Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of surface modification of CuSe

Mo Qiu-Yan Zhang Song Jing Tao Zhang Hong-Yun Li Xian-Xu Wu Jia-Yin

Citation:

First-principles study of surface modification of CuSe

Mo Qiu-Yan, Zhang Song, Jing Tao, Zhang Hong-Yun, Li Xian-Xu, Wu Jia-Yin
PDF
HTML
Get Citation
  • Original bulk phases of two-dimensional atomic crystal materials are layered. However, a few relevant researches show that some of two-dimensional material crystals have non-layered bulk phases. In this work we investigate monolayer CuSe which is non-layered, belonging in a new kind of honeycomb graphene analogue. Monolayer CuSe is not suitable for application in electronic devices because of its metallic nature. In order to find new two-dimensional atomic crystal materials with excellent performance suitable for application in electronic devices, we change CuSe from metal to semiconductor through external atom modification. The first principles study of density functional theory is conducted to ascertain the energy band structure of monolayer CuSe after second periodic atoms have been added to the top, center and bridge sites. The characteristics of monolayer CuSe with addition of Li or B atoms are studied, including energy band structure, the density of states, differential charge density, and crystal orbital Hamiltonian population. The results show that after adding Li atoms to CuSe, the CuSe transforms from metallic to semiconductive property at all three positions, and Li atom is more easily to be modified in the hexagonal center of CuSe, with band gap being about 1.77 eV, the Fermi level biased towards the top of the valence band. The CuSe with addition of Li atoms exhibits a p-type semiconductor property, so it is a direct bandgap semiconductor. Adding B atom to the top of Cu atom can also make CuSe semiconductive, with a band gap of about 1.2 eV, the conduction band minimum at the K point, and the valence band maximum at the Γ point. The CuSe with addition of B atoms belongs in an indirect band gap semiconductor, and the Fermi energy level is biased towards the conduction band minimum, exhibiting the characteristics of an n-type semiconductor. According to the results of differential charge density and crystal orbital Hamiltonian population, the B atom is bound to the top of the monolayer CuSe with the B-Se polar covalent bond. The first principle study reveals the realization of metal-to-semiconductor transition from monolayer CuSe to CuXSe (X = Li, B), and the calculation results also show that CuSe with addition of Li atoms or B atoms is likely to be used in future electronic devices.
      Corresponding author: Li Xian-Xu, lixianx@chinatelecom.cn ; Wu Jia-Yin, jiayinwu@foxmail.com
    • Funds: Project supported by School-level Planning Project of KaiLi School, China (Grant No. 2022ZD05) and the Qiandongnan Prefecture Science and Technology Plan Project, China (Grant No. [2022]08).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhao J J, Liu H S, Yu Z M, Quhe R, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G, Wu K H 2016 Prog. Mater. Sci. 83 24Google Scholar

    [3]

    Lang J L, Ding B, Zhang S, Su H X, Ge B H, Qi L H, Gao H J, Li X Y, Li Q Y, Wu H 2017 Adv. Mater. 29 1701777Google Scholar

    [4]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [5]

    Liao Y L, Chen Z F, Connell J W, Fay C C, Park C, Kim J W, Lin Y 2014 Adv. Funct. Mater. 24 4497Google Scholar

    [6]

    Zeng H B, Zhi C Y, Zhang Z H, Wei X L, Wang X B, Guo W L, Bando Y, Golberg D 2010 Nano Lett. 10 5049Google Scholar

    [7]

    Kumar R, Sahoo S, Joanni E, Singh R K, Yadav R M, Verma R K, Singh D P, Tan W K, Pino A P, Moshkalev S A, Matsuda A 2019 Nano Res. 12 2655Google Scholar

    [8]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [9]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [10]

    Chhowalla M, Liu Z F, Zhang H 2015 Chem. Soc. Rev. 44 2584Google Scholar

    [11]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [12]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 Acs Nano 6 1322Google Scholar

    [13]

    Zhan X X, Si C, Zhou J, Sun Z M 2020 Nano. Horiz. 5 235Google Scholar

    [14]

    Aydın Z Y, Abacı S 2017 Solid State Sci. 74 74Google Scholar

    [15]

    Buffiere M, Dhawale D S, EI-Mellouhi F 2019 Energy Technol. 7 1900819Google Scholar

    [16]

    Yang Z Q, Wang S C, Li H L, Yang J P, Zhao J X, Qu W Q, Shih K 2020 Ind. End. Chem. Res. 59 13603Google Scholar

