-
The development of high-performance thermoelectric materials can help solve the energy crisis in the future. Thin-film thermoelectric materials can meet the requirement for flexibility of wearable devices while supplying electrical power to them. In this study, high-quality Nb-doped SrTiO3 films (Nb:STO) with different thickness are prepared on SrTiO3 (STO) and La0.3Sr0.7Al0.65Ta0.35O3 (LSAT) substrates by pulsed laser deposition. The surface morphologies, crystal structures, and thermoelectric performances of the films are characterized. The results show that the thermoelectric performance of the strain-free film increase with thickness increasing. The power factor at room temperature increases by 187%. The Seebeck coefficient of the 144 nm-thick Nb:STO/LSAT sample with strain is greatly improved to
$265.95\;{\text{μ}}{\rm{V}}/{\rm{K}}$ at room temperature, which is likely to be due to the strain induced changes in the energy band of the thin film. The improvement of the thermoelectric performances of Nb:STO thin films by strain engineering provides a new approach to improving the thermoelectric properties of oxide thin films.-
Keywords:
- pulsed laser deposition /
- thermoelectricity /
- SrTiO3 /
- thin film
[1] Utlu Z, Hepbasli A 2007 Renew. Sustain. Energy Rev. 11 1Google Scholar
[2] Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y, Wu Y 2015 J. Mater. Chem. C 3 11406Google Scholar
[3] Gao W, Zhu Y, Wang Y, Yuan G, Liu J M 2020 J. Materiomics 6 1Google Scholar
[4] Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098Google Scholar
[5] Fan Z, Du D, Yu Z, Li P, Xia Y, Ouyang J 2016 ACS Appl. Mater. Interfaces 8 23204Google Scholar
[6] Jalan B, Stemmer S 2010 Appl. Phys. Lett. 97 042106Google Scholar
[7] Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K 2007 Nat. Mater. 6 129Google Scholar
[8] Pu J, Kanahashi K, Cuong N T, Chen C H, Li L J, Okada S, Ohta H, Takenobu T 2016 Phys. Rev. B 94 014312Google Scholar
[9] Li P, Li L, Zeng X C 2016 J. Mater. Chem. C 4 3106Google Scholar
[10] Zhang X, Liu B, Liu S, Li J, Liu R, Wang P, Dong Q, Li S, Tian H, Li Q, Liu B 2021 J. Alloys Compd. 867 158923Google Scholar
[11] Wang N, Li M, Xiao H, Gong H, Liu Z, Zu X, Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097Google Scholar
[12] Xu R, Huang J, Barnard E S, Hong S S, Singh P, Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S, Hwang H Y 2020 Nat. Commun. 11 3141Google Scholar
[13] Dong Z, Chen H, Qi M, Shen J, Liu W, Guo E, Li D, Zhang Y, Wu Z 2022 Laser Photonics Rev. 16 2100454Google Scholar
[14] Tikhomirov O, Jiang H, Levy J 2002 Phys. Rev. Lett. 89 147601Google Scholar
[15] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar
[16] Bhansali S, Khunsin W, Chatterjee A, Santiso J, Abad B, Martin-Gonzalez M, Jakob G, Sotomayor Torres C M, Chávez-Angel E 2019 Nanoscale Adv. 1 3647Google Scholar
[17] Janotti A, Steiauf D, Van de Walle C G 2011 Phys. Rev. B 84 201304Google Scholar
[18] Bellucci A, Mastellone M, Girolami M, Orlando S, Medici L, Mezzi A, Kaciulis S, Polini R, Trucchi D M 2017 Appl. Surf. Sci. 418 589Google Scholar
