Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Progress in protein pKa prediction

Luo Fang-Fang Cai Zhi-Tao Huang Yan-Dong

Citation:

Progress in protein pKa prediction

Luo Fang-Fang, Cai Zhi-Tao, Huang Yan-Dong
PDF
HTML
Get Citation
  • The pH value represents the acidity of the solution and plays a key role in many life events linked to human diseases. For instance, the β-site amyloid precursor protein cleavage enzyme, BACE1, which is a major therapeutic target of treating Alzheimer’s disease, functions within a narrow pH region around 4.5. In addition, the sodium-proton antiporter NhaA from Escherichia coli is activated only when the cytoplasmic pH is higher than 6.5 and the activity reaches a maximum value around pH 8.8. To explore the molecular mechanism of a protein regulated by pH, it is important to measure, typically by nuclear magnetic resonance, the binding affinities of protons to ionizable key residues, namely $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ values, which determine the deprotonation equilibria under a pH condition. However, wet-lab experiments are often expensive and time consuming. In some cases, owing to the structural complexity of a protein, $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ measurements become difficult, making theoretical $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ predictions in a dry laboratory more advantageous. In the past thirty years, many efforts have been made to accurately and fast predict protein $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ with physics-based methods. Theoretically, constant pH molecular dynamics (CpHMD) method that takes conformational fluctuations into account gives the most accurate predictions, especially the explicit-solvent CpHMD model proposed by Huang and coworkers (2016 J. Chem. Theory Comput. 12 5411) which in principle is applicable to any system that can be described by a force field. However, lengthy molecular simulations are usually necessary for the extensive sampling of conformation. In particular, the computational complexity increases significantly if water molecules are included explicitly in the simulation system. Thus, CpHMD is not suitable for high-throughout computing requested in industry circle. To accelerate $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ prediction, Poisson-Boltzmann (PB) or empirical equation-based schemes, such as H++ and PropKa, have been developed and widely used where $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ values are obtained via one-structure calculations. Recently, artificial intelligence (AI) is applied to the area of protein $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ prediction, which leads to the development of DeepKa by Huang laboratory (2021 ACS Omega 6 34823), the first AI-driven $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ predictor. In this paper, we review the advances in protein $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ prediction contributed mainly by CpHMD methods, PB or empirical equation-based schemes, and AI models. Notably, the modeling hypotheses explained in the review would shed light on future development of more powerful protein $ {\mathrm{p}}{K}_{{\mathrm{a}}} $ predictors.
      Corresponding author: Huang Yan-Dong, yandonghuang@jmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804114, 62006096), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2023J01329, 2020J05146), the Natural Science Foundation of Xiamen, China (Grant No. 3502Z20227205), and the Scientific Starting Research Foundation of Jimei University, China (Grant No. ZQ2020027).
    [1]

    Casey J R, Grinstein S, Orlowski J 2010 Nat. Rev. Mol. Cell Biol. 11 50Google Scholar

    [2]

    Qian H, Wu X L, Du X M, Yao X, Zhao X, Lee J, Yang H Y, Yan N 2020 Cell 182 98Google Scholar

    [3]

    Yang G H, Zhou R, Zhou Q, Guo X F, Yan C Y, Ke M, Lei J L, Shi Y G 2019 Nature 565 192Google Scholar

    [4]

    Chung H S, Piana-Agostinetti S, Shaw D E, Eaton W A 2015 Science 349 1504Google Scholar

    [5]

    Nasica-Labouze J, Nguyen P H, Sterpone F, Berthoumieu O, Buchete N, Cote S, Simone A D, Doig A J, Faller P, Garcia A, Laio A, Li M S, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman D J, Strodel B, Tarus B, Viles J H, Zhang T, Wang C, Derreumaux P 2015 Chem. Rev. 115 3518Google Scholar

    [6]

    Morrow B H, Payne G F, Shen J 2015 J. Am. Chem. Soc. 137 13024Google Scholar

    [7]

    Kumar A, Hossain R A, Yost S A, Bu W, Wang Y, Dearborn A D, Grakoui A, Cohen J I, Marcotrigiano J 2021 Nature 598 521Google Scholar

    [8]

    Singharoy A, Maffeo C, Delgado-Magnero K H, Swainsbury D J K, Sener M, Kleinekathofer U, Vant J W, Nguyen J, Hitchcock A, Isralewitz B, Teo I, Chandler D E, Stone J E, Phillips J C, Pogorelov T V, Mallus M I, Chipot C, Luthey-Schulten Z, Tieleman D P, Hunter C N, Schulten K 2019 Cell 179 1098Google Scholar

    [9]

    Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N 2008 Mol. Cell Biol. 28 3663Google Scholar

    [10]

    Ellis C R, Shen J 2015 J. Am. Chem. Soc. 137 9543Google Scholar

    [11]

    Thurlkill R L, Grimsley G R, Scholtz J M, Pace C N 2006 Protein Sci. 15 1214Google Scholar

    [12]

    Jensen J H, Li H, Robertson A D, Molina P A 2005 J. Phys. Chem. A 109 6634Google Scholar

    [13]

    Baptista A M, Martel P J, Petersen S B 1997 Proteins 27 523Google Scholar

    [14]

