Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on flow boiling of HFE-7100 in rectangular parallel microchannel

Xie Yi-Chen Zhuang Xiao-Ru Yue Si-Jun Li Xiang Yu Peng Lu Chun

Citation:

Experimental study on flow boiling of HFE-7100 in rectangular parallel microchannel

Xie Yi-Chen, Zhuang Xiao-Ru, Yue Si-Jun, Li Xiang, Yu Peng, Lu Chun
PDF
HTML
Get Citation
  • With the rapid development of microelectronic technology, the integration and power of chip are increasing. Heat dissipation with high heat flux in limited space has become a bottleneck restricting the efficient and stable operation of the microelectronic devices. Flow boiling in microchannel heat sink is one of the most essential candidates for solving this problem. It has been shown that remarkable high heat transfer performance can be achieved through the liquid-to-vapor change process, which can dissipate a large amount of heat from a small area. In addition, dielectric fluorinated fluids, such as HFE-7100, HFE-7200, and FC-72, are especially suitable for cooling microelectronic devices, because of their excellent safety and environmental characteristics. However, dielectric fluorinated fluids have poorer thermophysical properties than water. Thus, the flow boiling heat transfer characteristics of dielectric fluorinated fluids can be different from those of water. In this work, flow boiling heat transfer and flow characteristics of HFE-7100 in a rectangular parallel microchannel are investigated. The tests are conducted at mass fluxes from 88.9 to 277.8 kg·m–2·s–1, inlet subcooling temperature from 20.5 to 35.5 ℃ and effective heat flux from 12 to 279 kW·m–2 at nearly atmospheric pressure. The effects of mass flux, inlet subcooling temperature, effective heat flux and vapor quality are examined and analyzed. Additionally, flow visualization is also obtained to explain the heat transfer mechanism during the experiments. The results show that the boiling hysteresis is observed for HFE-7100 at low inlet subcooling temperature, and the increasing inlet subcooling temperature and mass flux can delay the onset of nucleate boiling. The increases of inlet subcooling temperature and mass flux can enhance the two-phase heat transfer coefficient. And the two-phase heat transfer coefficient is significantly dependent on the inlet subcooling temperature in the slug flow, while it is significantly dependent on the mass flux in the annular flow. The two-phase pressure drop increases drastically as the effective heat flux increases. And the two-phase pressure drops with different mass fluxes at constant vapor quality are obviously different between the slug flow and the annular flow. Furthermore, the experimental data are compared with four predicted values of the literature. It is found that the correlation of Lockhart has the best statistical agreement with an MAE of 19.6% and over 85% of points in the deviation bandwidth of ±30%. The results in this paper give valuable theoretical guidance for designing and optimizing heat dissipation equipment for microelectronic devices. By utilizing HFE-7100 as the coolant and microchannel heat sinks in flow boiling, it is possible to enhance the stability and reliability of the electronic devices. Additionally, the heat transfer performance associated with different heat fluxes can be improved by regulating the inlet subcooling and mass flow rate. Finally, the two-phase pressure drop correlation proposed by Lockhart can be employed to predict the pump power for heat dissipation equipment.
      Corresponding author: Zhuang Xiao-Ru, zhuangxr@szpt.edu.cn ; Yu Peng, yup6@sustech.edu.cn
    • Funds: Project supported by the Guangdong Provincial Basic and Applied Basic Research Foundation, China (Grant Nos. 2020A1515110257, 2022A1515110174).
    [1]

    Karayiannis T G, Mahmoud M M 2017 Appl. Therm. Eng. 115 1372Google Scholar

    [2]

    Manetti L L, Ribatski G, de Souza R R, Cardoso E M 2020 Exp. Therm. Fluid Sci. 113 110025Google Scholar

    [3]

    Harirchian T, Garimella S V 2009 Int. J. Multiphase Flow 35 349Google Scholar

    [4]

    Asrar P, Ghiaasiaan S M, Joshi Y K. 2021 J. Heat Transfer 143 023001Google Scholar

    [5]

