-
Recently, the
$\Lambda$ polarization has been observed at relativistic heavy-ion collider (RHIC) and large hadron collider (LHC). This observation has inspired many studies on spin dynamics of quantum chromodynamics (QCD) many-body physics, thus opening a new avenue to studying the hot and dense nuclear matter.This paper reviews the recent progress of spin effects in relativistic heavy-ion collisions, with an emphasis on the quantum correlation between spin and motion in QCD matter, including newly discovered shear-induced polarization (SIP), a novel effect that fluid shear polarizes the spin. The linear response theory’s applications to studying those effects are also systematically reviewed. Finally, their observational signatures in experiments are discussed.-
Keywords:
- quantum chromodynamics phase diagram /
- spin
[1] Bzdak A, Esumi S, Koch V, Liao J, Stephanov M, Xu N 2020 Phys. Rep. 853 1Google Scholar
[2] Luo X, Wang Q, Xu N, Zhuang P 2022 Properties of QCD Matter at High Baryon Density (Berlin: Springer)
[3] Busza W, Rajagopal K, van der Schee W 2018 Ann. Rev. Nucl. Part. Sci. 68 339Google Scholar
[4] Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: 2006 Phys. Rev. Lett. 96 039901]
[5] Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar
[6] Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62Google Scholar
[7] Acharya S, Adamová D, Adler A, et al. 2020 Phys. Rev. Lett. 125 012301Google Scholar
[8] Abdallah M S, Aboona B E, Adam J, et al. 2023 Nature 614 244Google Scholar
[9] Kharzeev D E, Liao J, Voloshin S A, Wang G 2016 Prog. Part. Nucl. Phys. 88 1Google Scholar
[10] Wang F Q, Zhao J 2018 Nucl. Sci. Tech. 29 179Google Scholar
[11] Hattori K, Huang X G 2017 Nucl. Sci. Tech. 28 26Google Scholar
[12] Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56Google Scholar
[13] Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar
[14] Hidaka Y, Pu S, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar
[15] Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901Google Scholar
[16] Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100Google Scholar
[17] Weickgenannt N, Speranza E, Sheng X l, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301Google Scholar
[18] Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2021 Phys. Lett. B 814 136096Google Scholar
[19] Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar
[20] Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H U 2021 JHEP 11 150
[21] Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014Google Scholar
[22] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar
[23] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar
[24] Liu S Y F, Yin Y 2021 JHEP 07 188
[25] Becattini F, Buzzegoli M, Palermo A 2021 Phys. Lett. B 820 136519Google Scholar
[26] Lin S, Wang Z 2022 JHEP 12 030
[27] Liu S Y F, Yin Y 2021 Phys. Rev. D 104 054043Google Scholar
[28] Becattini F 2022 Rep. Prog. Phys. 85 122301Google Scholar
[29] Wagner D, Weickgenannt N, Speranza E 2023 Phys. Rev. Res. 5 013187Google Scholar
[30] Fu B, Liu S Y F, Pang L, Song H, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar
[31] Adam J, Adamczyk L, Adams J R, et al. 2019 Phys. Rev. Lett. 123 132301Google Scholar
[32] Becattini F, Buzzegoli M, Inghirami G, Karpenko I, Palermo A 2021 Phys. Rev. Lett. 127 272302Google Scholar
[33] Acharya S, Adamová D, Adler A, et al. 2022 Phys. Rev. Lett. 128 172005Google Scholar
[34] Becattini F, Karpenko I, Lisa M, Upsal I, Voloshin S 2017 Phys. Rev. C 95 054902Google Scholar
[35] Yang Y G, Fang R H, Wang Q, Wang X N 2018 Phys. Rev. C 97 034917Google Scholar
[36] Xia X L, Li H, Huang X G, Zhong H H 2021 Phys. Lett. B 817 136325Google Scholar
[37] Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005Google Scholar
[38] Müller B, Müller B, Yang D L, Yang D L 2022 Phys. Rev. D 105 L011901 [Erratum: 2022 Phys. Rev. D 106 039904]
