Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Proton beam energy deposition in fast ignition and production of protons on Shenguang II upgraded device

He Min-Qing Zhang Hua Li Ming-Qiang Peng Li Zhou Cang-Tao

Citation:

Proton beam energy deposition in fast ignition and production of protons on Shenguang II upgraded device

He Min-Qing, Zhang Hua, Li Ming-Qiang, Peng Li, Zhou Cang-Tao
PDF
HTML
Get Citation
  • The proton beam energy deposition and the prodution of proton beams in proton fast ignition are investigated with the fluid program, partice-in-cell program and Fokker-Planck program based on the parameters of Shenguang II upgraded device. Firstly, according to the target parameters of fast ignition, the energy depositions of different energy protons are investigated. It is obtained that the higher the incident proton energy, the higher the surface density that the protons go through, accordingly the longer the proton deposition distance in the same background plasma density. On the assumption that the diameter of the compression core is 20–30 μm, and that the protons deposited in the core give the energy to the background plasma, the energy of the proton required by fast ignition is obtained by Fokker-Planck simulation. Protons with energy of 7–12 MeV are appropriate for ignition when the background plasma density is 300 g/cm3, while 8–18 MeV protons for 400 g/cm3. The background plasma temperatures are both 5 keV in the two cases. Secondly, we use particle-in-cell program to study the proton acceleration with or without preplasma which is given by fluid program with using the laser intensity $ I = 5.4 \times {10^{19}}{\text{ }}{\rm{W/c}}{{\rm{m}}^2} $ based on the parameters of Shenguang II upgraded device. The laser has 350 J of enegy, 3 ps of Gaussion pluse width and 10 µm of spot radius. The curvature of the target which is 10 µm thick copper coated with 1 µm thick hydrogen plasma, is 500 µm. The maximum proton energy obtained with preplama is 22 MeV, however the maximum proton energy obtained without preplasma is 17.5 MeV. The conversion efficiency from laser to protons is 5.12% with preplasma and 4.15% without preplasma. The conversion efficiency with preplasma is 20% higher than that without preplasma. We also study the mechanisms of the acceleration in the two situations. The freely expanding plasma model is used to explain the acceleration mechanism. The simulated electric field is smaller than that calculated by using the freely expanding plasma model, because some protons are accelerated at the time of plasma expansion, which consumes some electric field. The results of proton energy deposition show that the proton beams that are suitable for fast ignition can be obtained by the Shenguang II upgraded device.
      Corresponding author: He Min-Qing, he_minqing@iapcm.ac.cn ; Zhang Hua, zhanghua@sztu.edu.cn
    • Funds: Project supported by the National Key Programme for S&T Research and Develoment (Grant No. 2016YFA0401100), the National Natural Science Foundation of China (Grant Nos. 12075033, 11975055), and the Science Challenge Project, China (Grant No. TZ2018005).
    [1]

    Meyer-terVehn J 2001 Plasma Phys. Controlled Fusion 43 A113Google Scholar

    [2]

    Shlyaptsev V, Tatchyn R O 2004 Proc. SPIE 5194 30Google Scholar

    [3]

    Hu S X, Goncharov V N, Skupsky S 2012 Phys. Plasmas 19 072703Google Scholar

    [4]

    Lee J G, Robinson A P L, Pasley J 2020 Phys. Plasmas 27 042711Google Scholar

    [5]

    Davies J R 2009 Plasma Phys. Control. Fusion 51 014006Google Scholar

    [6]

    Ping Y, Shepherd R, Lasinski B F, Tabak M, Chen H, Chung H K, Fournier K B, Hansen S B, Kemp A, Liedahl D A, Widmann K, Wilks S C, Rozmus W, and Sherlock M 2008 Phys. Rev. Lett. 100 085004Google Scholar

    [7]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626Google Scholar

    [8]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383Google Scholar

    [9]

    Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447Google Scholar

    [10]

    Kluge T, Cowan T, Debus A, Schramm U, Zeil K, Bussmann M 2011 Phys. Rev. Lett. 107 205003Google Scholar

    [11]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar

    [12]

    Snavely R, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [13]

    Hatchett S P, Brown C G, Cowan T E, Henry E A, Johnson J S, Key M H, Koch J A, Langdon A B, Lasinski B F, Lee R W, Machinnon A J, Pennington D M, Perry M D, Phillips T W, Roth M, Sangster T C, Singh M S, Snavely R A, Stoyer M A, Wilks S C, Yasuike K 2000 Phys. Plasmas 7 2076Google Scholar