    杨晓强, 秋穗正, 贾晓鸿, 尹海峰, 贾斗南, 卢冬华 2007 核动力工程 28 38Google Scholar

    Yang X Q, Qiu S Z, Jia X H, Yin H F, Jia D N, Lu D H 2007 Nucl. Power Eng. 28 38Google Scholar

    [6]

    Wang Y, Sefiane K 2012 Int. J. Heat Mass Transfer 55 2235Google Scholar

    [7]

    Al-Zaidi A H, Mahmoud M M, Karayiannis T G 2019 Int. J. Heat Mass Transfer 140 100Google Scholar

    [8]

    Al-Zaidi A H, Mahmoud M M, Karayiannis T G 2021 Int. J. Heat Mass Transfer 164 120587Google Scholar

    [9]

    Cheng X, Wu H 2023 Exp. Therm. Fluid Sci. 142 110805Google Scholar

    [10]

    Yang K S, Jeng Y R, Huang C M, Wang C C 2011 Heat Transfer Eng. 32 697Google Scholar

    [11]

    Tuo H, Hrnjak P 2013 Int. J. Refrig. 36 1263Google Scholar

    [12]

    Rausch M H, Kretschmer L, Will S, Leipertz A, Froba A P 2015 J. Chem. Eng. Data 60 3759Google Scholar

    [13]

    Liang G, Mudawar I 2020 Int. J. Heat Mass Transfer 146 118864Google Scholar

    [14]

    Cui P, Liu Z 2021 Int. J. Heat Mass Transfer 175 121387Google Scholar

    [15]

    Feng S, Yan Y, Lai C 2022 Int. J. Heat Mass Transfer 186 122468Google Scholar

    [16]

    Zhuang X R, Yu P, Li X, Deng Q Y 2020 PRC Patent CN202122664314 [2021-11-02

    [17]

    Abu-Eishah S I 2001 Int. J. Thermophys. 22 1855Google Scholar

    [18]

    Machrafi H, Sadoun N, Rednikov A, Dehaeck S, Dauby P C, Colinet P 2013 Microgravity Sci. Technol. 25 251Google Scholar

    [19]

    Nassar M, Vazquez P, Chauris N, Daaboul M B, Louste C 2020 IEEE Trans. Ind. Appl. 56 4193Google Scholar

    [20]

    Qu W, Siu-Ho A 2008 J. Heat Transfer 130 122402Google Scholar

    [21]

    Blevins R D 1984 Applied Fluid Dynamics Handbook (New York: Van Nostrand Reinhold) pp12–20

    [22]

    Taylor B N, Kuyatt C E 1994 Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (Gaithersburg: Department of Commerce, Technology Administration, National Institute of Standards and Technology) pp11–20

    [23]

    Žukauskas A 1972 Adv. Heat Transfer 8 93

    [24]

    Chang J Y, Prasher R, Chau D, Myers A, He D 2005 International Electronic Packaging Technical Conference and Exhibition San Francisco, California, USA, July 17–22, 2005 p183

    [25]

    Brunschwiler T, Michel B, Rothuizen H, Kloter U, Wunderle B, Oppermann H, Reichl H 2009 Microsyst. Technol. 15 57Google Scholar

    [26]

    Xu F, Wu H 2018 J. Heat Transfer 140 122401Google Scholar

    [27]

    Kong L J, Liu Z G, Jia L, Lv M M, Liu Y 2020 Exp. Therm. Fluid Sci. 115 109946Google Scholar

    [28]

    Ming H S, Ma J, Bu X W 1993 Int. J. Heat Mass Transfer 36 4461Google Scholar

    [29]

    Zhuang X R, Xie Y C, Li X, Yue S J, Wang H T, Wang H D, Yu P 2023 Appl. Therm. Eng. 225 120180Google Scholar

    [30]

    Lockhart W R 1949 Chem. Eng. Prog. 45 39

    [31]

    Mudawar I, Qu W 2003 Int. J. Heat Mass Transfer 46 2737Google Scholar

    [32]

    Lee H J, Lee S Y 2001 Int. J. Multiphase Flow 27 2043Google Scholar

    [33]

    Krishnamurthy S, Peles Y 2007 Phys. Fluids 19 043302Google Scholar

  • 图 1  微通道流动沸腾实验系统示意图

    Figure 1.  Schematic view of the experimental apparatus.