[39] Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar
-
图 1 自旋霍尔效应示意. 对于自旋霍尔材料(如某些半导体, 见文献[22]的总结), 在施加了电场的条件下, 费米子的速度
$ {\boldsymbol v} $ 与其自旋方向$ {\boldsymbol s} $ 将产生关联, 见正文和方程(2)Figure 1. An illustration of spin Hall effect (SHE). For SHE material (such as semi-conductor as listed in Ref. [22]), the velocity of a fermion
$ {\boldsymbol v} $ will be correlated with its spin direction$ {\boldsymbol s} $ , see text and Eq. (2) -
[1] Bzdak A, Esumi S, Koch V, Liao J, Stephanov M, Xu N 2020 Phys. Rep. 853 1Google Scholar
[2] Luo X, Wang Q, Xu N, Zhuang P 2022 Properties of QCD Matter at High Baryon Density (Berlin: Springer)
[3] Busza W, Rajagopal K, van der Schee W 2018 Ann. Rev. Nucl. Part. Sci. 68 339Google Scholar
[4] Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301 [Erratum: 2006 Phys. Rev. Lett. 96 039901]
[5] Becattini F, Chandra V, Del Zanna L, Grossi E 2013 Annals Phys. 338 32Google Scholar
[6] Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62Google Scholar
[7] Acharya S, Adamová D, Adler A, et al. 2020 Phys. Rev. Lett. 125 012301Google Scholar
[8] Abdallah M S, Aboona B E, Adam J, et al. 2023 Nature 614 244Google Scholar
[9] Kharzeev D E, Liao J, Voloshin S A, Wang G 2016 Prog. Part. Nucl. Phys. 88 1Google Scholar
[10] Wang F Q, Zhao J 2018 Nucl. Sci. Tech. 29 179Google Scholar
[11] Hattori K, Huang X G 2017 Nucl. Sci. Tech. 28 26Google Scholar
[12] Liu Y C, Huang X G 2020 Nucl. Sci. Tech. 31 56Google Scholar
[13] Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Tech. 31 90Google Scholar
[14] Hidaka Y, Pu S, Wang Q, Yang D L 2022 Prog. Part. Nucl. Phys. 127 103989Google Scholar
[15] Florkowski W, Friman B, Jaiswal A, Speranza E 2018 Phys. Rev. C 97 041901Google Scholar
[16] Hattori K, Hongo M, Huang X G, Matsuo M, Taya H 2019 Phys. Lett. B 795 100Google Scholar
[17] Weickgenannt N, Speranza E, Sheng X l, Wang Q, Rischke D H 2021 Phys. Rev. Lett. 127 052301Google Scholar
[18] Bhadury S, Florkowski W, Jaiswal A, Kumar A, Ryblewski R 2021 Phys. Lett. B 814 136096Google Scholar
[19] Peng H H, Zhang J J, Sheng X L, Wang Q 2021 Chin. Phys. Lett. 38 116701Google Scholar
[20] Hongo M, Huang X G, Kaminski M, Stephanov M, Yee H U 2021 JHEP 11 150
[21] Weickgenannt N, Wagner D, Speranza E, Rischke D H 2022 Phys. Rev. D 106 096014Google Scholar
[22] Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar
[23] Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar
[24] Liu S Y F, Yin Y 2021 JHEP 07 188
[25] Becattini F, Buzzegoli M, Palermo A 2021 Phys. Lett. B 820 136519Google Scholar
[26] Lin S, Wang Z 2022 JHEP 12 030
[27] Liu S Y F, Yin Y 2021 Phys. Rev. D 104 054043Google Scholar
[28] Becattini F 2022 Rep. Prog. Phys. 85 122301Google Scholar
[29] Wagner D, Weickgenannt N, Speranza E 2023 Phys. Rev. Res. 5 013187Google Scholar
[30] Fu B, Liu S Y F, Pang L, Song H, Yin Y 2021 Phys. Rev. Lett. 127 142301Google Scholar
[31] Adam J, Adamczyk L, Adams J R, et al. 2019 Phys. Rev. Lett. 123 132301Google Scholar
[32] Becattini F, Buzzegoli M, Inghirami G, Karpenko I, Palermo A 2021 Phys. Rev. Lett. 127 272302Google Scholar
[33] Acharya S, Adamová D, Adler A, et al. 2022 Phys. Rev. Lett. 128 172005Google Scholar
[34] Becattini F, Karpenko I, Lisa M, Upsal I, Voloshin S 2017 Phys. Rev. C 95 054902Google Scholar
[35] Yang Y G, Fang R H, Wang Q, Wang X N 2018 Phys. Rev. C 97 034917Google Scholar
[36] Xia X L, Li H, Huang X G, Zhong H H 2021 Phys. Lett. B 817 136325Google Scholar
[37] Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005Google Scholar
[38] Müller B, Müller B, Yang D L, Yang D L 2022 Phys. Rev. D 105 L011901 [Erratum: 2022 Phys. Rev. D 106 039904]
[39] Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar
Catalog
Metrics
- Abstract views: 3294
- PDF Downloads: 94
- Cited By: 0