    [14]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar

    [15]

    Ruhl H, Bulanov S V, Cowan T E, Liseikina T V, Nickles P, Pegoraro F, Roth M, Sandner W 2001 Plasma Phys. Rep. 27 363Google Scholar

    [16]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436Google Scholar

    [17]

    Atzeni S, Temporal M, Honrubia J J 2002 Nucl. Fusion 42 L1Google Scholar

    [18]

    Key M H 2007 Phys. Plasmas 14 055502Google Scholar

    [19]

    Key M, Freeman R R, Hatchett S P, MacKinnon A J, Patel P K, Snavely R A, Stephens R B 2006 Fusion Sci. Technol. 49 440Google Scholar

    [20]

    Temporal M, Honrubia J J, Atzeni S 2002 Phys. Plasmas 9 3098Google Scholar

    [21]

    Bychenkov V Y, Rozmus W, Maksimchuk A, Umstadter D, Capjack C E 2001 Plasma Phys. Rep. 27 1017Google Scholar

    [22]

    Shmatov M L 2003 Fusion Sci. Technol. 43 456Google Scholar

    [23]

    Shmatov M L 2008 J. Phys.: Conf. Ser. 112 022061Google Scholar

    [24]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernandez J C 2006 Nature 439 441Google Scholar

    [25]

    Atzeni S, Schiavi A, Davies J R 2009 Plasma Phys. Control. Fusion 51 015016Google Scholar

    [26]

    Nanbu K andYonemura S 1998 J. Comput. Phys. 145 639Google Scholar

    [27]

    徐涵, 卓红斌, 杨晓虎, 侯永, 银燕, 刘杰 2017 计算物理 34 505Google Scholar

    Xu H, Zhuo H B, Yang X H, Huo Y, Yin Y, Liu J 2017 Chin. J. Comput. Phys. 34 505Google Scholar

    [28]

    Davies J R 2002 Phys. Rev. E 65 026407Google Scholar

    [29]

    Wu S Z, Zhou C T, Zhu S P, Zhang H, He X T 2011 Phys. Plasmas 18 022703Google Scholar

    [30]

    Ren C, Tzoufras M, Tonge J, Mori W B, Tsung F S, Fiore M, Fonseca R A, Silva L O, Adam J C, Heron A 2006 Phys. Plasmas 13 056308Google Scholar

    [31]

    Li C K, Petrasso R D 2006 Phys. Plasmas 13 056314Google Scholar

    [32]

    Fano U 1963 Annu. Rev. Nucl. Sci. 13 1Google Scholar

    [33]

    Chang J S, Copper G 1970 J. Comput. Phys. 6 1Google Scholar

    [34]

    Huang H, Zhang Z M, Zhang B, Hong W, He S K, Meng L B, Qi W, Cui B, Zhou W M 2021 Matter Radiat. Extremes 6 044401Google Scholar

    [35]

    Raffestin D, Lecherbourg L, Lantuéjoul I, Vauzour B, Masson-Laborde P. E, Davoine X, Blanchot N, Dubois J L, Vaisseau X, d’Humières E, Gremillet L, Duval A, Reverdin Ch, Rosse B, Boutoux G, Ducret J E, Rousseaux Ch, Tikhonchuk V, Batani D 2021 Matter Radiat. Extremes 6 056901Google Scholar

    [36]

    Jung D, Yin L, Albright B J, Gautier D C, Horlein R, Kiefer D, Henig A, Johnson R, Letzring S, Palaniyappan S, Shah R, Shimada T, Yan X Q, Bowers K J, Tajima T, Fernandez J C, Habs D, Heglich B M 2011 Phys. Rev. Lett. 107 115002Google Scholar

    [37]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(RGoogle Scholar

    [38]

    何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363Google Scholar

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363Google Scholar

    [39]

    何民卿, 董全力, 盛政明, 张杰 2015 物理学报 64 105202Google Scholar

    He M Q, Dong Q L, Sheng Z M, Zhang J 2015 Acta Phys. Sin. 64 105202Google Scholar

    [40]