    图 2  微通道测试段结构图 (a) 紫铜热沉热电偶排布; (b) 测试段组装示意图; (c) 平行微通道结构尺寸

    Figure 2.  Schematic view of the test section: (a) Thermocouple arrangement on the copper heat sink; (b) assembly drawing; (c) dimensional drawing of the microchannels.

    图 3  单相 (a) Nu-Re和 (b) f-Re 的验证结果

    Figure 3.  Verifications of single-phase (a) Nu-Re and (b) f-Re

    图 4  不同(a)入口过冷度和(b)质量流率下HFE-7100的沸腾传热曲线

    Figure 4.  Boiling heat transfer curve of HFE-7100 under different operating conditions: (a) Inlet subcooling temperature; (b) mass flux

    图 5  G = 155.6 kg·m–2·s–1和∆Tsub = 25.5 ℃下, HFE-7100的沸腾两相流动形态 (a) 泡状流 (qeff = 90.6 kW·m–2); (b) 塞状流 (qeff = 110.6 kW·m–2); (c) 环状流 (qeff = 202.3 kW·m–2); (d) 局部烧干状态 (qeff = 263.4 kW·m–2)

    Figure 5.  Boiling two-phase flow patterns of HFE-7100 at G = 155.6 kg·m–2·s–1 and ∆Tsub = 25.5℃: (a) Bubbly flow (qeff = 90.6 kW·m–2); (b) slug flow (qeff = 110.6 kW·m–2); (c) annular flow (qeff = 202.3 kW·m–2); (d) local drying state (qeff = 263.4 kW·m–2).

    图 6  不同(a)入口过冷度和(b)质量流率下HFE-7100流动沸腾传热系数随有效热流密度的变化

    Figure 6.  The variation of flow boiling heat transfer coefficient of HFE-7100 with respect to the effective heat flux density under different operating conditions: (a) Inlet subcooling temperature; (b) mass flux.

    图 7  不同(a)入口过冷度和(b) 质量流率下HFE-7100流动沸腾传热系数随干度的变化

    Figure 7.  The variation of flow boiling heat transfer coefficient of HFE-7100 with dryness under different operating conditions: (a) Inlet subcooling temperature; (b) mass flux.

    图 8  不同(a)入口过冷度和(b)质量流率下HFE-7100流动沸腾沿程压降随有效热流密度的变化

    Figure 8.  The variation of flow boiling heat transfer pressure drop of HFE-7100 with effective heat flux density under different operating conditions: (a) Inlet subcooling temperature; (b) mass flux.

    图 9  不同(a)入口过冷度和(b)质量流率下HFE-7100流动沸腾沿程压降随干度的变化

    Figure 9.  The variation of flow boiling heat transfer pressure drop of HFE-7100 with dryness under different operating conditions: (a) Inlet subcooling temperature; (b) mass flux.

    图 10  平行微通道两相压降实验结果与文献关联式预测值对比

    Figure 10.  Comparison of experimental results of two-phase pressure drop in the microchannel with predicted values from literature correlations.

    表 1  测量参数的不确定度

    Table 1.  Uncertainty of measurement parameters.

