-
Two-dimensional magnetic materials are emerging materials developed in recent years and have attracted much attention for their unique magnetic properties and structural features in single or few layers of atomic thickness. Among them, ferromagnetic materials have a wide range of applications such as information memory and processing. Therefore the current research is mainly focused on enriching the two-dimensional ferromagnetic database and developing modification strategies for magnetic modulation. In this paper, two-dimensional vanadium-doped Cr2S3nanosheets were successfully grown on mica substrates by atmospheric pressure chemical vapour deposition. The thickness and size of the nanosheets can be effectively regulated by changing the temperature and mass of vanadium source VCl3 powders, with the temperature of 765℃ and the mass of 0.010 g as the most appropriate conditions for the growth of nanosheets. The nanosheets were also characterised by optical microscopy, atomic force microscopy, raman spectroscopy, scanning electron microscopy, X-ray energy spectroscopy, X-ray photoelectron spectroscopy, and the nanosheets were regular in shape, with flat surfaces and controllable thicknesses, and high quality vanadium-doped Cr2S3 nanosheets were prepared. Meanwhile, the magnetic characterisation of the doped samples showed that the Curie transition temperature of the vanadium doped samples changed to 105 K, and the maximum magnetic moment point of 75 K in the M-T curve disappeared after V doping, and from subferromagnetic to ferromagnetic, and the coercivity in the M-H curve also increased significantly, which proved that the vanadium doping could effectively regulate the magnetic properties of Cr2S3 nanosheets. These results are expected to advance the possibility of vanadium-doped Cr2S3 materials toward practical applications and become one of the ideal candidate material for next generation spintronic applications.
-
Keywords:
- two-dimensional magnetic materials /
- chemical vapour deposition /
- vanadium-doped Cr2S3 /
- ferromagnetism
-
[1] Burch K S, Mandrus D, Park J -G 2018 Nature 563 47
[2] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Pablo Jarillo-Herrero P, Xu X D 2017 Nature 546 270
[3] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218
[4] Jiang S W, Li L Z, Wang Z F, Shan J, Mak K F 2019 Nat. Electron. 2 159
[5] Lin X Y, Yang W, Wang K L, Zhao W S 2019 Nat. Electron. 2 274
[6] Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C K, Sun L D, Guo H H, Ye Y, Sun D M, Chen Y S, Yang T, Zhang J, Ono S, Han Z, Zhang Z D 2018 Nat. Nanotechnol. 13 554
[7] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M-H, Batzill M 2018 Nat. Nanotechnol.13 289
[8] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature. 563 94
[9] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W, Gao C L 2019 Science 366 983
[10] Jiang H N, Zhang P, Wang X G, Gong Y J 2021 Nano Res. 14 1789
[11] Wang H, Wen Y, Zhao X X, Cheng R Q, Yin L, Zhai B X, Jiang J, Li Z W, Liu C S, Wu F C, He J 2023 Adv. Funct. Mater. 35 2211388
[12] Lu S H, Zhou Q H, Guo Y L, Zhang Y H, Wu Y L, Wang J L 2020 Adv. Mater.32 2002658
[13] Guo Y L, Wang B, Zhang X W, Yuan S J, Ma L, Wang J L 2020 Infomat 2 639
[14] Eremeev S V, Otrokov M M, Chulkov E V 2018 Nano lett. 18 6521
[15] Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401
[16] Yang S X, Chen Y J, Jiang C B 2021 InfoMat 3 397
[17] Abramchuk M, Jaszewski S, Metz K R, Osterhoudt G B, Wang Y P, Burch K S, Tafti F 2018 Adv. Mater. 30 1801325.
[18] Duan H L, Guo P, Wang C, Tan H, Hu W, Yan W S, Ma C, Cai L, Song L, Zhang W H, Sun Z H, Wang L J, Zhao W B, Yin Y W, Li X G, Wei S Q 2019 Nat. Commum. 10 1584
[19] Zhou S S, Wang R Y, Han J B, Wang D L, Li H Q, Gan L, Zhai T Y 2018 Adv. Funct. Mater.29 1805880
[20] Chu J W, Zhang Y, Wen Y, Qiao R X, Wu C C, He P, Yin L, Cheng R Q, Wang F, Wang Z X, Xiong J, Li Y R, He J 2019 Nano Lett. 19 2154
[21] Cui F F, Zhao X X, Xu J J, Tang B, Shang Q Y, Shi J P, Huan Y H, Liao J H, Chen Q, Hou Y L, Zhang Q, Pennycook S J, Zhang Y F 2019 Adv. Mater. 32 1905896
[22] Zhou X Y, Liu C, Song L T, Zhang H M, Huang Z W, He C L, Li B L, Lin X H, Zhang Z H, Shi S, Shen D Y, Song R, Li J, Liu X Q, Zou X M, Huang L, Liao L, Duan X D, Li B 2022 Sci. China-Phys. Mech. Astron. 65 276811
[23] Yang R L, Zhang Y Y 2023 Journal of Materials Engineering 51 162 (in Chinese) [杨瑞龙,张钰樱 2023 材料工程 51 162]
[24] Guo Y Q, Deng H T, Sun X, Li X L, Zhao J Y, Wu J C, Chu W S, Zhang S J, Pan H B, Zheng X S, Wu X J, Jin C Q, Wu C Z, Xie Y 2017 Adv. Mater. 29 1700715
Metrics
- Abstract views: 1775
- PDF Downloads: 52
- Cited By: 0