    Yao W, Fazzini A, Chen S N, Burdonov K, Antici P, Béard J, Bolaños S, Ciardi A, Diab R, Filippov E D, Kisyov S, Lelasseux V, Miceli M, Moreno Q, Nastasa V, Orlando S, Pikuz S, Popescu D C, Revet G, Ribeyre X, d’Humières E, Fuchs J 2022 Matter Radiat. Extremes 7 014402Google Scholar

    [41]

    Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borgomaghesi M, RomagnaniL, Zepf M, Norimastu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414Google Scholar

    [42]

    Borghesi M, Bigongiari A, Kar S, Macchi A, Romagnani L, Audebert P, Fuchs J, Toncian T, Willi O, Bulanov S V 2008 Plasma Phys. Controlled Fusion 50 124040Google Scholar

    [43]

    Passoni M, Perego C, Sattoni A, Batani D 2013 Phys. Plasmas 20 060701Google Scholar

    [44]

    Denavit J 1979 Phys. Fluids 22 1384Google Scholar

  • 图 1  能量损失随沉积距离的关系图(Ep为质子能量, ρs为面密度)

    Figure 1.  Stopping power plotted as a function of the proton penetration .

    图 2  (a) 不同能量的质子束沉积距离; (b) 不同能量的质子束的沉积时间(Ep为入射质子能量, $ {\tau _{{\text{dep}}}} $为质子沉积时间)

    Figure 2.  (a) Stopping range vs. proton energy; (b) the stopping time vs. proton energy (Ep is the proton energy and $ {\tau _{{\text{dep}}}} $ is the proton deposition time)

    图 3  初始等离子体密度分布示意图(靶的曲率半径为500 μm) (a) 没有预等离子体情况; (b) 有预等离子体情况

    Figure 3.  Initial plasma density distribution: (a) Without preplasma; (b) with preplasma.

    图 4  (a) 二维粒子模拟得到的质子能谱图(Ep为质子能量, dN/dEp为单位能量粒子数); (b) 最高质子能随激光能量分布图(EL为入射激光能量, Ep,max为最大质子能量)

    Figure 4.  (a) Proton energy spectrum from PIC simulation (Ep is the proton energy, dN/dE is the number of protons per unit energy); (b) the maximum proton energy vs. laser energy (EL is the laser energy, Ep,max is the maximum proton energy).

    图 5  二维粒子模拟得到的t = 500 fs时纵向电场在x方向的分布 (a) 无预等离子体情况; (b) 有预等离子体情况

    Figure 5.  Longitudinal electrical field distribution in x direction at t = 500 fs from 2D PIC simulation: (a) Without preplasma; (b) with preplasma.

    表 1  二维粒子模拟得到的无预等离子体和有预等离子时质子束品质比较.

    Table 1.  Proton qualities with preplasma or without preplasma by 2D PIC simulations.

    转化效率/%最高质子能/MeV质子数/个 (7—18 MeV)
    无预等离子体4.25177.81×1012
    有预等离子体5.12251.01×1013
    DownLoad: CSV
  • [1]

    Meyer-terVehn J 2001 Plasma Phys. Controlled Fusion 43 A113Google Scholar

    [2]

    Shlyaptsev V, Tatchyn R O 2004 Proc. SPIE 5194 30Google Scholar

    [3]

    Hu S X, Goncharov V N, Skupsky S 2012 Phys. Plasmas 19 072703Google Scholar

    [4]

    Lee J G, Robinson A P L, Pasley J 2020 Phys. Plasmas 27 042711Google Scholar

    [5]

    Davies J R 2009 Plasma Phys. Control. Fusion 51 014006Google Scholar

    [6]

    Ping Y, Shepherd R, Lasinski B F, Tabak M, Chen H, Chung H K, Fournier K B, Hansen S B, Kemp A, Liedahl D A, Widmann K, Wilks S C, Rozmus W, and Sherlock M 2008 Phys. Rev. Lett. 100 085004Google Scholar

    [7]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626Google Scholar

    [8]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383Google Scholar

    [9]

    Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A, Tatarakis M 1997 Phys. Plasmas 4 447Google Scholar

    [10]

    Kluge T, Cowan T, Debus A, Schramm U, Zeil K, Bussmann M 2011 Phys. Rev. Lett. 107 205003Google Scholar

    [11]

    Kodama R, Norreys P A, Mima K, Dangor A E, Evans R G, Fujita H, Kitagawa Y, Krushelnick K, Miyakoshi T, Miyanaga N, Norimatsu T, S J, Shozaki T, Shigemori K, Sunahara A, Tampo M, Tanaka K A, Toyama Y, Yamanaka T, Zepf M 2001 Nature 412 798Google Scholar