    测量参数 测试设备 测量范围 不确定度
    温度 Omega T/K 0—300 ℃ ±0.2 ℃
    压力 Star CYYZ11 0—0.4 MPa ±0.1%
    压差 Star CCY15 0—20 kPa ±0.25%
    质量流量 Bronkhorst MINI CORI-FLOW M14 0.3—15 kg·h–1 ±0.2%
    长度 LINKS游标卡尺 0—150 mm ±0.01 mm
    两相热流密度 2.2%—9.1%
    两相传热系数 2.5%—9.7%
    干度 1.7%—6.3%
    DownLoad: CSV

    表 2  两相压降关联式计算结果与实验结果的对比

    Table 2.  Comparison between the calculated results of the two-phase pressure drop correlation and the experimental results

    文献 两相压降关联式 MAE/% δ/%
    [30] $ {X_{vv}} = {\left( {\dfrac{{{\mu _{{\text{l, out, t}}}}}}{{{\mu _{{\text{g, out, t}}}}}}} \right)^{0.274}}{\left( {\dfrac{{1 - {x_{{\text{out }}}}}}{{{x_{{\text{out }}}}}}} \right)^{0.727}}{\left( {\dfrac{{{\text{ }}R{e_{{\text{g, out, t}}}}}}{{R{e_{{\text{l, out, t}}}}}}} \right)^{0.5}} $, ${f_{\text{l}}} = \dfrac{{20.09}}{{Re_{{\text{l, out}}\;}^{0.547}}}$ 19.6 85.5
    $\phi _{\text{f}}^2 = 1 + \dfrac{5}{{{X_{vv}}}} + \dfrac{1}{{X_{vv}^2}}$, $\Delta {p_{{\text{ch, cal}}}} = \dfrac{{2{f_{\text{l}}}{G^2}\phi _{\text{f}}^2\left( {L - {S_{\text{L}}}} \right)}}{{3{\rho _{\text{l}}}{D_{{\text{ch}}}}}}\left( {x_{{\text{out}}\;}^2 - 3{x_{{\text{out}}\;}} + 3} \right)$
    [31] $ {X_{vv}} = {\left( {\dfrac{{{\mu _{{\text{l, out, t}}}}}}{{{\mu _{{\text{g, out, t}}}}}}} \right)^{0.274}}{\left( {\dfrac{{1 - {x_{{\text{out }}}}}}{{{x_{{\text{out }}}}}}} \right)^{0.727}}{\left( {\dfrac{{{\text{ }}R{e_{{\text{g, out, t}}}}}}{{R{e_{{\text{l, out, t}}}}}}} \right)^{0.5}} $, ${f_{\text{l}}} = \dfrac{{20.09}}{{Re_{{\text{l, out, t}}}^{{0}{.547}}}}$ 20.6 85.5
    ${C_{\text{M}}} = 21\left( {1 - {{\text{e}}^{ - 319{D_{{\text{fin}}}}}}} \right)\left( {0.00418 G + 0.0613} \right)$, $\phi _{\text{f}}^2 = 1 + \dfrac{{{C_{\text{M}}}}}{{{X_{vv}}}} + \dfrac{1}{{X_{vv}^2}}$
    $\Delta {p_{{\text{ch, cal}}}} = \dfrac{{2{f_{\text{l}}}{G^2}\phi _{\text{f}}^2\left( {L - {S_{\text{L}}}} \right)}}{{3{\rho _{\text{l}}}{D_{{\text{ch}}}}}}\left( {x_{{\text{out}}\;}^2 - 3{x_{{\text{out}}\;}} + 3} \right)$
    [32] $ {X_{vv}} = {\left( {\dfrac{{{\mu _{{\text{l, out, t}}}}}}{{{\mu _{{\text{g, out, t}}}}}}} \right)^{0.274}}{\left( {\dfrac{{1 - {x_{{\text{out }}}}}}{{{x_{{\text{out }}}}}}} \right)^{0.727}}{\left( {\dfrac{{{\text{ }}R{e_{{\text{g, out, t}}}}}}{{R{e_{{\text{l, out, t}}}}}}} \right)^{0.5}} $, ${f_{\text{l}}} = \dfrac{{20.09}}{{Re_{{\text{l, out, t}}}^{{0}{.547}}}}$ 27.8 63.6
    ${C_{\text{L}}} = 2566{G^{0.5466}}D_{{\text{ch}}}^{0.8819}\left( {1 - {{\rm e} ^{ - 319{D_{{\text{ch}}}}}}} \right)$, $\phi _{\text{f}}^2 = 1 + \dfrac{{{C_{\text{L}}}}}{{{X_{vv}}}} + \dfrac{1}{{X_{vv}^2}}$
    $\Delta {p_{{\text{ch, cal}}}} = \dfrac{{2{f_{\text{l}}}{G^2}\phi _{\text{f}}^2\left( {L - {S_{\text{L}}}} \right)}}{{3{\rho _{\text{l}}}{D_{{\text{ch}}}}}}\left( {x_{{\text{out}}\;}^2 - 3{x_{{\text{out}}\;}} + 3} \right)$
    [33] $ {X_{vv}} = {\left( {\dfrac{{{\mu _{{\text{l, out, t}}}}}}{{{\mu _{{\text{g, out, t}}}}}}} \right)^{0.274}}{\left( {\dfrac{{1 - {x_{{\text{out }}}}}}{{{x_{{\text{out }}}}}}} \right)^{0.727}}{\left( {\dfrac{{{\text{ }}R{e_{{\text{g, out, t}}}}}}{{R{e_{{\text{l, out, t}}}}}}} \right)^{0.5}} $, ${f_{\text{l}}} = \dfrac{{20.09}}{{Re_{{\text{l, out, t}}}^{0.547}}}$ 25.5 74.5
    ${C_{\text{K}}} = \dfrac{{0.0358}}{{Re_{{\text{l, out, t}}}^{{0}{.547}}}}$, $\phi _{\text{f}}^2 = 1 + \dfrac{{{C_{\text{K}}}}}{{{X_{vv}}}} + \dfrac{1}{{X_{vv}^2}}$
    $\Delta {p_{{\text{ch, cal}}}} = \dfrac{{2{f_{\text{l}}}{G^2}\phi _{\text{f}}^2\left( {L - {S_{\text{L}}}} \right)}}{{3{\rho _{\text{l}}}{D_{{\text{ch}}}}}}\left( {x_{{\text{out}}\;}^2 - 3{x_{{\text{out}}\;}} + 3} \right)$
    DownLoad: CSV
  • [1]

