Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent progress of two-dimensional layered molybdenum disulfide

Gu Pin-Chao Zhang Kai-Liang Feng Yu-Lin Wang Fang Miao Yin-Ping Han Ye-Mei Zhang Han-Xia

Citation:

Recent progress of two-dimensional layered molybdenum disulfide

Gu Pin-Chao, Zhang Kai-Liang, Feng Yu-Lin, Wang Fang, Miao Yin-Ping, Han Ye-Mei, Zhang Han-Xia
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Recently, two-dimensional (2D) layered molybdenum disulfide (MoS2) has attracted great attention because of its graphene-like structure and unique physical and chemical properties. In this paper, physical structure, band gap structure, and optical properties of MoS2 are summarized. MoS2 is semiconducting and composed of covalently bonded sheets held together by weak van der Waals force. In each MoS2 layer, a layer of molybdenum (Mo) atoms is sandwiched between two layers of sulfur (S) atoms. There are three types of MoS2 compounds, including 1T MoS2, 2H MoS2, and 3R MoS2. As the number of layers decreases, the bad gap becomes larger. The bad gap transforms from indirect to direct as MoS2 is thinned to a monolayer. Changes of band gap show a great potential in photoelectron. Preparation methods of 2D MoS2 are reviewed, including growth methods and exfoliation methods. Ammonium thiomolybdate (NH4)2MoS4, elemental molybdenum Mo and molybdenum trioxide MoO3 are used to synthesize 2D MoS2 by growth methods. (NH4)2MoS4 is dissolved in a solution and then coated on a substrate. (NH4)2MoS4 is decomposed into MoS2 after annealing at a high temperature. Mo is evaporated onto a substrate, and then sulfurized into MoS2. MoO3 is most used to synthesize MoS2 on different substrates by a chemical vapor deposition or plasma-enhanced chemical vapor deposition. Other precursors like Mo(CO)6, MoS2 and MoCl5 are also used for MoS2 growth. For the graphene-like structure, monolayer MoS2 can be exfoliated from bulk MoS2. Exfoliation methods include micromechanical exfoliation, liquid exfoliation, lithium-based intercalation and electrochemistry lithium-based intercalation. For micromechanical exfoliation, the efficiency is low and the sizes of MoS2 flakes are small. For liquid exfoliation, it is convenient for operation to obtain mass production, but the concentration of monolayer MoS2 is low. For lithium-based intercalation, the yield of monolayer MoS2 is high while it takes a long time and makes 2H MoS2 transform to 1T MoS2 in this process. For electrochemistry lithium-based intercalation, this method saves more time and achieves higher monolayer MoS2 yield, and annealing makes 1T MoS2 back to 2H MoS2. The applications of 2D MoS2 in field-effect transistors, sensors and memory are discussed. On-off ratio field effect transistor based on MoS2 has field-effect mobility of several hundred cm2V-1-1 and on/off ratio of 108 theoretically.
      Corresponding author: Zhang Kai-Liang, kailiang_zhang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274113, 11204212, 61404091), the Program for New Century Excellent Talents in University, China (Grant No. NCET-11-1064), the Tianjin Natural Science Foundation, China (Grant Nos. 13JCYBJC15700, 13JCZDJC26100, 14JCZDJC31500, 14JCQNJC00800), and the Tianjin Science and Technology Developmental Funds of Universities and Colleges, China (Grant Nos. 20100703, 20130701, 20130702).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666

    [2]

    Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. 116 8983

    [3]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Natl. Acad. Sci. USA 102 10451

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [5]

    Wang Q H, Kourosh-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 700

    [6]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W, Chhowalla M 2011 Nano Lett. 11 5111

    [7]

    Cheng Y C, Schwingenschlgl U 2014 MoS2: A First-Principles Perspective (Berlin: Springer International Publishing) p106

    [8]

    Mak K F, Lee C, Hone J, Shan J, Tony F 2010 Phys. Rev. Lett. 105 136805

    [9]

    Sandomirski V B 1967 Soviet Phys. Jetp 25 101

    [10]

    Ye M X, Winslow D, Zhang D Y, Pandey R, Yap Y K 2015 Photonics 2 288

    [11]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [12]

    Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538

    [13]

    Shi Y M, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J 2012 Nano Lett. 12 2784

    [14]

    George A S, Mutlu Z, Ionescu R, Wu R J, Jeong J S, Bay H H, Chai Y, Mkhpyan K A, Ozkan M, Ozkan C S 2014 Adv. Funct. Mater. 24 7461

    [15]

