Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Talbot effect of ring laser array realized by Gyrator canonical transformation

Li Wei Dai Jing-Jing Wen Cong-Yang Zong Meng-Ya Li Sheng-Nan Wang Zhi-Yong

Citation:

Talbot effect of ring laser array realized by Gyrator canonical transformation

Li Wei, Dai Jing-Jing, Wen Cong-Yang, Zong Meng-Ya, Li Sheng-Nan, Wang Zhi-Yong
PDF
HTML
Get Citation
  • We propose a ring laser array structure and study the Talbot effect. By comparing with the one-dimensional laser array, the near-field distribution of the identical intensity of the ring laser array without edge effect is obtained, which can be more conducive to improving the capability of the external cavity phase locking of lasers. In this paper, Talbot effect and self imaging condition of ring laser array in polar coordinates are calculated by using Gyrator canonical transformation. The sub-image distribution at the fractional Talbot distance is further analyzed. The optical profile and phase distribution of the ring laser array at the fractional Talbot distance are simulated, which are mutually verified with the theoretical calculation results. At a quarter of the Talbot distance, the number of sub-images is twice that of the emitters. The light intensities of the sub-images are identical, and thedifference in phase between adjacent sub-images is ${\pi }/{2}$. At half of the Talbot distance, the number of sub-images is the same as that of the emitters, while the spatial position of sub-image is shifted by half a cycle along the angular direction. Moreover, the sub-images with twice the number of the emitters are present in three quarters of the Talbot distance. The light intensities of the sub-images are identical and the difference in phase between adjacent sub-images is $- {\pi }/{2}$. Further, the Talbot images with the same spatial and phase distribution as the emitters are generated along the angular direction at the Talbot distance. The optical profile and phase distribution of one dimensional laser array at the fractional Talbot distance are also simulated by FDTD Solutions for comparison. It is found that the edge effect of one-dimensional laser array leads to the uneven distribution of near-field light intensity, in which the intensity of light spot on the edge of array is significantly lower than that in the center of array. While the Talbot sub-images of ring laser array with identical light intensity are obtained. Therefore, We consider that the ring laser array can effectively eliminate the edge effect. The results are helpful in studying the external cavity phase locking of ring laser arrays and its applications in the field of high brightness coherent laser and quantum measurement.
      Corresponding author: Dai Jing-Jing, daijingjing@bjut.edu.cn ; Wang Zhi-Yong, zywang@bjut.edu.cn
    [1]

    Talbot H F 1836 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 9 1

    [2]

    Berry M V, Klein S 1996 Int. J. Opt. 43 2139

    [3]

    吴玲玲, 吴国俊, 仓玉萍, 陈良益 2010 光子学报 39 1723Google Scholar

    Wu L L, Wu G J, Cang Y P, Chen L Y 2010 Acta Photon. Sin. 39 1723Google Scholar

    [4]

    Javidi B, Lancis J, Tajahuerce E, Andres P, Martinez-Leon L, Araiza-Esquivel M A 2011 Appl. Opt. 50 96Google Scholar

    [5]

    Chai S J, Fekete J, McDowall P, Coop S, Andersen M F 2018 Phys. Rev. A 97 033616Google Scholar

    [6]

    Qiu T, Xia L, Ma H, Zheng C, Chen L 2016 Opt. Commun. 35 20

    [7]

    Chen H X, Xiong D Z, Wang P J 2010 Chin. Opt. Lett. 8 348Google Scholar

    [8]

    Chapman M S, Ekstrom C R, Hammond T D, Schmiedmayer J, Tannian B E, Wehinger S, Pritchard D E 1995 Phys. Rev. A 51 14Google Scholar

    [9]

    Zhang Z Y, Liu X, Zhang D, Sheng J T, Zhang Y Q, Zhang Y P, Xiao M 2018 Phys. Rev. A 97 013603Google Scholar

    [10]

    Wang H, Zhang Z, Lu C, Wang Q 2003 Opt. Commun. 222 69Google Scholar

    [11]

    Wang H S 2009 International Conference on Information Engineering and Computer Science Wuhan, China, December 19–20, 2009 p1

    [12]

    华建文 1997 中国激光 000 163Google Scholar

    Hua J W 1997 Chin. J. Lasers 000 163Google Scholar

    [13]

    Shichijo T, Miyamoto T 2019 Jpn. J. Appl. Phys. 58 SJJC01.1

    [14]

    Sanders S, Waarts R G, Nam D W, Welch D F, Flood K M 1993 Proceedings of LEOS San Jose, CA, USA, November 15–18, 1993 p590

    [15]

    Kandidov V P, Kondrat'ev A V 1997 Quantum Electron. 27 234Google Scholar

    [16]

