Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study of single-phase change material thermal diode based on calcium chloride hexahydrate

Yang Xu Li Jing Mao Yu Tao Ke-Ai Sun Kuan Chen Shan-Shan Zhou Yong-Li Zheng Yu-Jie

Citation:

Experimental study of single-phase change material thermal diode based on calcium chloride hexahydrate

Yang Xu, Li Jing, Mao Yu, Tao Ke-Ai, Sun Kuan, Chen Shan-Shan, Zhou Yong-Li, Zheng Yu-Jie
PDF
HTML
Get Citation
  • Phase change material thermal diodes designed on the basis of different heat transfer forms and coefficients caused by different phase transition degrees in opposite heat transfer directions are considered as potential thermal management devices. However, the use of a variety of materials or only relying on numerical simulation research makes its structure complex or idealized, which reduces the possibility of practical application. Therefore, in this work, a simple thermal diode structure containing only CaCl2·6H2O single-phase variable material is proposed in combination with changes in heat transfer form and heat transfer coefficient in solid-liquid phase change and natural convection process. The corresponding device is prepared, and a steady-state heat flux test system is set up for experimental study, the measured results are close to those recorded in the literature with good accuracy. The influence of the temperature difference between hot end and cold end and the direction of positive heat transfer and negative heat transfer on the thermal rectification effect of the thermal diode are studied experimentally. The results show that the heat flux of the thermal diode decreases with the decrease of the difference in temperature between the cold source and hot source, and the thermal rectification ratio reaches to 1.58 when the forward and reverse along the antigravity direction and gravity direction, respectively. The optimal cold source temperature range is 20–25 ℃, which is close to room temperature. The proposed phase change material thermal diode structure has a certain application potential in energy saving and thermal management of building.
      Corresponding author: Li Jing, lj202740@cqu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2022YFB3803300), the National Natural Science Foundation of China (Grant No. 51606017), the Young Talents Support Program of Chongqing, China (Grant No. CQYC2021059206), the Fundamental Research Fund for the Central Universities, China (Grant No. 2020CDJQY-A055), and the Outstanding Youth Fund of Chongqing, China (Grant No. cstc2021jcyj-jqX0015).
    [1]

    Pehl M, Arvesen A, Humpenoeder F, Popp A, Hertwich E G, Luderer G 2017 Nat. Energy 2 939Google Scholar

    [2]

    McGlade C, Ekins P 2015 Nature 517 187Google Scholar

    [3]

    赖明东, 雍熙, 史文静 , rhhz_volume 2022 rhhz_volume 自然辩证法研究 38 69Google Scholar

    Lai M D, Yong X, Shi W J 2022 Stud. Dialectics. Nat. 38 69Google Scholar

    [4]

    Yang L, Yan H Y, Lam J C 2014 Appl. Energ. 115 164Google Scholar

    [5]

    Guan L 2023 Ordnance Mater. Sci. Eng. 46 126 [关玲 2023 兵器材料科学与工程 46 126]Google Scholar

    Guan L 2023 Ordnance Mater. Sci. Eng. 46 126Google Scholar

    [6]

    Zhu H, Wang J J 2023 hydraul. Pneumatics Seals 43 55 [朱浩, 王晶晶 2023 液压气动与密封 43 55]Google Scholar

    Zhu H, Wang J J 2023 hydraul. Pneumatics Seals 43 55Google Scholar

    [7]

    Zhang X H, Li Z, Luo L G, Fan Y L, Du Z Y 2022 Energy 238 121652Google Scholar

    [8]

    Ma S, Jiang M D, Tao P, Song C Y, Wu J B, Wang J, Deng T, Shang W 2018 Prog. Nat. Sci. Mater. 28 653Google Scholar

    [9]

    Tran M-K, Mevawalla A, Aziz A, Panchal S, Xie Y, Fowler M 2022 Processes 10 6

    [10]

    Yuan K J, Shi J M, Aftab W, Qin M L, Usman A, Zhou F, Lv Y, Gao S, Zou R Q 2020 Adv. Funct. Mater. 30 8Google Scholar

    [11]