    Zhan Y J, Liu Z, Najmaei S, Ajayan P, Lou J 2012 Small 8 966

    [16]

    Laskar M, Ma L, Kannappan S, Park P S, Krishnamoorthy S, Nath D, Lu W, Wu Y Y, Rajan S 2013 Appl. Phys. Lett. 102 252108

    [17]

    Tao J G, Chai J W, Lu X, Wong L M, Wong T I, Pan J S, Xiong Q H, Chi D Z, Wang S J 2015 Nanoscale 7 2497

    [18]

    Balendhran S, Ou J, Bhaskaran M, Sriram S, Ippolito S, Vasic Z, Kats E, Bhargava S, Zhuiykov S, Kalantar Zadeh K 2012 Nanoscale 4 461

    [19]

    Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320

    [20]

    Ji Q Q, Zhang Y F, Gao T, Zhang Y, Ma D L, Liu M G, Chen Y B, Qiao X F, Tan P H, Kan M, Feng J, Sun Q, Liu Z F 2013 Nano Lett. 13 3870

    [21]

    Shi J P, Ma D L, Han G F, Zhang Y, Ji Q Q, Gao T, Sun J Y, Song X J, Li C, Zhang Y S, Lang X Y, Zhang Y F, Liu Z F 2014 ACS Nano 8 10196

    [22]

    Feng Y L, Zhang K L, Wang F, Liu Z W, Fang M X, Cao R R, Miao Y P, Yang Z C, Han Y M, Song Z T, Wong H S P 2015 ACS Appl. Mat. Interfaces 7 22587

    [23]

    Kumar V K, Dhar S, Choudhury T H, Shivashankar S A, Raghavan S 2015 Nanoscale 7 7802

    [24]

    Coleman J, Lotya M, O'Neill A, Bergin S, King P, Khan U, Young K, Gaucher A, De S, Smith R, Shvets I, Arora S, Stanton G, Kim H, Lee K, Kim G T, Duesgerg G, Hallam T, Boland J, Wang J J, Donegan J, Grunlan J, Moriarty G, Shmeliov A, Nicholls R, Perkins J, Grieveson E, Theuwissen K, McComb D, Nellist P, Nicolosi V 2011 Science 331 568

    [25]

    Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457

    [26]

    Natalia I, Denis O D, Vitaliy A 2014 Turk. J. Phys. 38 478

    [27]

    Zeng Z Y, Yin Z Y, Huang X, Li H, He Q Y, Lu G, Boey F, Zhang H 2011 Angew. Chem. 50 11093

    [28]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

    [29]

    Sarkar D, Liu W, Xie X J, Anselmo A C, Mitragoti S, Banerjee K 2014 ACS Nano 8 3992

    [30]

    Liu B L, Chen L, Liu G, Abbas A N, Fathi M, Zhou C 2014 ACS Nano 8 5304

    [31]

    Chen H, Nam H, Wi S, Preissnitz G, Gunawan I M, Liang X G 2014 ACS Nano 8 4023

    [32]

    Kang J H, Liu W, Banerjee K 2014 Appl. Phys. Lett. 104 093106

    [33]

    Chuang S, Battaglia C, Azcatl A, McDonnell S, Kang J S, Yin X, Tosun M, Kapadia R, Fang H, Wallace R M, Javey A 2014 Nano Lett. 14 1337

    [34]

    Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, Hung P Y, Tieckelman R, Tsai W, Hobbs C, Ye P D 2014 Nano Lett. 14 6275

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva, Firsov A A 2004 Science 306 666

    [2]

    Ataca C, Sahin H, Ciraci S 2012 J. Phys. Chem. 116 8983

    [3]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Natl. Acad. Sci. USA 102 10451

    [4]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147

    [5]

    Wang Q H, Kourosh-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 700

    [6]

    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M W, Chhowalla M 2011 Nano Lett. 11 5111

    [7]

    Cheng Y C, Schwingenschlgl U 2014 MoS2: A First-Principles Perspective (Berlin: Springer International Publishing) p106

    [8]

    Mak K F, Lee C, Hone J, Shan J, Tony F 2010 Phys. Rev. Lett. 105 136805

    [9]

    Sandomirski V B 1967 Soviet Phys. Jetp 25 101

    [10]

    Ye M X, Winslow D, Zhang D Y, Pandey R, Yap Y K 2015 Photonics 2 288

    [11]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271

    [12]

    Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J 2012 Nano Lett. 12 1538

    [13]

    Shi Y M, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J 2012 Nano Lett. 12 2784