    [17]

    Masrat S, Poolla R, Dipak P, Zaman M B 2021 Surf. Interfaces 23 100973Google Scholar

    [18]

    Cheng Y S, Zhang J, Xiong X S, Chen C, Zeng J H, Kong Z, Wang H B, Xi J H, Yuan Y J, Ji Z G 2021 J. Alloy. Compd. 870 159540Google Scholar

    [19]

    Weng J H, Gao S P 2019 Rsc. Adv. 9 32984Google Scholar

    [20]

    Weng J H, Gao S P 2021 J. Phys. Chem. Solids 148 109738Google Scholar

    [21]

    Yang G, Xu W X, Gao S P 2021 Comput. Mater. Sci. 198 110696Google Scholar

    [22]

    Ruffieux P, Wang S Y, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X L, Mullen K, Fasel R 2016 Nature 531 489Google Scholar

    [23]

    Nakanishi T, Ando T 2015 Phys. Rev. B 91 155420Google Scholar

    [24]

    Chamlagain B, Withanage S S, Johnston A C, Khondaker S I 2020 Sci. Rep. 10 12970Google Scholar

    [25]

    Cao T, Li Z L, Louie S G 2015 Phys. Rev. Lett. 114 236602Google Scholar

    [26]

    Kang M G, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A, Kim K S 2017 Nano Lett. 17 1610Google Scholar

    [27]

    Dai Z H, Liu L Q, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [28]

    Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, Hone J 2015 Nat. Nanotech. 10 534Google Scholar

    [29]

    Ju L, Shi Z W, Nair N, Lü Y C, Jin C H, Jr J V, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature 520 650Google Scholar

    [30]

    Lebegue S, Klintenberg M, Eriksson O, Katsnelson M I 2009 Phys. Rev. B 79 245117Google Scholar

    [31]

    Yang J H, Song S R, Du S X, Gao H J, Yakobson B I 2017 J. Phys. Chem. Lett. 8 4594Google Scholar

    [32]

    Wang Q C, Lei Y P, Wang Y C, Liu Y, Song C Y, Zeng J, Song Y H, Duan X D, Wang D S, Li Y D 2020 Energy Environ. Sci. 13 1593Google Scholar

    [33]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phy. Rev. Lett. 77 3865Google Scholar

    [35]

    Wu X J, Huang X, Liu J Q, Li H, Yang J, Li B, Huang W, Zhang H 2014 Angew. Chem. 126 5183Google Scholar

  • 图 1  CuBSe不同位置的晶体结构俯视图 (a) B在Cu的顶位; (b) B在Se的顶位; (c) B在中心位置; (d) B在桥位

    Figure 1.  Top view of crystal structure at different positions of CuBSe: (a) B is at the top of Cu; (b) B is at the top of Se; (c) B in the center; (d) B at bridge site.

    图 2  单层CuSe的电子结构 (a) 单层CuSe的能带结构; (b) 单层CuSe的态密度

    Figure 2.  Electronic structure of monolayer CuSe: (a) Energy band structure of monolayer CuSe; (b) density of states of monolayer CuSe.

    图 3  CuXSe (X = Li, Be, B, C, N, O, F)的能带结构 (a)—(c), (d)—(f), (g)—(i), (j)—(l), (m)—(o), (p)—(r), (s)—(u) 依次表示Li, Be, B, C, N, O, F原子分别在CuSe的顶部位置、中心位置和桥位

    Figure 3.  Energy band structure of CuXSe (X = Li, Be, B, C, N, O, F): (a)–(c), (d)–(f), (g)–(i), (j)–(l), (m)–(o), (p)–(r), (s)–(u) Indicate the top position, center position, and bridge position of Li, Be, B, C, N, O and F atoms in CuSe in sequence.

    图 4  CuLiSe (Li在CuSe的顶部) (a) 态密度图; (b) Fermi能级附近放大图

    Figure 4.  CuLiSe (Li at the top of CuSe): (a) Density of states diagram; (b) enlarged view near Fermi energy level.

    图 5  CuLiSe (Li在CuSe的桥位) (a) 态密度图; (b) Fermi能级附近放大图

    Figure 5.  CuLiSe (Li bridge site in CuSe): (a) Density of states diagram; (b) enlarged view near Fermi energy level.

    图 6  CuLiSe (Li在CuSe的中心) (a) 态密度图; (b) Fermi能级附近放大图

    Figure 6.  CuLiSe (Li is in the center of CuSe): (a) Density of states diagram; (b) enlarged view near Fermi energy level.