    Liu L R 1989 Opt. Lett. 14 1312Google Scholar

    [17]

    Li C, Zhou T W, Zhai Y Y, Yue X G, Xiang J G, Yang S F, Xiong W, Chen X Z 2017 Phys. Rev. A 95 033821Google Scholar

    [18]

    Li C, Zhou T W, Zhai Y Y, Yue X G, Xiang J G, Yang S F, Xiong W, Chen X Z 2017 Chin. Phys. Lett. 34 084207Google Scholar

    [19]

    陆丹 2004 硕士学位论文(成都: 四川大学)

    Lu D 2004 M. S. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [20]

    严地勇 2003 硕士学位论文 (成都: 四川大学)

    Yan D Y 2003 M. S. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [21]

    杨哲宁, 乐阳阳, 洪煦昊, 赵瑞智, 陆蓉儿, 冯霞, 许亚光, 袁旭东, 张超, 秦亦强, 朱永元 2020 物理学报 69 034201Google Scholar

    Yang Z N, Yue Y Y, Hong X H, Zhao R Z, Lu R E, Feng X, Xu Y G, Yuan X D, Zhang C, Qin Y Q, Zhu Y Y 2020 Acta Phys. Sin. 69 034201Google Scholar

    [22]

    孙琼阁, 马金鹏, 杨瑀, 李辰, 刘正君, 刘树田 2014 光学学报 34 0711004Google Scholar

    Sun Q G, Ma J P, Yang Y, Li C, Liu Z J, Liu S T 2014 Acta Opt. Sin. 34 0711004Google Scholar

    [23]

    马金鹏 2009 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Ma J P 2009 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

  • 图 1  环形激光阵列

    Figure 1.  Ring laser array.

    图 2  仿真模型示意图

    Figure 2.  Schematic diagram of simulation model.

    图 3  环形激光阵列Talbot效应 (a)初始光斑空间分布; (b) 1/4 Talbot距离处光斑空间分布; (c) 1/2 Talbot距离处光斑空间分布; (d) 3/4 Talbot距离处光斑空间分布; (e) Talbot距离处光斑空间分布; (f)初始光源相位分布; (g) 1/4 Talbot距离处相位分布; (h) 1/2 Talbot距离处相位分布; (i) 3/4 Talbot距离处相位分布; (j) Talbot距离处相位分布

    Figure 3.  The Talbot effect of ring laser array: (a) The initial optical profile; (b) optical profile at 1/4 Talbot distance; (c) optical profile at 1/2 Talbot distance; (d) optical profile at 3/4 Talbot distance; (e) optical profile at Talbot distance; (f) phase distribution of the initial light source; (g) phase distribution at 1/4 Talbot distance; (h) phase distribution at 1/2 Talbot distance; (i) phase distribution at 3/4 Talbot distance; (j) phase distribution at Talbot distance.

    图 4  一维阵列Talbot效应 (a)初始光场分布; (b)1/4 Talbot距离处光斑空间分布; (c) 1/2 Talbot距离处光斑空间分布; (d) 3/4 Talbot距离处光斑空间分布; (e) Talbot距离处光斑空间分布; (f)初始光源相位分布; (g) 1/4 Talbot距离处相位分布; (h) 1/2Talbot距离处相位分布; (i) 3/4 Talbot距离处相位分布; (j)Talbot距离处相位分布

    Figure 4.  The Talbot effect of one-dimensional array: (a) The initial optical profile; (b) optical profile at 1/4 Talbot distance; (c) optical profile at 1/2 Talbot distance; (d) optical profile at 3/4 Talbot distance; (e) optical profile at Talbot distance; (f) phase distribution of the initial light source; (g) phase distribution at 1/4 Talbot distance; (h) phase distribution at 1/2 Talbot distance; (i) phase distribution at 3/4 Talbot distance; (j) phase distribution at Talbot distance.

  • [1]

    Talbot H F 1836 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 9 1

    [2]

    Berry M V, Klein S 1996 Int. J. Opt. 43 2139

    [3]

    吴玲玲, 吴国俊, 仓玉萍, 陈良益 2010 光子学报 39 1723Google Scholar

    Wu L L, Wu G J, Cang Y P, Chen L Y 2010 Acta Photon. Sin. 39 1723Google Scholar

    [4]

    Javidi B, Lancis J, Tajahuerce E, Andres P, Martinez-Leon L, Araiza-Esquivel M A 2011 Appl. Opt. 50 96Google Scholar

    [5]

    Chai S J, Fekete J, McDowall P, Coop S, Andersen M F 2018 Phys. Rev. A 97 033616Google Scholar

    [6]

    Qiu T, Xia L, Ma H, Zheng C, Chen L 2016 Opt. Commun. 35 20

    [7]