    [14]

    George A S, Mutlu Z, Ionescu R, Wu R J, Jeong J S, Bay H H, Chai Y, Mkhpyan K A, Ozkan M, Ozkan C S 2014 Adv. Funct. Mater. 24 7461

    [15]

    Zhan Y J, Liu Z, Najmaei S, Ajayan P, Lou J 2012 Small 8 966

    [16]

    Laskar M, Ma L, Kannappan S, Park P S, Krishnamoorthy S, Nath D, Lu W, Wu Y Y, Rajan S 2013 Appl. Phys. Lett. 102 252108

    [17]

    Tao J G, Chai J W, Lu X, Wong L M, Wong T I, Pan J S, Xiong Q H, Chi D Z, Wang S J 2015 Nanoscale 7 2497

    [18]

    Balendhran S, Ou J, Bhaskaran M, Sriram S, Ippolito S, Vasic Z, Kats E, Bhargava S, Zhuiykov S, Kalantar Zadeh K 2012 Nanoscale 4 461

    [19]

    Lee Y H, Zhang X Q, Zhang W J, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320

    [20]

    Ji Q Q, Zhang Y F, Gao T, Zhang Y, Ma D L, Liu M G, Chen Y B, Qiao X F, Tan P H, Kan M, Feng J, Sun Q, Liu Z F 2013 Nano Lett. 13 3870

    [21]

    Shi J P, Ma D L, Han G F, Zhang Y, Ji Q Q, Gao T, Sun J Y, Song X J, Li C, Zhang Y S, Lang X Y, Zhang Y F, Liu Z F 2014 ACS Nano 8 10196

    [22]

    Feng Y L, Zhang K L, Wang F, Liu Z W, Fang M X, Cao R R, Miao Y P, Yang Z C, Han Y M, Song Z T, Wong H S P 2015 ACS Appl. Mat. Interfaces 7 22587

    [23]

    Kumar V K, Dhar S, Choudhury T H, Shivashankar S A, Raghavan S 2015 Nanoscale 7 7802

    [24]

    Coleman J, Lotya M, O'Neill A, Bergin S, King P, Khan U, Young K, Gaucher A, De S, Smith R, Shvets I, Arora S, Stanton G, Kim H, Lee K, Kim G T, Duesgerg G, Hallam T, Boland J, Wang J J, Donegan J, Grunlan J, Moriarty G, Shmeliov A, Nicholls R, Perkins J, Grieveson E, Theuwissen K, McComb D, Nellist P, Nicolosi V 2011 Science 331 568

    [25]

    Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457

    [26]

    Natalia I, Denis O D, Vitaliy A 2014 Turk. J. Phys. 38 478

    [27]

    Zeng Z Y, Yin Z Y, Huang X, Li H, He Q Y, Lu G, Boey F, Zhang H 2011 Angew. Chem. 50 11093

    [28]

    Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385

    [29]

    Sarkar D, Liu W, Xie X J, Anselmo A C, Mitragoti S, Banerjee K 2014 ACS Nano 8 3992

    [30]

    Liu B L, Chen L, Liu G, Abbas A N, Fathi M, Zhou C 2014 ACS Nano 8 5304

    [31]

    Chen H, Nam H, Wi S, Preissnitz G, Gunawan I M, Liang X G 2014 ACS Nano 8 4023

    [32]

    Kang J H, Liu W, Banerjee K 2014 Appl. Phys. Lett. 104 093106

    [33]

    Chuang S, Battaglia C, Azcatl A, McDonnell S, Kang J S, Yin X, Tosun M, Kapadia R, Fang H, Wallace R M, Javey A 2014 Nano Lett. 14 1337

    [34]

    Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, Hung P Y, Tieckelman R, Tsai W, Hobbs C, Ye P D 2014 Nano Lett. 14 6275