    图 7  CuBSe (B在CuSe的顶部) (a) 态密度图; (b) Fermi能级附近放大图

    Figure 7.  CuBSe (B at the top of CuSe): (a) Density of states diagram; (b) enlarged view near Fermi energy level.

    图 8  差分电荷密度图及对应的结构图 (a) CuSe; (b)—(d) CuLiSe (Li分别在CuSe的顶部位置、中心位置和桥位); (e) CuBSe (B在CuSe的顶部位置)

    Figure 8.  Differential charge density diagram and corresponding crystal structure: (a) CuSe; (b)−(d) CuLiSe (Li at the top, center and brdige position of CuSe); (e) CuBSe (B at the top of CuSe).

    图 9  CuLiSe (Li在CuSe的中心)的COHP图 (a) Se-Cu; (b) Li-Se; (c) Li-Cu

    Figure 9.  COHP diagram of CuLiSe (Li in the center of CuSe): (a) Se-Cu; (b) Li-Se; (c) Li-Cu.

    图 10  CuBSe (B在CuSe的顶部)的COHP图 (a) B-Se; (b) B-Cu; (c) Se-Cu

    Figure 10.  COHP diagram of CuBSe (B at the top of CuSe): (a) B-Se; (b) B-Cu; (c) Se-Cu.

    表 1  CuXSe (X = Li, Be, B, C, N, O, F)体系不同位置的形成能

    Table 1.  Formation energy at different positions of CuXSe (X = Li, Be, B, C, N, O, F)system.

    掺杂体系不同位置的形成能$ {E}_{{\rm{f}}} $/eV
    Cu原子的顶位Se原子的顶位中心位置桥位最稳定的位置
    CuLiSe–2.016–1.747–2.622–2.257中心位置
    CuBeSe–2.456–1.979–2.091–2.520桥位
    CuBSe–3.509–3.723–2.484–2.121Se原子的顶位
    CuCSe–4.291–4.212–2.619–2.452Cu原子的顶位
    CuNSe–0.860–1.647–1.044–1.532Se原子的顶位
    CuOSe–3.271–2.977–1.704–2.177Cu原子的顶位
    CuFSe–2.537–2.737–1.398–2.087Se原子的顶位
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Zhao J J, Liu H S, Yu Z M, Quhe R, Zhou S, Wang Y Y, Liu C C, Zhong H X, Han N N, Lu J, Yao Y G, Wu K H 2016 Prog. Mater. Sci. 83 24Google Scholar

    [3]

    Lang J L, Ding B, Zhang S, Su H X, Ge B H, Qi L H, Gao H J, Li X Y, Li Q Y, Wu H 2017 Adv. Mater. 29 1701777Google Scholar

    [4]

    Feng B J, Ding Z J, Meng S, Yao Y G, He X Y, Cheng P, Chen L, Wu K H 2012 Nano Lett. 12 3507Google Scholar

    [5]

    Liao Y L, Chen Z F, Connell J W, Fay C C, Park C, Kim J W, Lin Y 2014 Adv. Funct. Mater. 24 4497Google Scholar

    [6]

    Zeng H B, Zhi C Y, Zhang Z H, Wei X L, Wang X B, Guo W L, Bando Y, Golberg D 2010 Nano Lett. 10 5049Google Scholar

    [7]

    Kumar R, Sahoo S, Joanni E, Singh R K, Yadav R M, Verma R K, Singh D P, Tan W K, Pino A P, Moshkalev S A, Matsuda A 2019 Nano Res. 12 2655Google Scholar

    [8]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [9]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [10]

    Chhowalla M, Liu Z F, Zhang H 2015 Chem. Soc. Rev. 44 2584Google Scholar

    [11]

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W 2011 Adv. Mater. 23 4248Google Scholar

    [12]

    Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 Acs Nano 6 1322Google Scholar

    [13]

    Zhan X X, Si C, Zhou J, Sun Z M 2020 Nano. Horiz. 5 235Google Scholar

    [14]

    Aydın Z Y, Abacı S 2017 Solid State Sci. 74 74Google Scholar

    [15]

    Buffiere M, Dhawale D S, EI-Mellouhi F 2019 Energy Technol. 7 1900819Google Scholar

    [16]

    Yang Z Q, Wang S C, Li H L, Yang J P, Zhao J X, Qu W Q, Shih K 2020 Ind. End. Chem. Res. 59 13603Google Scholar