    Karayiannis T G, Mahmoud M M 2017 Appl. Therm. Eng. 115 1372Google Scholar

    [2]

    Manetti L L, Ribatski G, de Souza R R, Cardoso E M 2020 Exp. Therm. Fluid Sci. 113 110025Google Scholar

    [3]

    Harirchian T, Garimella S V 2009 Int. J. Multiphase Flow 35 349Google Scholar

    [4]

    Asrar P, Ghiaasiaan S M, Joshi Y K. 2021 J. Heat Transfer 143 023001Google Scholar

    [5]

    杨晓强, 秋穗正, 贾晓鸿, 尹海峰, 贾斗南, 卢冬华 2007 核动力工程 28 38Google Scholar

    Yang X Q, Qiu S Z, Jia X H, Yin H F, Jia D N, Lu D H 2007 Nucl. Power Eng. 28 38Google Scholar

    [6]

    Wang Y, Sefiane K 2012 Int. J. Heat Mass Transfer 55 2235Google Scholar

    [7]

    Al-Zaidi A H, Mahmoud M M, Karayiannis T G 2019 Int. J. Heat Mass Transfer 140 100Google Scholar

    [8]

    Al-Zaidi A H, Mahmoud M M, Karayiannis T G 2021 Int. J. Heat Mass Transfer 164 120587Google Scholar

    [9]

    Cheng X, Wu H 2023 Exp. Therm. Fluid Sci. 142 110805Google Scholar

    [10]

    Yang K S, Jeng Y R, Huang C M, Wang C C 2011 Heat Transfer Eng. 32 697Google Scholar

    [11]

    Tuo H, Hrnjak P 2013 Int. J. Refrig. 36 1263Google Scholar

    [12]

    Rausch M H, Kretschmer L, Will S, Leipertz A, Froba A P 2015 J. Chem. Eng. Data 60 3759Google Scholar

    [13]

    Liang G, Mudawar I 2020 Int. J. Heat Mass Transfer 146 118864Google Scholar

    [14]