  • [1] Jiang Long-Xing, Li Qing-Chao, Zhang Xu, Li Jing-Feng, Zhang Jing, Chen Zu-Xin, Zeng Min, Wu Hao. Spintronic devices based on topological and two-dimensional materials. Acta Physica Sinica, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] Xie Yi-Chen, Zhuang Xiao-Ru, Yue Si-Jun, Li Xiang, Yu Peng, Lu Chun. Experimental study on flow boiling of HFE-7100 in rectangular parallel microchannel. Acta Physica Sinica, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [3] Zhang Ming-Mei, Guo Ya-Tao, Fu Xu-Ri, Li Meng-Lei, Ren Bao-Cang, Zheng Jun, Yuan Rui-Yang. Spin-switching effect and giant magnetoresistance in quantum structure of monolayer MoS2 nanoribbons with ferromagnetic electrode. Acta Physica Sinica, 2023, 72(15): 157202. doi: 10.7498/aps.72.20230483
    [4] Wu Peng, Tan Lun, Li Wei, Cao Li-Wei, Zhao Jun-Bo, Qu Yao, Li Ang. Preparation and photoelectric property of large scale monolayer MoS2. Acta Physica Sinica, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [5] Wu Fan-Fan, Ji Yi-Ru, Yang Wei, Zhang Guang-Yu. Experimental research progress of electronic band structure and low temperature transport based on molybdenum disulfide. Acta Physica Sinica, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [6] Li Lu, Zhang Yang-Kun, Shi Dong-Xia, Zhang Guang-Yu. Cotrollable growth of monolayer MoS2 films and their applications in devices. Acta Physica Sinica, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [7] Wang Hao-Lin, Zong Qi-Jun, Huang Yan, Chen Yi-Wei, Zhu Yu-Jian, Wei Ling-Nan, Wang Lei. Recent progress of transfer methods of two-dimensional atomic crystals and high-quality electronic devices. Acta Physica Sinica, 2021, 70(13): 138202. doi: 10.7498/aps.70.20210929
    [8] Shi Chen-Yang, Min Guang-Zong, Liu Xiang-Yang. Research progress of protein-based memristor. Acta Physica Sinica, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [9] Li Lin, Sun Yu-Xuan, Sun Wei-Feng. First-principles study of electronic structure, magnetic and optical properties of laminated molybdenum oxides. Acta Physica Sinica, 2019, 68(5): 057101. doi: 10.7498/aps.68.20181962
    [10] Zhang Xin-Cheng, Liao Wen-Hu, Zuo Min. Electronic structure and spin/valley transport properties of monolayer MoS2 under the irradiation of the off-resonant circularly polarized light. Acta Physica Sinica, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [11] Dong Yan-Fang, He Da-Wei, Wang Yong-Sheng, Xu Hai-Teng, Gong Zhe. Synthesis of large size monolayer MoS2 with a simple chemical vapor deposition. Acta Physica Sinica, 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [12] Zhang Li-Yong, Fang Liang, Peng Xiang-Yang. Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study. Acta Physica Sinica, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [13] Fu Chong-Yuan, Xing Song, Shen Tao, Tai Bo, Dong Qian-Min, Shu Hai-Bo, Liang Pei. Synthesis and characterization of flower-like MoS2 microspheres by hydrothermal method. Acta Physica Sinica, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [14] Wei Xiao-Xu, Cheng Ying, Huo Da, Zhang Yu-Han, Wang Jun-Zhuan, Hu Yong, Shi Yi. PL enhancement of MoS2 by Au nanoparticles. Acta Physica Sinica, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [15] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [16] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. The effect of strain on band structure of single-layer MoS2: an ab initio study. Acta Physica Sinica, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [17] Zhuang Yi-Qi, Bao Jun-Lin, Sun Peng, Wang Ting-Lan, Chen Wen-Hao, Du Lei, He Liang, Chen Hua. Shot noise measurement methods in electronic devices. Acta Physica Sinica, 2011, 60(5): 050704. doi: 10.7498/aps.60.050704
    [18] Qin Jie-Ming, Tian Li-Fei, Zhao Dong-Xu, Jiang Da-Yong, Cao Jian-Ming, Ding Meng, Guo Zhen. Comprehensive Survey for the Frontier Disciplines. Acta Physica Sinica, 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [19] Li Qiao-Hua, Zhang Zhen-Hua, Liu Xin-Hai, Qiu Ming, Ding Kai-He. Calculation of the electronic transmission spectra of a molecular device using a simplified model. Acta Physica Sinica, 2009, 58(10): 7204-7210. doi: 10.7498/aps.58.7204
    [20] Wang Wei, Huang Lan, Zhang Yu, Li Chang-Min, Zhang Hai-Qian, Gu Yu, Shen Hao-Ying, Chen Tang-Sheng, Hao Li-Ping, Peng Li, Zhao Li-Xin. . Acta Physica Sinica, 2002, 51(1): 63-67. doi: 10.7498/aps.51.63
Metrics
  • Abstract views:  19694
  • PDF Downloads:  2019
  • Cited By: 0
Publishing process
  • Received Date:  13 August 2015
  • Accepted Date:  16 September 2015
  • Published Online:  05 January 2016

/

返回文章
返回