    Shi C, Wallace J A, Shen J K 2012 Biophys. J. 102 1590Google Scholar

    [15]

    Qing R, Hao S L, Smorodina E, Jin D, Zalevsky A, Zhang S G 2022 Chem. Rev. 122 14085Google Scholar

    [16]

    Henderson J A, Liu R, Harris J A, Huang Y D, de Oliveria V M, Shen J D 2022 Liv. J. Comput. Mol. 4 1563Google Scholar

    [17]

    Georgescu R E, Alexov E G, Gunner M R 2002 Biophys. J. 83 1731Google Scholar

    [18]

    Anandakrishnan R, Aguilar B, Onufriev A V 2012 Nucleic Acids Res. 40 W537Google Scholar

    [19]

    Dolinsky T J, Nielsen J E, McCammon J A, Baker N A 2004 Nucleic Acids Res. 32 665Google Scholar

    [20]

    Wang L, Li L, Alexov E 2015 Proteins. 83 2186Google Scholar

    [21]

    Reis Pedro B P S, Vila-Viçosa D, Rocchia W, Machuqueiro M 2020 J. Chem. Inf. Model. 60 4442Google Scholar

    [22]

    Huang Y D, Yue Z, Tsai C C, Henderson J A, Shen J 2018 J. Phys. Chem. Lett. 9 1179Google Scholar

    [23]

    Li H, Robertson A D, Jensen J H 2005 Proteins 61 704Google Scholar

    [24]

    Olsson Mats H M, Søndergaard C R, Rostkowski M, Jensen J H 2011 J. Chem. Theory Comput. 7 525Google Scholar

    [25]

    Cai Z T, Luo F F, Wang Y X, Li E L, Huang Y D 2021 ACS Omega 6 34823Google Scholar

    [26]

    Gokcan H, Lsayev O 2022 Chem. Sci. 13 2462Google Scholar

    [27]

    Chen A Y, Lee J, Damjanovic Ana, Brooks B R 2022 J. Chem. Theory Comput. 184 2673Google Scholar

    [28]

    Reis Pedro B P S, Bertolini M, Montanari F, Rocchia W, Machuqueiro M, Clevert D A 2022 J. Chem. Theory Comput. 18 5068Google Scholar

    [29]

    Cai Z T, Liu T Z, Lin Q L, He J H, Lei X W, Luo F F, Huang Y D 2023 J. Chem. Inf. Model 63 2936Google Scholar

    [30]

    Baptista A M, Teixeira V H, Soares C M 2002 J. Chem. Phys. 117 4184Google Scholar

    [31]

    Lee M S, Salsbury F R, Brooks Ⅲ C L 2004 Proteins 56 738Google Scholar

    [32]

    Mongan J, Case D A, McCammon J A 2004 J. Comput. Chem. 25 2038Google Scholar

    [33]

    Meng Y, Roitberg A E 2010 J. Chem. Theory Comput. 6 1401Google Scholar

    [34]

    Swails J M, York D M, Roitberg A E 2014 J. Chem. Theory Comput. 10 1341Google Scholar

    [35]

    Machuqueiro M, Baptista A M 2006 J. Phys. Chem. B 110 2927Google Scholar

    [36]

    Sequeira J G N, Rodrigues F E P, Silva T G D, Reis Pedro B P S, Machuqueiro M 2022 J. Phys. Chem. B. 126 7870Google Scholar

    [37]

    Huang Y D, Chen W, Dotson D L, Beckstein O, Shen J 2016 Nat. Commun. 7 12940Google Scholar

    [38]

    Stern H A 2007 J. Chem. Phys. 126 164112Google Scholar

    [39]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [40]

    Chen Y, Roux B 2015 J. Chem. Theory Comput. 11 3919Google Scholar

    [41]

    Radak B K, Chipot C, Suh D, Jo S, Jiang W, Philips J C, Schulten K, Roux B 2017 J. Chem. Theory Comput. 13 5933Google Scholar

    [42]

    Wang R X, Fang X L, Lu Y P, Yang C Y, Wang S M 2005 J. Med. Chem. 48 4111Google Scholar

    [43]

    Pieri E, Ledentu V, Sahlin M, Dehez F, Olivucci M, Ferre N 2019 J. Chem. Theory Comput. 15 4535Google Scholar

    [44]

    de Oliveria V M, Liu R, Shen J 2022 Curr. Opin. Struct. Biol. 77 102498Google Scholar

    [45]

    Kong X, Brooks III C L 1996 J. Chem. Phys. 105 2414Google Scholar

    [46]

    Khandogin J, Brooks Ⅲ C L 2005 Biophys. J. 89 141Google Scholar

    [47]

    Nguyen H, Maier J, Huang H, Perrone V, Simmerling C 2014 J. Am. Chem. Soc. 136 13959Google Scholar

    [48]

    Huang Y D, Harris R C, Shen J 2018 J. Chem. Inf. Model. 58 1372Google Scholar

    [49]

    Liu R, Yue Z, Tsai C C, Shen J 2019 J. Am. Chem. Soc. 141 6553Google Scholar

    [50]

    Harris R C, Liu R, Shen, J 2020 J. Chem. Theory Comput. 16 3689Google Scholar

    [51]