    Cui P, Liu Z 2021 Int. J. Heat Mass Transfer 175 121387Google Scholar

    [15]

    Feng S, Yan Y, Lai C 2022 Int. J. Heat Mass Transfer 186 122468Google Scholar

    [16]

    Zhuang X R, Yu P, Li X, Deng Q Y 2020 PRC Patent CN202122664314 [2021-11-02

    [17]

    Abu-Eishah S I 2001 Int. J. Thermophys. 22 1855Google Scholar

    [18]

    Machrafi H, Sadoun N, Rednikov A, Dehaeck S, Dauby P C, Colinet P 2013 Microgravity Sci. Technol. 25 251Google Scholar

    [19]

    Nassar M, Vazquez P, Chauris N, Daaboul M B, Louste C 2020 IEEE Trans. Ind. Appl. 56 4193Google Scholar

    [20]

    Qu W, Siu-Ho A 2008 J. Heat Transfer 130 122402Google Scholar

    [21]

    Blevins R D 1984 Applied Fluid Dynamics Handbook (New York: Van Nostrand Reinhold) pp12–20

    [22]

    Taylor B N, Kuyatt C E 1994 Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (Gaithersburg: Department of Commerce, Technology Administration, National Institute of Standards and Technology) pp11–20

    [23]

    Žukauskas A 1972 Adv. Heat Transfer 8 93

    [24]

    Chang J Y, Prasher R, Chau D, Myers A, He D 2005 International Electronic Packaging Technical Conference and Exhibition San Francisco, California, USA, July 17–22, 2005 p183

    [25]

    Brunschwiler T, Michel B, Rothuizen H, Kloter U, Wunderle B, Oppermann H, Reichl H 2009 Microsyst. Technol. 15 57Google Scholar

    [26]

    Xu F, Wu H 2018 J. Heat Transfer 140 122401Google Scholar

    [27]

    Kong L J, Liu Z G, Jia L, Lv M M, Liu Y 2020 Exp. Therm. Fluid Sci. 115 109946Google Scholar

    [28]

    Ming H S, Ma J, Bu X W 1993 Int. J. Heat Mass Transfer 36 4461Google Scholar

    [29]

    Zhuang X R, Xie Y C, Li X, Yue S J, Wang H T, Wang H D, Yu P 2023 Appl. Therm. Eng. 225 120180Google Scholar

    [30]

    Lockhart W R 1949 Chem. Eng. Prog. 45 39

    [31]

    Mudawar I, Qu W 2003 Int. J. Heat Mass Transfer 46 2737Google Scholar

    [32]

    Lee H J, Lee S Y 2001 Int. J. Multiphase Flow 27 2043Google Scholar

    [33]