[19] Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597Google Scholar
[20] Chen Z J, Zhou B Y, Li J X, Wen C L 2016 Appl. Surf. Sci. 386 389Google Scholar
[21] Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J, Zhang Y 2016 Sci. Rep. 6 33135Google Scholar
[22] Wunderlich W, Ohta H, Koumoto K 2009 Phys. B Condens. Matter 404 2202Google Scholar
[23] Benthem K, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156Google Scholar
[24] Apreutesei M, Debord R, Bouras M, Regreny P, Botella C, Benamrouche A, Carretero-Genevrier A, Gazquez J, Grenet G, Pailhès S, Saint-Girons G, Bachelet R 2017 Sci. Technol. Adv. Mater. 18 430Google Scholar
[25] Zhao T, Lu H B, Chen F, Dai S Y, Yang G Z, Chen Z H 2000 J. Cryst. Growth 212 451Google Scholar
[26] Kumar S R S, Barasheed A Z, Alshareef H N 2013 ACS Appl. Mater. Interfaces 5 7268Google Scholar
[27] Blennow P, Hagen A, Hansen K, Wallenberg L, Mogensen M 2008 Solid State Ion. 179 2047Google Scholar
[28] Chan N H, Sharma R K, Smyth D M 1981 J. Electrochem. Soc. 128 1762Google Scholar
[29] Culbertson C M, Flak A T, Yatskin M, Cheong P H Y, Cann D P, Dolgos M R 2020 Sci. Rep. 10 3729Google Scholar
[30] Chatterjee A, Lan Z, Christensen D V, Bauitti F, Morata A, Chavez-Angel E, Sanna S, Castelli I E, Chen Y, Tarancon A, Pryds N 2022 Phys. Chem. Chem. Phys. 24 3741Google Scholar
[31] Ohtomo A, Hwang H Y 2004 Appl. Phys. Lett. 84 1716Google Scholar
[32] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar
[33] 许静, 何梓民, 杨文龙, 吴荣, 赖晓芳, 简基康 2022 物理学报 71 197301Google Scholar
Xu J, He Z M, Yang W L, Wu R, Lai X F, Jian J K 2022 Acta Phys. Sin. 71 197301Google Scholar
[34] Matthews J, Blakeslee A 1974 J. Cryst. Growth 27 118Google Scholar
[35] Wang T, Ganguly K, Marshall P, Xu P, Jalan B 2013 Appl. Phys. Lett. 103 212904Google Scholar
[36] Zou D, Liu Y, Xie S, Lin J, Li J 2013 Chem. Phys. Lett. 586 159Google Scholar
-
图 4 不同厚度Nb:STO/STO和Nb:STO/LSAT 薄膜在不同温度下的面内热电性能 (a) 电导率; (b) 塞贝克系数; (c) 功率因子; (d) 不同衬底、厚度薄膜的电导率对比
Figure 4. Temperature dependence of in-plane thermoelectric properties of Nb:STO/STO and Nb:STO/LSAT thin films with different thicknesses: (a) Conductivities; (b) Seebeck coefficients; (c) power factors; (d) conductivity of thin films with different thicknesses and substrates.
-
[1] Utlu Z, Hepbasli A 2007 Renew. Sustain. Energy Rev. 11 1Google Scholar
[2] Zhang B, Wang J, Zou T, Zhang S, Yaer X, Ding N, Liu C, Miao L, Li Y, Wu Y 2015 J. Mater. Chem. C 3 11406Google Scholar
[3] Gao W, Zhu Y, Wang Y, Yuan G, Liu J M 2020 J. Materiomics 6 1Google Scholar
[4] Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G 1977 Phys. Rev. Lett. 39 1098Google Scholar
[5] Fan Z, Du D, Yu Z, Li P, Xia Y, Ouyang J 2016 ACS Appl. Mater. Interfaces 8 23204Google Scholar
[6] Jalan B, Stemmer S 2010 Appl. Phys. Lett. 97 042106Google Scholar
[7] Ohta H, Kim S, Mune Y, Mizoguchi T, Nomura K, Ohta S, Nomura T, Nakanishi Y, Ikuhara Y, Hirano M, Hosono H, Koumoto K 2007 Nat. Mater. 6 129Google Scholar
[8] Pu J, Kanahashi K, Cuong N T, Chen C H, Li L J, Okada S, Ohta H, Takenobu T 2016 Phys. Rev. B 94 014312Google Scholar
[9] Li P, Li L, Zeng X C 2016 J. Mater. Chem. C 4 3106Google Scholar
