Dogariu A, Miles R B. 2016 Opt. Express 24 A544
[22] Kartashov D, Ališauskas S, Andriukaitis G, Pugzlys A, Shneider M, Zheltikov A, Chin S L, Baltuska A 2012Phys. Rev. A 86 033831
[23] Mitryukovskiy S, Liu Y, Ding P J, Houard A, Mysyrowicz A 2014Opt. Express 22 12750
[24] Mitryukovskiy S, Liu Y, Ding P J, Houard A, Couairon A, Mysyrowicz A 2015Phys. Rev. Lett. 114 063003
[25] Yao J P, Li G H, Jing C R, Zeng B, Chu W, Ni J L, Zhang H S, Xie H Q, Zhang C J, Li H L, Xu H L, Chin S L, Cheng Y, Xu Z Z 2013New J. Phys. 15023046
[26] Liu Y, Ding P J, Lambert G, Houard A, Tikhonchuk V, Mysyrowicz A 2015Phys. Rev. Lett. 115 133203
[27] Xu H L, Lötstedt E, Iwasaki A, Yamanouchi K 2015 Nat. Commun. 68347
[28] Yao J P, Jiang S C, Chu W, Zeng B, Wu C Y, Lu R F, Li Z T, Xie H Q, Li G H, Yu C, Wang Z S, Jiang H B, Gong Q H, Cheng Y 2016Phys. Rev. Lett. 116 143007
[29] Liu Y, Ding P J, Ibrakovic N, Bengtsson S, Chen S H, Danylo R, Simpson E R, Larsen E W, Zhang X, Fan Z Q 2017Phys. Rev. Lett. 119(20):203205
[30] Liu Z X, Yao J P, Chen J M, Xu B, Chu W, Cheng Y 2018Phys. Rev. Lett. 120 083205
[31] Britton M, Laferrière P, Ko D H, Li Z Y, Kong F Q, Brown G, Naumov A, Zhang C M, Arissian L, Corkum P B 2018Phys. Rev. Lett. 120 133208
[32] Yao J P, Chu W, Liu Z X, Chen J M, Xu B, Cheng Y 2018Appl. Phys. B 124 73
[33] Ando T, Lötstedt E, Iwasaki A, Li H L, Fu Y, Wang S Q, Xu H L, Yamanouchi K 2019Phys. Rev. Lett. 123 203201
[34] Li H L, Hou M Y, Zang H W, Fu Y, Lotstedt E, Ando T, Iwasaki A, Yamanouchi K, Xu H L 2019Phys. Rev. Lett. 122 013202
[35] Li H X, Lötstedt E, Li H L, Zhou Y, Dong N N, Deng L H, Lu P F, Ando T, Iwasaki A, Fu Y 2020Phys. Rev. Lett. 125 053201
[36] Zhang H S, Jing C R, Yao J P, Li G H, Zeng B, Chu W, Ni J L, Xie H Q, Xu H L, Chin S L, Yamanouchi K, Cheng Y, Xu Z Z 2013Phys. Rev. X 3 041009
[37] Jing C R, Zhang H S, Chu W, Xie H Q, Ni J L, Zeng B, Li G H, Yao J P, Xu H L, Cheng Y, Xu Z Z 2014Opt. Express 22 3151
[38] Jing C R, Yao J P, Li Z T, Ni J L, Zeng B, Chu W, Li G H, Xie H Q, Cheng Y 2015J Phys. B 48 094001
[39] Li G H, Jing C R, Zeng B, Xie H Q, Yao J P, Chu W, Ni J L, Zhang H S, Xu H L, Cheng Y 2014Phys. Rev. A 89 033833
[40] Chen J M, Yao J P, Zhang H S, Liu Z X, Xu B, Chu W, Qiao L L, Wang Z H, Fatome J, Faucher O, Wu CY, Cheng Y 2019Phys. Rev. A 100 031402
[41] Xie H Q, Zeng B, Li G H, Chu W, Zhang H S, Jing C R, Yao J P, Ni J L, Wang Z H, Li Z T 2014Phys. Rev. A 90 042504
[42] Zeng B, Chu W, Li G H, Yao J P, Zhang H S, Ni J L, Jing C R, Xie H Q, Cheng Y 2014Phys. Rev. A 89 042508
Metrics
- Abstract views: 2702
- PDF Downloads: 61
- Cited By: 0