    Liu R, Zhan S, Che Y, Shen J 2022 J. Med. Chem. 65 1525Google Scholar

    [52]

    Yao X, Chen C, Wang Y, Dong S, Liu Y, Li Y, Cui Z, Gong W, Perrett S, Yao L, Lamed R, Bayer E A, Cui Q, Feng Y 2020 Sci. Adv. 6 eabd7182Google Scholar

    [53]

    Verma N, Henderson J A, Shen J 2020 J. Am. Chem Soc. 142 21883Google Scholar

    [54]

    Arthur E J, Brooks III C L 2016 J. Comput. Chem. 37 2171Google Scholar

    [55]

    Harris R C, Shen J 2019 J. Chem. Inf. Model. 59 4821Google Scholar

    [56]

    Wallace J A, Shen J K 2011 J. Chem. Theory Comput. 7 2617Google Scholar

    [57]

    Henderson J A, Huang Y D, Beckstein O, Shen J 2020 Proc. Natl. Acad. Sci. U. S. A. 117 25517Google Scholar

    [58]

    Chen W, Huang Y D, Shen J 2016 J. Phys. Chem. Lett. 7 3961Google Scholar

    [59]

    Yue Z, Li C, Voth G A, Swanson J M J 2019 J. Am. Chem. Soc. 141 13421Google Scholar

    [60]

    Vo Q N, Mahinthichaichan P, Shen J, Ellis C R 2021 Nat. Commun. 12 984Google Scholar

    [61]

    Li Z, Zhang X, Wang Q, Li C, Zhang N, Zhang X, Xu B, Ma B, Schrader T E, Coates L, Kovalevsky A, Huang Y D, Wan Q 2018 ACS Catal. 8 8058Google Scholar

    [62]

    Tsai C C, Yue Z, Shen J 2019 J. Am. Chem. Soc. 141 15092Google Scholar

    [63]

    Goh G B, Knight J L, Brooks III C L 2012 J. Chem. Theory Comput. 8 36Google Scholar

    [64]

    Wallace J A, Shen J K 2012 J. Chem. Phys. 137 184105Google Scholar

    [65]

    Chen W, Shen J K 2014 J. Comput. Chem. 35 1986Google Scholar

    [66]

    Huang Y D, Chen W, Wallace J A, Shen J 2016 J. Chem. Theory Comput. 12 5411Google Scholar

    [67]

    Harris J A, Liu R, de Oliveira V M, Vázquez-Montelongo E A, Henderson J A, Shen J 2022 J. Chem. Theory Comput. 18 7510Google Scholar

    [68]

    Chen W, Wallace J A, Yue Z, Shen J K 2013 Biophys. J. 105 L15Google Scholar

    [69]

    Wallace J A, Shen J K 2009 Methods Enzymol. 466 455Google Scholar

    [70]

    Ullmann G M 2003 J. Phys. Chem. B 107 1263Google Scholar

    [71]

    Goh G B, Hulbert B S, Zhou H, Brooks Ⅲ C L 2014 Proteins 82 1319Google Scholar

    [72]

    Webb H, Tynan-Connolly B M, Lee G M, Farrell D, O’Meara F, Sondergaard C R, Teilum K, Hewage C, Mclntosh L P, Nielsen J E 2010 Proteins 79 685-702Google Scholar

    [73]

    Rocklin G J, Mobley D L, Dill K A, Hunenberger P H 2013 J. Chem. Phys. 139 184103Google Scholar

    [74]

    Bignucolo O, Chipot C, Kellenberger S, Roux B 2022 J. Phys. Chem. B. 126 6868Google Scholar

    [75]

    Donnini S, Tegeler F, Groenhof G, Grubmüller H 2011 J. Chem. Theory Comput. 7 1962Google Scholar

    [76]

    Aho N, Buslaev P, Jansen A, Bauer P, Groenhof G, Hess B 2022 J. Chem. Theory Comput. 18 6148Google Scholar

    [77]

    Buslaev P, Aho N, Jansen A, Bauer P, Hess B, Groenhof G 2022 J. Chem. Theory Comput. 18 6134Google Scholar

    [78]

    Knight J L, Brooks Ⅲ C L 2011 J. Comput. Chem. 32 3423Google Scholar

    [79]

    Donnini S, Ullmann R T, Groenhof G, Grubmüller H 2016 J. Chem. Theory Comput. 12 1040Google Scholar

    [80]

    Huang Y D, Shuai J 2013 J. Phys. Chem. B 117 6138Google Scholar

    [81]

    Lemkul J A, Huang J, Roux B, MacKerell A D 2016 Chem. Rev. 116 4983Google Scholar

    [82]

    Khandogin J, Brooks Ⅲ C L 2006 Biochemistry 45 9363Google Scholar

    [83]

    Itoh S G, Damjanović A, Brooks B R 2011 Proteins 79 3420Google Scholar

    [84]

    Dashti D S, Meng Y, Roitberg A E 2012 J. Phys. Chem. B. 116 8805Google Scholar

    [85]

    Swails J M, Roitberg A E 2012 J. Chem. Theory Comput. 8 4393Google Scholar

    [86]