    [12]

    Snavely R, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [13]

    Hatchett S P, Brown C G, Cowan T E, Henry E A, Johnson J S, Key M H, Koch J A, Langdon A B, Lasinski B F, Lee R W, Machinnon A J, Pennington D M, Perry M D, Phillips T W, Roth M, Sangster T C, Singh M S, Snavely R A, Stoyer M A, Wilks S C, Yasuike K 2000 Phys. Plasmas 7 2076Google Scholar

    [14]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A, Snavely R A 2001 Phys. Plasmas 8 542Google Scholar

    [15]

    Ruhl H, Bulanov S V, Cowan T E, Liseikina T V, Nickles P, Pegoraro F, Roth M, Sandner W 2001 Plasma Phys. Rep. 27 363Google Scholar

    [16]

    Roth M, Cowan T E, Key M H, Hatchett S P, Brown C, Fountain W, Johnson J, Pennington D M, Snavely R A, Wilks S C, Yasuike K, Ruhl H, Pegoraro F, Bulanov S V, Campbell E M, Perry M D, Powell H 2001 Phys. Rev. Lett. 86 436Google Scholar

    [17]

    Atzeni S, Temporal M, Honrubia J J 2002 Nucl. Fusion 42 L1Google Scholar

    [18]

    Key M H 2007 Phys. Plasmas 14 055502Google Scholar

    [19]

    Key M, Freeman R R, Hatchett S P, MacKinnon A J, Patel P K, Snavely R A, Stephens R B 2006 Fusion Sci. Technol. 49 440Google Scholar

    [20]

    Temporal M, Honrubia J J, Atzeni S 2002 Phys. Plasmas 9 3098Google Scholar

    [21]

    Bychenkov V Y, Rozmus W, Maksimchuk A, Umstadter D, Capjack C E 2001 Plasma Phys. Rep. 27 1017Google Scholar

    [22]

    Shmatov M L 2003 Fusion Sci. Technol. 43 456Google Scholar

    [23]

    Shmatov M L 2008 J. Phys.: Conf. Ser. 112 022061Google Scholar

    [24]

    Hegelich B M, Albright B J, Cobble J, Flippo K, Letzring S, Paffett M, Ruhl H, Schreiber J, Schulze R K, Fernandez J C 2006 Nature 439 441Google Scholar

    [25]

    Atzeni S, Schiavi A, Davies J R 2009 Plasma Phys. Control. Fusion 51 015016Google Scholar

    [26]

    Nanbu K andYonemura S 1998 J. Comput. Phys. 145 639Google Scholar

    [27]

    徐涵, 卓红斌, 杨晓虎, 侯永, 银燕, 刘杰 2017 计算物理 34 505Google Scholar

    Xu H, Zhuo H B, Yang X H, Huo Y, Yin Y, Liu J 2017 Chin. J. Comput. Phys. 34 505Google Scholar

    [28]

    Davies J R 2002 Phys. Rev. E 65 026407Google Scholar

    [29]

    Wu S Z, Zhou C T, Zhu S P, Zhang H, He X T 2011 Phys. Plasmas 18 022703Google Scholar

    [30]

    Ren C, Tzoufras M, Tonge J, Mori W B, Tsung F S, Fiore M, Fonseca R A, Silva L O, Adam J C, Heron A 2006 Phys. Plasmas 13 056308Google Scholar

    [31]

    Li C K, Petrasso R D 2006 Phys. Plasmas 13 056314Google Scholar

    [32]

    Fano U 1963 Annu. Rev. Nucl. Sci. 13 1Google Scholar

    [33]

    Chang J S, Copper G 1970 J. Comput. Phys. 6 1Google Scholar

    [34]

    Huang H, Zhang Z M, Zhang B, Hong W, He S K, Meng L B, Qi W, Cui B, Zhou W M 2021 Matter Radiat. Extremes 6 044401Google Scholar

    [35]

    Raffestin D, Lecherbourg L, Lantuéjoul I, Vauzour B, Masson-Laborde P. E, Davoine X, Blanchot N, Dubois J L, Vaisseau X, d’Humières E, Gremillet L, Duval A, Reverdin Ch, Rosse B, Boutoux G, Ducret J E, Rousseaux Ch, Tikhonchuk V, Batani D 2021 Matter Radiat. Extremes 6 056901Google Scholar