    Krishnamurthy S, Peles Y 2007 Phys. Fluids 19 043302Google Scholar

  • [1] Wang Han, Yuan Li, Wang Chao, Wang Ru-Zhi. Structure and thermal properties of periodic split-flow microchannels. Acta Physica Sinica, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
    [2] Zhuang Xiao-Ru, Xu Xin-Hai, Yang Zhi, Zhao Yan-Xing, Yu Peng. Numerical investigation on heat transfer of supercritical CO2 in solar receiver tube in high temperature region. Acta Physica Sinica, 2021, 70(3): 034401. doi: 10.7498/aps.70.20201005
    [3] Shi Chen-Yang, Min Guang-Zong, Liu Xiang-Yang. Research progress of protein-based memristor. Acta Physica Sinica, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [4] Yan Chen-Shuai, Xu Jin-Liang. Numerical analysis on flow and heat transfer of supercritical CO2 in horizontal tube. Acta Physica Sinica, 2020, 69(4): 044401. doi: 10.7498/aps.69.20191513
    [5] Lou Qin,  Li Tao,  Yang Mo. Lattice Boltzmann simulations of rising bubble driven by buoyancy in a complex microchannel. Acta Physica Sinica, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [6] Wang Sheng, Xu Jin-Liang, Zhang Long-Yan. Molecular dynamics simulation of fluid flow and heat transfer in an asymmetric nanochannel. Acta Physica Sinica, 2017, 66(20): 204704. doi: 10.7498/aps.66.204704
    [7] Hu Hai-Bao, He Qiang, Yu Si-Xiao, Zhang Zhao-Zhu, Song Dong. Freezing behavior of droplet impacting on cold surfaces. Acta Physica Sinica, 2016, 65(10): 104703. doi: 10.7498/aps.65.104703
    [8] Gu Pin-Chao, Zhang Kai-Liang, Feng Yu-Lin, Wang Fang, Miao Yin-Ping, Han Ye-Mei, Zhang Han-Xia. Recent progress of two-dimensional layered molybdenum disulfide. Acta Physica Sinica, 2016, 65(1): 018102. doi: 10.7498/aps.65.018102
    [9] Liang Hong, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel. Acta Physica Sinica, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [10] Li Da-Shu, Qiu Xing-Qi, Zheng Zhi-Wei. Numerical analysis on air entrapment during droplet impacting on a wetted surface. Acta Physica Sinica, 2015, 64(22): 224704. doi: 10.7498/aps.64.224704
    [11] Wen Jia-Le, Xu Zhi-Cheng, Gu Yu, Zheng Dong-Qin, Zhong Wei-Rong. Thermal rectification of heterojunction nanotubes. Acta Physica Sinica, 2015, 64(21): 216501. doi: 10.7498/aps.64.216501
    [12] Wang Xiao-Hu, Yi Shi-He, Fu Jia, Lu Xiao-Ge, He Lin. Experimental investigation on surface heat transfer characteristics of hypersonic two-dimensional rearward-facing step flow. Acta Physica Sinica, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [13] Zhang Cheng-Bin, Xu Zhao-Lin, Chen Yong-Ping. Molecular dynamics simulation on fluid flow and heat transfer in rough nanochannels. Acta Physica Sinica, 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [14] Li Ri, Wang Jian, Zhou Li-Ming, Pan Hong. The reliability analysis of using the volume averaging method to simulate the solidification process in a ingot. Acta Physica Sinica, 2014, 63(12): 128103. doi: 10.7498/aps.63.128103
    [15] Guo Ya-Li, Wei Lan, Shen Sheng-Qiang, Chen Gui-Ying. The flow and heat transfer characteristics of double droplets impacting on flat liquid film. Acta Physica Sinica, 2014, 63(9): 094702. doi: 10.7498/aps.63.094702
    [16] Yan Han, Zhang Wen-Ming, Hu Kai-Ming, Liu Yan, Meng Guang. Investigation on characteristics of flow in microchannels with random surface roughness. Acta Physica Sinica, 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [17] Li Shi-Xiong, Bai Zhong-Chen, Huang Zheng, Zhang Xin, Qin Shui-Jie, Mao Wen-Xue. Study on the machining mechanism of fabrication of micro channels in fused silica substrates by laser-induced plasma. Acta Physica Sinica, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [18] Zhuang Yi-Qi, Bao Jun-Lin, Sun Peng, Wang Ting-Lan, Chen Wen-Hao, Du Lei, He Liang, Chen Hua. Shot noise measurement methods in electronic devices. Acta Physica Sinica, 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [19] Xiao Bo-Qi, Chen Ling-Xia, Jiang Guo-Ping, Rao Lian-Zhou, Wang Zong-Chi, Wei Mao-Jin. Mathematical analysis of pool boiling heat transfer. Acta Physica Sinica, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [20] Zhang Cheng-Bin, Chen Yong-Ping, Shi Ming-Heng, Fu Pan-Pan, Wu Jia-Feng. Fractal characteristics of surface roughness and its effect on laminar flow in microchannels. Acta Physica Sinica, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
Metrics
  • Abstract views:  3386
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2023
  • Accepted Date:  30 October 2023
  • Available Online:  29 November 2023
  • Published Online:  05 March 2024

/

返回文章
返回