    Lee J, Miller B T, Damjanovic A, Brooks B R 2015 J. Chem. Theory Comput. 11 2560Google Scholar

    [87]

    Lee J, Miller B T, Damjanovic A, Brooks B R 2014 J. Chem. Theory Comput. 10 2738Google Scholar

    [88]

    Henderson J A, Verma N, Harris R, Shen J 2020 J. Chem. Phys. 153 115101Google Scholar

    [89]

    Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid A E, Kolinski A 2016 Chem. Rev. 116 7898Google Scholar

    [90]

    Bennett W D, Chen A W, Donnini S, Groenhof G, Tieleman D P 2013 Can. J. Chem. 91 839Google Scholar

    [91]

    da Silva F L B, Sterpone F, Derreumaux P 2019 J. Chem. Theory Comput. 15 3875Google Scholar

    [92]

    Crünewald F, Souza P C T, Abdizadeh H, Barnoud J, de Vries A H, Marrink S J 2020 J. Chem. Phys. 153 024118Google Scholar

    [93]

    Reilley D J, Wang J, Dokholyan N V, Alexandrova A N 2021 J. Chem. Theory Comput. 17 4583Google Scholar

    [94]

    Song Y, Mao J, Gunner M R 2009 J. Comput. Chem. 30 2231Google Scholar

    [95]

    Wang L, Zhang M, Alexov E 2016 Bioinformatics 32 614Google Scholar

    [96]

    Pahari S, Sun L, Basu S, Alexov E 2018 Proteins 86 1277Google Scholar

    [97]

    Bas D C, Rogers D M, Jensen J H 2008 Proteins 73 765Google Scholar

    [98]

    Sun Z, Wang X, Song J 2017 J. Chem Inf. Model. 57 1621Google Scholar

    [99]

    Stepniewska-Dziubinska M M, Zielenkiewicz P, Siedlecki P 2018 Bioinformatics 34 3666Google Scholar

    [100]

    Pahari S, Sun L, Alexov E 2019 Database 2019 baz024Google Scholar

    [101]

    Ancona N, Bastola A, Alexov E 2023 J. Comput. Biophys. Chem. 22 515Google Scholar

    [102]

    Reis Pedro B P S, Clevert D A, Machuqueiro M 2022 Bioinformatics 38 297

    [103]

    Wei W, Hogues H, Sulea T 2023 J. Chem. Inf. Model. 63 5169Google Scholar

    [104]

    Coskun D, Chen W, Clark A J, Lu C, Hardr E D, Wang L, Friesner R A, Miller E B 2022 J. Chem. Theory Comput. 18 7193Google Scholar

    [105]

    Hagg A, Kirschner K N 2023 J. Chem. Inf. Model. 63 4505Google Scholar

    [106]

    Bueschbell B, Caniceiro A B, Suzano P M S, Machuqueiro M, Rosário-Ferreira N, Moreira I S 2022 Drug Resist. Updat. 60 100811Google Scholar

  • 图 1  BACE1催化中心质子化态和功能的关系 (a) BACE1三维结构及其催化中心酸性二分体D32和D228; (b) D32和D228质子化态和蛋白质活性随pH的变化规律(D是Asp的缩写)

    Figure 1.  Relationship between protonation state of BACE1 catalytic center and the function: (a) Crystal structure of BACE1 and the acidic dyad in the catalytic center; (b) protonation states of D32 and D228 and the activity as a function of pH (D is the abbreviation of Asp).

    图 2  CpHMD模拟框架

    Figure 2.  Framework of a CpHMD simulation.

    图 3  互变异构滴定模型的3个质子化态以及状态间的转化 (a)天冬氨酸Asp; (b)组氨酸His

    Figure 3.  Three protonation states and their interconversion in the tautomeric titration model: (a) Aspartic acid; (b) histidine.

    图 4  基于C-CpHMD的$ {\mathrm{p}}{K}_{{\mathrm{a}}} $计算 (a)滴定坐标λ和去质子化概率S的轨迹; (b)采用Hill函数拟合S

    Figure 4.  The $ \text{p}{{{K}}}_{{\mathrm{a}}} $ calculation based on C-CpHMD: (a) Trajectories of titration coordinate λ and deprotonation fraction S; (b) fitting S to Hill function.

    图 5  相对去质子化自由能计算的热力学循环

    Figure 5.  Thermodynamic cycle of relative deprotonation free energy calculation.

    图 6  $ \text{p}{K}_{{\mathrm{a}}} $预测模型性能对比

    Figure 6.  Comparison of existing $ \text{p}{K}_{{\mathrm{a}}} $ predictors.