    [36]

    Jung D, Yin L, Albright B J, Gautier D C, Horlein R, Kiefer D, Henig A, Johnson R, Letzring S, Palaniyappan S, Shah R, Shimada T, Yan X Q, Bowers K J, Tajima T, Fernandez J C, Habs D, Heglich B M 2011 Phys. Rev. Lett. 107 115002Google Scholar

    [37]

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2007 Phys. Rev. E 76 035402(RGoogle Scholar

    [38]

    何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰 2009 物理学报 58 363Google Scholar

    He M Q, Dong Q L, Sheng Z M, Weng S M, Chen M, Wu H C, Zhang J 2009 Acta Phys. Sin. 58 363Google Scholar

    [39]

    何民卿, 董全力, 盛政明, 张杰 2015 物理学报 64 105202Google Scholar

    He M Q, Dong Q L, Sheng Z M, Zhang J 2015 Acta Phys. Sin. 64 105202Google Scholar

    [40]

    Yao W, Fazzini A, Chen S N, Burdonov K, Antici P, Béard J, Bolaños S, Ciardi A, Diab R, Filippov E D, Kisyov S, Lelasseux V, Miceli M, Moreno Q, Nastasa V, Orlando S, Pikuz S, Popescu D C, Revet G, Ribeyre X, d’Humières E, Fuchs J 2022 Matter Radiat. Extremes 7 014402Google Scholar

    [41]

    Habara H, Lancaster K L, Karsch S, Murphy C D, Norreys P A, Evans R G, Borgomaghesi M, RomagnaniL, Zepf M, Norimastu T, Toyama Y, Kodama R, King J A, Snavely R, Akli K, Zhang B, Freeman R, Hatchett S, MacKinnon A J, Patel P, Key M H, Stoeckl C, Stephens R B, Fonseca R A, Silva L O 2004 Phys. Rev. E 70 046414Google Scholar

    [42]

    Borghesi M, Bigongiari A, Kar S, Macchi A, Romagnani L, Audebert P, Fuchs J, Toncian T, Willi O, Bulanov S V 2008 Plasma Phys. Controlled Fusion 50 124040Google Scholar

    [43]

    Passoni M, Perego C, Sattoni A, Batani D 2013 Phys. Plasmas 20 060701Google Scholar

    [44]