[10] Zhang X, Liu B, Liu S, Li J, Liu R, Wang P, Dong Q, Li S, Tian H, Li Q, Liu B 2021 J. Alloys Compd. 867 158923Google Scholar
[11] Wang N, Li M, Xiao H, Gong H, Liu Z, Zu X, Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097Google Scholar
[12] Xu R, Huang J, Barnard E S, Hong S S, Singh P, Wong E K, Jansen T, Harbola V, Xiao J, Wang B Y, Crossley S, Lu D, Liu S, Hwang H Y 2020 Nat. Commun. 11 3141Google Scholar
[13] Dong Z, Chen H, Qi M, Shen J, Liu W, Guo E, Li D, Zhang Y, Wu Z 2022 Laser Photonics Rev. 16 2100454Google Scholar
[14] Tikhomirov O, Jiang H, Levy J 2002 Phys. Rev. Lett. 89 147601Google Scholar
[15] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J, Schlom D G 2004 Nature 430 758Google Scholar
[16] Bhansali S, Khunsin W, Chatterjee A, Santiso J, Abad B, Martin-Gonzalez M, Jakob G, Sotomayor Torres C M, Chávez-Angel E 2019 Nanoscale Adv. 1 3647Google Scholar
[17] Janotti A, Steiauf D, Van de Walle C G 2011 Phys. Rev. B 84 201304Google Scholar
[18] Bellucci A, Mastellone M, Girolami M, Orlando S, Medici L, Mezzi A, Kaciulis S, Polini R, Trucchi D M 2017 Appl. Surf. Sci. 418 589Google Scholar
[19] Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B 2001 Nature 413 597Google Scholar
[20] Chen Z J, Zhou B Y, Li J X, Wen C L 2016 Appl. Surf. Sci. 386 389Google Scholar
[21] Varghese T, Hollar C, Richardson J, Kempf N, Han C, Gamarachchi P, Estrada D, Mehta R J, Zhang Y 2016 Sci. Rep. 6 33135Google Scholar
[22] Wunderlich W, Ohta H, Koumoto K 2009 Phys. B Condens. Matter 404 2202Google Scholar
[23] Benthem K, Elsässer C, French R H 2001 J. Appl. Phys. 90 6156Google Scholar
[24] Apreutesei M, Debord R, Bouras M, Regreny P, Botella C, Benamrouche A, Carretero-Genevrier A, Gazquez J, Grenet G, Pailhès S, Saint-Girons G, Bachelet R 2017 Sci. Technol. Adv. Mater. 18 430Google Scholar
[25] Zhao T, Lu H B, Chen F, Dai S Y, Yang G Z, Chen Z H 2000 J. Cryst. Growth 212 451Google Scholar
[26] Kumar S R S, Barasheed A Z, Alshareef H N 2013 ACS Appl. Mater. Interfaces 5 7268Google Scholar
[27] Blennow P, Hagen A, Hansen K, Wallenberg L, Mogensen M 2008 Solid State Ion. 179 2047Google Scholar
[28] Chan N H, Sharma R K, Smyth D M 1981 J. Electrochem. Soc. 128 1762Google Scholar
[29] Culbertson C M, Flak A T, Yatskin M, Cheong P H Y, Cann D P, Dolgos M R 2020 Sci. Rep. 10 3729Google Scholar
[30] Chatterjee A, Lan Z, Christensen D V, Bauitti F, Morata A, Chavez-Angel E, Sanna S, Castelli I E, Chen Y, Tarancon A, Pryds N 2022 Phys. Chem. Chem. Phys. 24 3741Google Scholar
[31] Ohtomo A, Hwang H Y 2004 Appl. Phys. Lett. 84 1716Google Scholar
[32] Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar
[33] 许静, 何梓民, 杨文龙, 吴荣, 赖晓芳, 简基康 2022 物理学报 71 197301Google Scholar
Xu J, He Z M, Yang W L, Wu R, Lai X F, Jian J K 2022 Acta Phys. Sin. 71 197301Google Scholar
[34] Matthews J, Blakeslee A 1974 J. Cryst. Growth 27 118Google Scholar
[35] Wang T, Ganguly K, Marshall P, Xu P, Jalan B 2013 Appl. Phys. Lett. 103 212904Google Scholar
[36] Zou D, Liu Y, Xie S, Lin J, Li J 2013 Chem. Phys. Lett. 586 159Google Scholar
Catalog
Metrics
- Abstract views: 4583
- PDF Downloads: 143
- Cited By: 0