  • [1]

    Casey J R, Grinstein S, Orlowski J 2010 Nat. Rev. Mol. Cell Biol. 11 50Google Scholar

    [2]

    Qian H, Wu X L, Du X M, Yao X, Zhao X, Lee J, Yang H Y, Yan N 2020 Cell 182 98Google Scholar

    [3]

    Yang G H, Zhou R, Zhou Q, Guo X F, Yan C Y, Ke M, Lei J L, Shi Y G 2019 Nature 565 192Google Scholar

    [4]

    Chung H S, Piana-Agostinetti S, Shaw D E, Eaton W A 2015 Science 349 1504Google Scholar

    [5]

    Nasica-Labouze J, Nguyen P H, Sterpone F, Berthoumieu O, Buchete N, Cote S, Simone A D, Doig A J, Faller P, Garcia A, Laio A, Li M S, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman D J, Strodel B, Tarus B, Viles J H, Zhang T, Wang C, Derreumaux P 2015 Chem. Rev. 115 3518Google Scholar

    [6]

    Morrow B H, Payne G F, Shen J 2015 J. Am. Chem. Soc. 137 13024Google Scholar

    [7]

    Kumar A, Hossain R A, Yost S A, Bu W, Wang Y, Dearborn A D, Grakoui A, Cohen J I, Marcotrigiano J 2021 Nature 598 521Google Scholar

    [8]

    Singharoy A, Maffeo C, Delgado-Magnero K H, Swainsbury D J K, Sener M, Kleinekathofer U, Vant J W, Nguyen J, Hitchcock A, Isralewitz B, Teo I, Chandler D E, Stone J E, Phillips J C, Pogorelov T V, Mallus M I, Chipot C, Luthey-Schulten Z, Tieleman D P, Hunter C N, Schulten K 2019 Cell 179 1098Google Scholar

    [9]

    Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N 2008 Mol. Cell Biol. 28 3663Google Scholar

    [10]

    Ellis C R, Shen J 2015 J. Am. Chem. Soc. 137 9543Google Scholar

    [11]

    Thurlkill R L, Grimsley G R, Scholtz J M, Pace C N 2006 Protein Sci. 15 1214Google Scholar

    [12]

    Jensen J H, Li H, Robertson A D, Molina P A 2005 J. Phys. Chem. A 109 6634Google Scholar

    [13]

    Baptista A M, Martel P J, Petersen S B 1997 Proteins 27 523Google Scholar

    [14]

    Shi C, Wallace J A, Shen J K 2012 Biophys. J. 102 1590Google Scholar

    [15]

    Qing R, Hao S L, Smorodina E, Jin D, Zalevsky A, Zhang S G 2022 Chem. Rev. 122 14085Google Scholar

    [16]

    Henderson J A, Liu R, Harris J A, Huang Y D, de Oliveria V M, Shen J D 2022 Liv. J. Comput. Mol. 4 1563Google Scholar

    [17]

    Georgescu R E, Alexov E G, Gunner M R 2002 Biophys. J. 83 1731Google Scholar

    [18]

    Anandakrishnan R, Aguilar B, Onufriev A V 2012 Nucleic Acids Res. 40 W537Google Scholar

    [19]

    Dolinsky T J, Nielsen J E, McCammon J A, Baker N A 2004 Nucleic Acids Res. 32 665Google Scholar

    [20]

    Wang L, Li L, Alexov E 2015 Proteins. 83 2186Google Scholar

    [21]

    Reis Pedro B P S, Vila-Viçosa D, Rocchia W, Machuqueiro M 2020 J. Chem. Inf. Model. 60 4442Google Scholar

    [22]

    Huang Y D, Yue Z, Tsai C C, Henderson J A, Shen J 2018 J. Phys. Chem. Lett. 9 1179Google Scholar

    [23]

    Li H, Robertson A D, Jensen J H 2005 Proteins 61 704Google Scholar

    [24]

    Olsson Mats H M, Søndergaard C R, Rostkowski M, Jensen J H 2011 J. Chem. Theory Comput. 7 525Google Scholar

    [25]

    Cai Z T, Luo F F, Wang Y X, Li E L, Huang Y D 2021 ACS Omega 6 34823Google Scholar

    [26]

    Gokcan H, Lsayev O 2022 Chem. Sci. 13 2462Google Scholar

    [27]

    Chen A Y, Lee J, Damjanovic Ana, Brooks B R 2022 J. Chem. Theory Comput. 184 2673Google Scholar

    [28]

    Reis Pedro B P S, Bertolini M, Montanari F, Rocchia W, Machuqueiro M, Clevert D A 2022 J. Chem. Theory Comput. 18 5068Google Scholar

    [29]

    Cai Z T, Liu T Z, Lin Q L, He J H, Lei X W, Luo F F, Huang Y D 2023 J. Chem. Inf. Model 63 2936Google Scholar

    [30]

    Baptista A M, Teixeira V H, Soares C M 2002 J. Chem. Phys. 117 4184Google Scholar

    [31]

    Lee M S, Salsbury F R, Brooks Ⅲ C L 2004 Proteins 56 738Google Scholar

    [32]

    Mongan J, Case D A, McCammon J A 2004 J. Comput. Chem. 25 2038Google Scholar

    [33]

    Meng Y, Roitberg A E 2010 J. Chem. Theory Comput. 6 1401Google Scholar

    [34]

    Swails J M, York D M, Roitberg A E 2014 J. Chem. Theory Comput. 10 1341Google Scholar

    [35]

    Machuqueiro M, Baptista A M 2006 J. Phys. Chem. B 110 2927Google Scholar

    [36]

    Sequeira J G N, Rodrigues F E P, Silva T G D, Reis Pedro B P S, Machuqueiro M 2022 J. Phys. Chem. B. 126 7870Google Scholar

    [37]