    Denavit J 1979 Phys. Fluids 22 1384Google Scholar

  • [1] Ma Wen-Jun, Liu Zhi-Peng, Wang Peng-Jie, Zhao Jia-Rui, Yan Xue-Qing. Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes. Acta Physica Sinica, 2021, 70(8): 084102. doi: 10.7498/aps.70.20202115
    [2] Wang Kai, Sun Jing-Ya, Pan Chang-Ji, Wang Fei-Fei, Zhang Ke, Chen Zhi-Cheng. Ultrafast dynamic response and temporal shaping modulation of tungsten disulfide irradiated by femtosecond laser. Acta Physica Sinica, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [3] Zhou Bin, Yu Quan-Zhi, Hu Zhi-Liang, Chen Liang, Zhang Xue-Ying, Liang Tian-Jiao. Calculation and verification for energetic proton energy deposition in spallation target. Acta Physica Sinica, 2021, 70(5): 052401. doi: 10.7498/aps.70.20201504
    [4] Zhang Shi-Jian, Yu Xiao, Zhong Hao-Wen, Liang Guo-Ying, Xu Mo-Fei, Zhang Nan, Ren Jian-Hui, Kuang Shi-Cheng, Yan Sha, Gennady Efimovich Remnev, Le Xiao-Yun. Influence of ablation on energy deposition in polymer material under irradiation of intense pulsed ion beam. Acta Physica Sinica, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [5] Tian Yong-Shun, Hu Zhi-Liang, Tong Jian-Fei, Chen Jun-Yang, Peng Xiang-Yang, Liang Tian-Jiao. Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy. Acta Physica Sinica, 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [6] Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han. Focusing effect of channel target on ultra-intense laser-accelerated proton beam. Acta Physica Sinica, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [7] Sheng Liang, Li Yang, Wu Jian, Yuan Yuan, Zhao Ji-Zhen, Zhang Mei, Peng Bo-Dong, Hei Dong-Wei. Nanosecond electrical explosion of twisted aluminum wires. Acta Physica Sinica, 2014, 63(20): 205203. doi: 10.7498/aps.63.205203
    [8] Shi Huan-Tong, Zou Xiao-Bing, Zhao Shen, Zhu Xin-Lei, Wang Xin-Xin. Numerical simulation of energy deposition improvment in electrical wire explosion using a parallel wire. Acta Physica Sinica, 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [9] Teng Jian, Zhu Bin, Wang Jian, Hong Wei, Yan Yong-Hong, Zhao Zong-Qing, Cao Lei-Feng, Gu Yu-Qiu. Simulation of electromagnetic soliton radiography under laser-produced proton beam. Acta Physica Sinica, 2013, 62(11): 114103. doi: 10.7498/aps.62.114103
    [10] Yu Jin-Qing, Zhou Wei-Min, Jin Xiao-Lin, Li Bin, Zhao Zong-Qing, Cao Lei-Feng, Dong Ke-Gong, Liu Dong-Xiao, Fan Wei, Wei Lai, Yan Yong-Hong, Qian Feng, Yang Zu-Hua, Hong Wei, Gu Yu-Qiu. The effect of the proton layer initial size on the proton beam characteristic in target normal sheath acceleration. Acta Physica Sinica, 2012, 61(17): 175202. doi: 10.7498/aps.61.175202
    [11] Liu La-Qun, Liu Da-Gang, Wang Xue-Qiong, Yang Chao, Xia Meng-Zhong, Peng Kai. The numerical simulation of the electronic energy deposition and temperature variation in post-hole convolute of magnetically insulated transmission lines. Acta Physica Sinica, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [12] J. Ullrich, A. Dorn, Ma Xin-Wen, Xu Shen-Yue, Ren Xue-Guang, T. Pflüger. Dissociative ionization of methane by 54 eV electron impact. Acta Physica Sinica, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [13] Li Yu-Tong, Liu Feng, Zhang Yi, Lin Xiao-Xuan, Wang Shou-Jun, Wang Zhao-Hua, Li Ying-Jun, Sheng Zheng-Ming, Xu Miao-Hua, Wei Zhi-Yi, Zhang Jie, Zheng Jun, Meng Li-Min. Enhancement of ion generation in low-contrast laser-foil interactions by defocusing. Acta Physica Sinica, 2011, 60(4): 045204. doi: 10.7498/aps.60.045204
    [14] Fang Mei-Hua, Wei Zhi-Yong, Yang Hao, Cheng Jin-Xing. Nuclear reaction stopping of 400MeV/nucleon 56Fe in water. Acta Physica Sinica, 2008, 57(10): 6196-6201. doi: 10.7498/aps.57.6196
    [15] Gong Ye, Zhang Jian-Hong, Wang Xiao-Dong, Wu Di, Liu Jin-Yuan, Liu Yue, Wang Xiao-Gang, Ma Teng-Cai. Numerical simulation on the energy deposition of double-layer target irradiated by intense pulsed ion beam. Acta Physica Sinica, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [16] Slowing-down effect of alpha particle in thermonuclear burn of D-T plasma. Acta Physica Sinica, 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [17] Li Hua. Monte Carlo simulation of the SRAM single event upset. Acta Physica Sinica, 2006, 55(7): 3540-3545. doi: 10.7498/aps.55.3540
    [18] Ren Li-Ming, Chen Bao-Qin, Tan Zhen-Yu. . Acta Physica Sinica, 2002, 51(3): 512-518. doi: 10.7498/aps.51.512
    [19] WANG YING-GUAN, LUO ZHENG-MING. INFLUENCE OF NONELASTIC NUCLEAR INTERACTION ON THE PROTON BEAM ENERGY DEPOSITION. Acta Physica Sinica, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [20] YEH MING-HAN, SUN LIANG-FANG, SHYU CHIEN-MING, CHIN CHIEN-CHUNG, YEH LONG-FEI, CHEN JYH-CHEN, CHEN CHIEN-POU, SHAH GUANG-CHANG, YU CHUEH-HSIEN, LI ZHENG-WU, CHAO CHUNG-YAO. A PROTON ELECTROSTATIC ACCELERATOR. Acta Physica Sinica, 1963, 19(1): 60-69. doi: 10.7498/aps.19.60
Metrics
  • Abstract views:  2272
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2022
  • Accepted Date:  23 February 2023
  • Available Online:  10 March 2023
  • Published Online:  05 May 2023

/

返回文章
返回