    Chen H X, Xiong D Z, Wang P J 2010 Chin. Opt. Lett. 8 348Google Scholar

    [8]

    Chapman M S, Ekstrom C R, Hammond T D, Schmiedmayer J, Tannian B E, Wehinger S, Pritchard D E 1995 Phys. Rev. A 51 14Google Scholar

    [9]

    Zhang Z Y, Liu X, Zhang D, Sheng J T, Zhang Y Q, Zhang Y P, Xiao M 2018 Phys. Rev. A 97 013603Google Scholar

    [10]

    Wang H, Zhang Z, Lu C, Wang Q 2003 Opt. Commun. 222 69Google Scholar

    [11]

    Wang H S 2009 International Conference on Information Engineering and Computer Science Wuhan, China, December 19–20, 2009 p1

    [12]

    华建文 1997 中国激光 000 163Google Scholar

    Hua J W 1997 Chin. J. Lasers 000 163Google Scholar

    [13]

    Shichijo T, Miyamoto T 2019 Jpn. J. Appl. Phys. 58 SJJC01.1

    [14]

    Sanders S, Waarts R G, Nam D W, Welch D F, Flood K M 1993 Proceedings of LEOS San Jose, CA, USA, November 15–18, 1993 p590

    [15]

    Kandidov V P, Kondrat'ev A V 1997 Quantum Electron. 27 234Google Scholar

    [16]

    Liu L R 1989 Opt. Lett. 14 1312Google Scholar

    [17]

    Li C, Zhou T W, Zhai Y Y, Yue X G, Xiang J G, Yang S F, Xiong W, Chen X Z 2017 Phys. Rev. A 95 033821Google Scholar

    [18]

    Li C, Zhou T W, Zhai Y Y, Yue X G, Xiang J G, Yang S F, Xiong W, Chen X Z 2017 Chin. Phys. Lett. 34 084207Google Scholar

    [19]

    陆丹 2004 硕士学位论文(成都: 四川大学)

    Lu D 2004 M. S. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [20]

    严地勇 2003 硕士学位论文 (成都: 四川大学)

    Yan D Y 2003 M. S. Dissertation (Chengdu: Sichuan University) (in Chinese)

    [21]

    杨哲宁, 乐阳阳, 洪煦昊, 赵瑞智, 陆蓉儿, 冯霞, 许亚光, 袁旭东, 张超, 秦亦强, 朱永元 2020 物理学报 69 034201Google Scholar

    Yang Z N, Yue Y Y, Hong X H, Zhao R Z, Lu R E, Feng X, Xu Y G, Yuan X D, Zhang C, Qin Y Q, Zhu Y Y 2020 Acta Phys. Sin. 69 034201Google Scholar

    [22]

    孙琼阁, 马金鹏, 杨瑀, 李辰, 刘正君, 刘树田 2014 光学学报 34 0711004Google Scholar

    Sun Q G, Ma J P, Yang Y, Li C, Liu Z J, Liu S T 2014 Acta Opt. Sin. 34 0711004Google Scholar

    [23]

    马金鹏 2009 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Ma J P 2009 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)