    Huang Y D, Chen W, Dotson D L, Beckstein O, Shen J 2016 Nat. Commun. 7 12940Google Scholar

    [38]

    Stern H A 2007 J. Chem. Phys. 126 164112Google Scholar

    [39]

    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G 1995 J. Chem. Phys. 103 8577Google Scholar

    [40]

    Chen Y, Roux B 2015 J. Chem. Theory Comput. 11 3919Google Scholar

    [41]

    Radak B K, Chipot C, Suh D, Jo S, Jiang W, Philips J C, Schulten K, Roux B 2017 J. Chem. Theory Comput. 13 5933Google Scholar

    [42]

    Wang R X, Fang X L, Lu Y P, Yang C Y, Wang S M 2005 J. Med. Chem. 48 4111Google Scholar

    [43]

    Pieri E, Ledentu V, Sahlin M, Dehez F, Olivucci M, Ferre N 2019 J. Chem. Theory Comput. 15 4535Google Scholar

    [44]

    de Oliveria V M, Liu R, Shen J 2022 Curr. Opin. Struct. Biol. 77 102498Google Scholar

    [45]

    Kong X, Brooks III C L 1996 J. Chem. Phys. 105 2414Google Scholar

    [46]

    Khandogin J, Brooks Ⅲ C L 2005 Biophys. J. 89 141Google Scholar

    [47]

    Nguyen H, Maier J, Huang H, Perrone V, Simmerling C 2014 J. Am. Chem. Soc. 136 13959Google Scholar

    [48]

    Huang Y D, Harris R C, Shen J 2018 J. Chem. Inf. Model. 58 1372Google Scholar

    [49]

    Liu R, Yue Z, Tsai C C, Shen J 2019 J. Am. Chem. Soc. 141 6553Google Scholar

    [50]

    Harris R C, Liu R, Shen, J 2020 J. Chem. Theory Comput. 16 3689Google Scholar

    [51]

    Liu R, Zhan S, Che Y, Shen J 2022 J. Med. Chem. 65 1525Google Scholar

    [52]

    Yao X, Chen C, Wang Y, Dong S, Liu Y, Li Y, Cui Z, Gong W, Perrett S, Yao L, Lamed R, Bayer E A, Cui Q, Feng Y 2020 Sci. Adv. 6 eabd7182Google Scholar

    [53]

    Verma N, Henderson J A, Shen J 2020 J. Am. Chem Soc. 142 21883Google Scholar

    [54]

    Arthur E J, Brooks III C L 2016 J. Comput. Chem. 37 2171Google Scholar

    [55]

    Harris R C, Shen J 2019 J. Chem. Inf. Model. 59 4821Google Scholar

    [56]

    Wallace J A, Shen J K 2011 J. Chem. Theory Comput. 7 2617Google Scholar

    [57]

    Henderson J A, Huang Y D, Beckstein O, Shen J 2020 Proc. Natl. Acad. Sci. U. S. A. 117 25517Google Scholar

    [58]

    Chen W, Huang Y D, Shen J 2016 J. Phys. Chem. Lett. 7 3961Google Scholar

    [59]

    Yue Z, Li C, Voth G A, Swanson J M J 2019 J. Am. Chem. Soc. 141 13421Google Scholar

    [60]

    Vo Q N, Mahinthichaichan P, Shen J, Ellis C R 2021 Nat. Commun. 12 984Google Scholar

    [61]

    Li Z, Zhang X, Wang Q, Li C, Zhang N, Zhang X, Xu B, Ma B, Schrader T E, Coates L, Kovalevsky A, Huang Y D, Wan Q 2018 ACS Catal. 8 8058Google Scholar

    [62]

    Tsai C C, Yue Z, Shen J 2019 J. Am. Chem. Soc. 141 15092Google Scholar

    [63]

    Goh G B, Knight J L, Brooks III C L 2012 J. Chem. Theory Comput. 8 36Google Scholar

    [64]

    Wallace J A, Shen J K 2012 J. Chem. Phys. 137 184105Google Scholar

    [65]

    Chen W, Shen J K 2014 J. Comput. Chem. 35 1986Google Scholar

    [66]

    Huang Y D, Chen W, Wallace J A, Shen J 2016 J. Chem. Theory Comput. 12 5411Google Scholar

    [67]

    Harris J A, Liu R, de Oliveira V M, Vázquez-Montelongo E A, Henderson J A, Shen J 2022 J. Chem. Theory Comput. 18 7510Google Scholar

    [68]

    Chen W, Wallace J A, Yue Z, Shen J K 2013 Biophys. J. 105 L15Google Scholar

    [69]

    Wallace J A, Shen J K 2009 Methods Enzymol. 466 455Google Scholar

    [70]

    Ullmann G M 2003 J. Phys. Chem. B 107 1263Google Scholar

    [71]

    Goh G B, Hulbert B S, Zhou H, Brooks Ⅲ C L 2014 Proteins 82 1319Google Scholar

    [72]

    Webb H, Tynan-Connolly B M, Lee G M, Farrell D, O’Meara F, Sondergaard C R, Teilum K, Hewage C, Mclntosh L P, Nielsen J E 2010 Proteins 79 685-702Google Scholar

    [73]