    [17]

    Masrat S, Poolla R, Dipak P, Zaman M B 2021 Surf. Interfaces 23 100973Google Scholar

    [18]

    Cheng Y S, Zhang J, Xiong X S, Chen C, Zeng J H, Kong Z, Wang H B, Xi J H, Yuan Y J, Ji Z G 2021 J. Alloy. Compd. 870 159540Google Scholar

    [19]

    Weng J H, Gao S P 2019 Rsc. Adv. 9 32984Google Scholar

    [20]

    Weng J H, Gao S P 2021 J. Phys. Chem. Solids 148 109738Google Scholar

    [21]

    Yang G, Xu W X, Gao S P 2021 Comput. Mater. Sci. 198 110696Google Scholar

    [22]

    Ruffieux P, Wang S Y, Yang B, Sanchez-Sanchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X L, Mullen K, Fasel R 2016 Nature 531 489Google Scholar

    [23]

    Nakanishi T, Ando T 2015 Phys. Rev. B 91 155420Google Scholar

    [24]

    Chamlagain B, Withanage S S, Johnston A C, Khondaker S I 2020 Sci. Rep. 10 12970Google Scholar

    [25]

    Cao T, Li Z L, Louie S G 2015 Phys. Rev. Lett. 114 236602Google Scholar

    [26]

    Kang M G, Kim B, Ryu S H, Jung S W, Kim J, Moreschini L, Jozwiak C, Rotenberg E, Bostwick A, Kim K S 2017 Nano Lett. 17 1610Google Scholar

    [27]

    Dai Z H, Liu L Q, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [28]

    Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, Hone J 2015 Nat. Nanotech. 10 534Google Scholar

    [29]

    Ju L, Shi Z W, Nair N, Lü Y C, Jin C H, Jr J V, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature 520 650Google Scholar

    [30]

    Lebegue S, Klintenberg M, Eriksson O, Katsnelson M I 2009 Phys. Rev. B 79 245117Google Scholar

    [31]

    Yang J H, Song S R, Du S X, Gao H J, Yakobson B I 2017 J. Phys. Chem. Lett. 8 4594Google Scholar

    [32]

    Wang Q C, Lei Y P, Wang Y C, Liu Y, Song C Y, Zeng J, Song Y H, Duan X D, Wang D S, Li Y D 2020 Energy Environ. Sci. 13 1593Google Scholar

    [33]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phy. Rev. Lett. 77 3865Google Scholar

    [35]

    Wu X J, Huang X, Liu J Q, Li H, Yang J, Li B, Huang W, Zhang H 2014 Angew. Chem. 126 5183Google Scholar

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Li Fa-Yun, Yang Zhi-Xiong, Cheng Xue, Zeng Li-Ying, Ouyang Fang-Ping. First-principles study of electronic structure and optical properties of monolayer defective tellurene. Acta Physica Sinica, 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] Ding Chao, Li Wei1\2\3, Liu Ju-Yan, Wang Lin-Lin, Cai Yun, Pan Pei-Feng. First principle study of electronic structure of Sb, S Co-doped SnO2. Acta Physica Sinica, 2018, 67(21): 213102. doi: 10.7498/aps.67.20181228
    [4] Wu Ruo-Xi, Liu Dai-Jun, Yu Yang, Yang Tao. First-principles investigations on structure and thermodynamic properties of CaS under high pressures. Acta Physica Sinica, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [5] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [6] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [7] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [8] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [9] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [10] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [11] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [12] Yu Ben-Hai, Liu Mo-Lin, Chen Dong. First principles study of structural, electronic and elastic properties of Mg2 Si polymorphs. Acta Physica Sinica, 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [13] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [14] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [15] Yu Da-Long, Chen Yu-Hong, Cao Yi-Jie, Zhang Cai-Rong. Ab initio structural simulation and electronic structure of lithium imide. Acta Physica Sinica, 2010, 59(3): 1991-1996. doi: 10.7498/aps.59.1991
    [16] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [17] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [18] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [19] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. A first-principle study of electronic and geometrical structures of semiconducting β-FeSi2 with doping. Acta Physica Sinica, 2005, 54(11): 5308-5313. doi: 10.7498/aps.54.5308
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  4343
  • PDF Downloads:  164
  • Cited By: 0
Publishing process
  • Received Date:  18 January 2023
  • Accepted Date:  09 April 2023
  • Available Online:  14 April 2023
  • Published Online:  20 June 2023

/

返回文章
返回