  • [1] Zhang Yu-Yan, Yin Dong-Zhe, Wen Yin-Tang, Luo Xiao-Yuan. Planar array capacitance imaging based on adaptive Kalman filter. Acta Physica Sinica, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [2] Zhong Zhe-Qiang, Mu Jie, Wang Xiao, Zhang Bin. Analysis of coherent combination characteristics of beam array via tight focusing. Acta Physica Sinica, 2020, 69(9): 094204. doi: 10.7498/aps.69.20200034
    [3] Yang Zhe-Ning, Yue Yang-Yang, Hong Xu-Hao, Zhao Rui-Zhi, Lu Rong-Er, Feng Xia, Xu Ya-Guang, Yuan Xu-Dong, Zhang Chao, Qin Yi-Qiang, Zhu Yong-Yuan. Realizing Talbot effect of circular grating with conformal transformation. Acta Physica Sinica, 2020, 69(3): 034201. doi: 10.7498/aps.69.20191340
    [4] Hao Wei-Qian, Liang Zhong-Cheng, Liu Xiao-Yao, Zhao Rui, Kong Mei-Mei, Guan Jian-Fei, Zhang Yue. Imaging performance of fractal structuresparse aperture arrays. Acta Physica Sinica, 2019, 68(19): 199501. doi: 10.7498/aps.68.20190818
    [5] Deng Wan-Tao, Zhao Gang, Xia Hui-Jun, Zhang Mao, Yang Yi-Fan. Method of correcting tilt aberration for array laser of incoherent combination. Acta Physica Sinica, 2019, 68(23): 234205. doi: 10.7498/aps.68.20190961
    [6] Zhao Xuan, Liu Chen, Ma Hui-Li, Feng Shuai. Photonic crystal frequency band selecting and power splitting devices based on the energy coupling effect between waveguides. Acta Physica Sinica, 2017, 66(11): 114208. doi: 10.7498/aps.66.114208
    [7] Gong Ning, Zhu Kai-Cheng, Xia Hui. Gyrator transform of four-petal Gaussian beam and generation of rectangular hollow beam. Acta Physica Sinica, 2016, 65(12): 124204. doi: 10.7498/aps.65.124204
    [8] Yao Li-Li, Yuan Cao-Jin, Qiang Jun-Jie, Feng Shao-Tong, Nie Shou-Ping. Asymmetric image encryption method based on gyrator transform and vector operation. Acta Physica Sinica, 2016, 65(21): 214203. doi: 10.7498/aps.65.214203
    [9] Zhou Jing, Wang Ming, Ni Hai-Bin, Ma Xin. Finite difference time domain simulation of optical properties of annular cavity arrays. Acta Physica Sinica, 2015, 64(22): 227301. doi: 10.7498/aps.64.227301
    [10] Chen Yong, Zhao Hui-Chang, Chen Si, Zhang Shu-Ning. Imaging algorithm for missile-borne SAR using the fractional Fourier transform. Acta Physica Sinica, 2014, 63(11): 118403. doi: 10.7498/aps.63.118403
    [11] Fan Tian-Wei, Chen Yun-Lin, Zhang Jin-Hong. A study of two-dimensional hexagonal phase array grating in MgO:LN based on the Talbot effect. Acta Physica Sinica, 2013, 62(9): 094216. doi: 10.7498/aps.62.094216
    [12] Cheng Zhi-Ming, Wu Feng-Tie, Zhang Qian-An, Zheng Wei-Tao. New method of generating self-imaged optical bottle beams and particles captured. Acta Physica Sinica, 2012, 61(9): 094201. doi: 10.7498/aps.61.094201
    [13] Zhou Bo, Chen Yun-Lin, Li Yuan-An, Li Hai-Wei. The theoretical study and numerical simulation of the tunable two-dimensional hexagonal phase array based on Talbot effect. Acta Physica Sinica, 2010, 59(3): 1816-1822. doi: 10.7498/aps.59.1816
    [14] Cheng Teng, Zhang Qing-Chuan, Chen Da-Peng, Wu Xiao-Ping, Shi Hai-Tao, Gao Jie. Performance analysis of the substrate-free focal plane array in infrared imaging. Acta Physica Sinica, 2009, 58(2): 852-859. doi: 10.7498/aps.58.852
    [15] Xiao Ling, Cheng Xiao-Jin, Xu Jian-Qiu. Laser beam addition of planar waveguides with fractional self-imaging. Acta Physica Sinica, 2009, 58(6): 3870-3876. doi: 10.7498/aps.58.3870
    [16] Xiao Rui, Hou Jing, Jiang Zong-Fu. Effect of partial coherence laser arrays on far-field output properties. Acta Physica Sinica, 2008, 57(2): 853-859. doi: 10.7498/aps.57.853
    [17] Xiong Zhi_Ming, Zhang Qing_Chuan, Chen Da_Peng, Wu Xiao_Ping, Guo Zhe_Ying, Dong Feng_Liang, Miao Zheng_Yu, Li Chao_Bo. Optical-readout micro-cantilever array IR imaging system and performance analysis. Acta Physica Sinica, 2007, 56(5): 2529-2536. doi: 10.7498/aps.56.2529
    [18] Xiao Rui, Zhou Pu, Hou Jing, Jiang Zong-Fu, Liu Ming. Effect of partial coherence of laser has on the irradiance distribution of coherent combining of fiber laser arrays in far field. Acta Physica Sinica, 2007, 56(2): 819-823. doi: 10.7498/aps.56.819
    [19] Miao Zheng-Yu, Zhang Qing-Chuan, Chen Da-Peng, Wu Xiao-Ping, Li Chao-Bo, Guo Zhe-Ying, Dong Feng-Liang, Xiong Zhi-Ming. Bi-material mircocantilever array room-temperature IR imaging. Acta Physica Sinica, 2006, 55(7): 3208-3214. doi: 10.7498/aps.55.3208
    [20] Xiao Rui, Hou Jing, Jiang Zong-Fu. Experimental investigation of phase detection and compensation in coherent combining of fiber laser array. Acta Physica Sinica, 2006, 55(1): 184-187. doi: 10.7498/aps.55.184
Metrics
  • Abstract views:  3297
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  20 December 2022
  • Accepted Date:  11 January 2023
  • Available Online:  03 February 2023
  • Published Online:  05 March 2023

/

返回文章
返回