    Rocklin G J, Mobley D L, Dill K A, Hunenberger P H 2013 J. Chem. Phys. 139 184103Google Scholar

    [74]

    Bignucolo O, Chipot C, Kellenberger S, Roux B 2022 J. Phys. Chem. B. 126 6868Google Scholar

    [75]

    Donnini S, Tegeler F, Groenhof G, Grubmüller H 2011 J. Chem. Theory Comput. 7 1962Google Scholar

    [76]

    Aho N, Buslaev P, Jansen A, Bauer P, Groenhof G, Hess B 2022 J. Chem. Theory Comput. 18 6148Google Scholar

    [77]

    Buslaev P, Aho N, Jansen A, Bauer P, Hess B, Groenhof G 2022 J. Chem. Theory Comput. 18 6134Google Scholar

    [78]

    Knight J L, Brooks Ⅲ C L 2011 J. Comput. Chem. 32 3423Google Scholar

    [79]

    Donnini S, Ullmann R T, Groenhof G, Grubmüller H 2016 J. Chem. Theory Comput. 12 1040Google Scholar

    [80]

    Huang Y D, Shuai J 2013 J. Phys. Chem. B 117 6138Google Scholar

    [81]

    Lemkul J A, Huang J, Roux B, MacKerell A D 2016 Chem. Rev. 116 4983Google Scholar

    [82]

    Khandogin J, Brooks Ⅲ C L 2006 Biochemistry 45 9363Google Scholar

    [83]

    Itoh S G, Damjanović A, Brooks B R 2011 Proteins 79 3420Google Scholar

    [84]

    Dashti D S, Meng Y, Roitberg A E 2012 J. Phys. Chem. B. 116 8805Google Scholar

    [85]

    Swails J M, Roitberg A E 2012 J. Chem. Theory Comput. 8 4393Google Scholar

    [86]

    Lee J, Miller B T, Damjanovic A, Brooks B R 2015 J. Chem. Theory Comput. 11 2560Google Scholar

    [87]

    Lee J, Miller B T, Damjanovic A, Brooks B R 2014 J. Chem. Theory Comput. 10 2738Google Scholar

    [88]

    Henderson J A, Verma N, Harris R, Shen J 2020 J. Chem. Phys. 153 115101Google Scholar

    [89]

    Kmiecik S, Gront D, Kolinski M, Wieteska L, Dawid A E, Kolinski A 2016 Chem. Rev. 116 7898Google Scholar

    [90]

    Bennett W D, Chen A W, Donnini S, Groenhof G, Tieleman D P 2013 Can. J. Chem. 91 839Google Scholar

    [91]

    da Silva F L B, Sterpone F, Derreumaux P 2019 J. Chem. Theory Comput. 15 3875Google Scholar

    [92]

    Crünewald F, Souza P C T, Abdizadeh H, Barnoud J, de Vries A H, Marrink S J 2020 J. Chem. Phys. 153 024118Google Scholar

    [93]

    Reilley D J, Wang J, Dokholyan N V, Alexandrova A N 2021 J. Chem. Theory Comput. 17 4583Google Scholar

    [94]

    Song Y, Mao J, Gunner M R 2009 J. Comput. Chem. 30 2231Google Scholar

    [95]

    Wang L, Zhang M, Alexov E 2016 Bioinformatics 32 614Google Scholar

    [96]

    Pahari S, Sun L, Basu S, Alexov E 2018 Proteins 86 1277Google Scholar

    [97]

    Bas D C, Rogers D M, Jensen J H 2008 Proteins 73 765Google Scholar

    [98]

    Sun Z, Wang X, Song J 2017 J. Chem Inf. Model. 57 1621Google Scholar

    [99]

    Stepniewska-Dziubinska M M, Zielenkiewicz P, Siedlecki P 2018 Bioinformatics 34 3666Google Scholar

    [100]

    Pahari S, Sun L, Alexov E 2019 Database 2019 baz024Google Scholar

    [101]

    Ancona N, Bastola A, Alexov E 2023 J. Comput. Biophys. Chem. 22 515Google Scholar

    [102]

    Reis Pedro B P S, Clevert D A, Machuqueiro M 2022 Bioinformatics 38 297

    [103]

    Wei W, Hogues H, Sulea T 2023 J. Chem. Inf. Model. 63 5169Google Scholar

    [104]

    Coskun D, Chen W, Clark A J, Lu C, Hardr E D, Wang L, Friesner R A, Miller E B 2022 J. Chem. Theory Comput. 18 7193Google Scholar

    [105]

    Hagg A, Kirschner K N 2023 J. Chem. Inf. Model. 63 4505Google Scholar

    [106]

    Bueschbell B, Caniceiro A B, Suzano P M S, Machuqueiro M, Rosário-Ferreira N, Moreira I S 2022 Drug Resist. Updat. 60 100811Google Scholar

  • [1] Deng Xiang-Wen, Wu Li-Yuan, Zhao Rui, Wang Jia-Ou, Zhao Li-Na. Application and prospect of machine learning in photoelectron spectroscopy. Acta Physica Sinica, 2024, 73(21): 210701. doi: 10.7498/aps.73.20240957
    [2] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [3] Zhang Jia-Hui. Machine learning for in silico protein research. Acta Physica Sinica, 2024, 73(6): 069301. doi: 10.7498/aps.73.20231618
    [4] Ouyang Xin-Jian, Zhang Yan-Xing, Wang Zhi-Long, Zhang Feng, Chen Wei-Jia, Zhuang Yuan, Jie Xiao, Liu Lai-Jun, Wang Da-Wei. Modeling ferroelectric phase transitions with graph convolutional neural networks. Acta Physica Sinica, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [5] Song Rui, Liu Xue-Mei, Wang Hai-Bin, Lü Hao, Song Xiao-Yan. Hardness prediction of WC-Co cemented carbide based on machine learning model. Acta Physica Sinica, 2024, 73(12): 126201. doi: 10.7498/aps.73.20240284
    [6] Zhang Qiao, Tan Wei, Ning Yong-Qi, Nie Guo-Zheng, Cai Meng-qiu, Wang Jun-Nian, Zhu Hui-Ping, Zhao Yu-Qing. Prediction of Magnetic Janus Materials Based on Machine Learning and First-Principles Calculations. Acta Physica Sinica, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [7] Ying Da-Wei, Zhang Si-Hui, Deng Shu-Jin, Wu Hai-Bin. Single shot imaging for cold atoms based on machine learning. Acta Physica Sinica, 2023, 72(14): 144201. doi: 10.7498/aps.72.20230449
    [8] Guo Wei-Chen, Ai Bao-Quan, He Liang. Reveal flocking phase transition of self-propelled active particles by machine learning regression uncertainty. Acta Physica Sinica, 2023, 72(20): 200701. doi: 10.7498/aps.72.20230896
    [9] Liu Ye, Niu He-Ran, Li Bing-Bing, Ma Xin-Hua, Cui Shu-Wang. Application of machine learning in cosmic ray particle identification. Acta Physica Sinica, 2023, 72(14): 140202. doi: 10.7498/aps.72.20230334
    [10] Yang Zhang-Zhang, Liu Li, Wan Zhi-Tao, Fu Jia, Fan Qun-Chao, Xie Feng, Zhang Yi, Ma Jie. Combining machine learning algorithm to improve prediction performance of ab initio method for vibrational energy spectra of HF/HBr/H35Cl/Na35Cl. Acta Physica Sinica, 2023, 72(7): 073101. doi: 10.7498/aps.72.20221953
    [11] Luo Qi-Rui, Shen Yi-Fan, Luo Meng-Bo. Computer simulation and machine learning of polymer collapse and critical adsorption phase transitions. Acta Physica Sinica, 2023, 72(24): 240502. doi: 10.7498/aps.72.20231058
    [12] Zhang Yi-Fan, Ren Wei, Wang Wei-Li, Ding Shu-Jian, Li Nan, Chang Liang, Zhou Qian. Machine learning combined with solid solution strengthening model for predicting hardness of high entropy alloys. Acta Physica Sinica, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [13] Guan Xing-Yue, Huang Heng-Yan, Peng Hua-Qi, Liu Yan-Hang, Li Wen-Fei, Wang Wei. Machine learning in molecular simulations of biomolecules. Acta Physica Sinica, 2023, 72(24): 248708. doi: 10.7498/aps.72.20231624
    [14] Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [15] Kang Jun-Feng, Feng Song-Jiang, Zou Qian, Li Yan-Jie, Ding Rui-Qiang, Zhong Quan-Jia. Machine learning based method of correcting nonlinear local Lyapunov vectors ensemble forecasting. Acta Physica Sinica, 2022, 71(8): 080503. doi: 10.7498/aps.71.20212260
    [16] Zhang Jia-Wei, Yao Hong-Bo, Zhang Yuan-Zheng, Jiang Wei-Bo, Wu Yong-Hui, Zhang Ya-Ju, Ao Tian-Yong, Zheng Hai-Wu. Self-powered sensing based on triboelectric nanogenerator through machine learning and its application. Acta Physica Sinica, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [17] Li Wei, Long Lian-Chun, Liu Jing-Yi, Yang Yang. Classification of magnetic ground states and prediction of magnetic moments of inorganic magnetic materials based on machine learning. Acta Physica Sinica, 2022, 71(6): 060202. doi: 10.7498/aps.71.20211625
    [18] Lin Jian, Ye Meng, Zhu Jia-Wei, Li Xiao-Peng. Machine learning assisted quantum adiabatic algorithm design. Acta Physica Sinica, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [19] Chen Jiang-Zhi, Yang Chen-Wen, Ren Jie. Machine learning based on wave and diffusion physical systems. Acta Physica Sinica, 2021, 70(14): 144204. doi: 10.7498/aps.70.20210879
    [20] Yang Zi-Xin, Gao Zhang-Ran, Sun Xiao-Fan, Cai Hong-Ling, Zhang Feng-Ming, Wu Xiao-Shan. High critical transition temperature of lead-based perovskite ferroelectric crystals: A machine learning study. Acta Physica Sinica, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
Metrics
  • Abstract views:  3285
  • PDF Downloads:  137
  • Cited By: 0
Publishing process
  • Received Date:  20 August 2023
  • Accepted Date:  01 September 2023
  • Available Online:  15 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回