    Alva G, Lin Y X, Liu L K, Fang G Y 2017 Energ. Buildings 144 276Google Scholar

    [12]

    Giro-Paloma J, Martinez M, Cabeza L F, Ines F A 2016 Renew. Sust. Energ. Rev. 53 1059Google Scholar

    [13]

    Ghanekar A, Ji J, Zheng Y 2016 Appl. Phys. Lett. 109 5Google Scholar

    [14]

    Traipattanakul B, Tso C Y, Chao C Y H 2019 Int. J. Heat Mass Transf. 135 294Google Scholar

    [15]

    Meng Z N, Gulfam R, Zhang P, Ma F 2021 Int. J. Therm. Sci. 164 9Google Scholar

    [16]

    Kasali S O, Ordonez-Miranda J, Joulain K. 2020 Int. J. Therm. Sci. 153 106393Google Scholar

    [17]

    Ordonez-Miranda J, Hill J M, Joulain K, Ezzahri Y, Drevillon J 2018 J. Appl. Phys. 123 085102Google Scholar

    [18]

    Wehmeyer G, Yabuki T, Monachon C, Wu J Q, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar

    [19]

    Zhang N, Yuan Y P, Cao X L, Du Y X, Zhang Z L, Gui Y W 2018 Adv. Eng. Mater. 20 1700753Google Scholar

    [20]

    Incropera F P, DeWitt D P, Bergman T L, Lavine A S 1996 Fundamentals of Heat and Mass Transfer (5th Ed.) (New York: Wiley) pp563–601

    [21]

    Tao W, Kong X F, Bao A Y, Fan C G, Zhang Y 2020 Materials 13 22Google Scholar

    [22]

    Wang Y, Ge S X, Huang B J, Zheng Z 2019 Mater. Chem. Phys. 223 723Google Scholar

    [23]

    Nagano K, Mochida T, Takeda S, Domanski R, Rebow M 2003 Appl. Therm. Eng. 23 229Google Scholar

    [24]

    Cui W W, Zhang H Z, Xia Y P, Zou Y J, Xiang C L, Chu H L, Qiu S J, Xu F, Sun L X 2018 J. Therm. Anal. Calorim. 131 57Google Scholar

    [25]

    Li G, Zhang B B, Li X, Zhou Y, Sun Q G, Yun Q 2014 Sol. Energ. Mater. Sol. C. 126 51Google Scholar

    [26]

    Meng Z N, Gulfam R, Zhang P, Ma F 2020 Int. J. Heat Mass Transf. 147 118915Google Scholar

    [27]

    Pallecchi E, Chen Z, Fernandes G E, Wan Y, Kim J H, Xu J 2015 Mater. Horiz. 2 125Google Scholar

    [28]

    Chen R J, Cui Y L, Tian H, Yao R M, Liu Z P, Shu Y, Li C, Yang Y, Ren T L, Zhang G, Zou R Q 2015 Sci. Rep. 5 8Google Scholar

    [29]

    Lyu J, Sheng Z Z, Xu Y Y, Liu C M, Zhang X T 2022 Adv. Funct. Mater. 32 19Google Scholar

    [30]

    Wong M Y, Traipattanakul B, Tso C Y, Chao C Y H, Qiu H H 2019 Int. J. Heat Mass Transf. 138 173Google Scholar

    [31]

    Swoboda T, Klinar K, Abbasi S, Brem G, Kitanovski A, Rojo M M 2021 Iscience 24 8Google Scholar

    [32]

    Zhang X X, Zhou Y, Li X, Shen Y, Hi C X, Dong O Y, Ren X F, Zeng J B, Sun Y X, Wang S J, Yang X B 2018 Energy Storage Sci. Technol. 7 40 [张新星, 周园, 李翔, 申月, 海春喜, 董欧阳, 任秀峰, 曾金波, 孙艳霞, 王石军, 杨小波 2018 储能科学与技术 7 40]Google Scholar

    Zhang X X, Zhou Y, Li X, Shen Y, Hi C X, Dong O Y, Ren X F, Zeng J B, Sun Y X, Wang S J, Yang X B 2018 Energy Storage Sci. Technol. 7 40Google Scholar

    [33]

    Li S W, Fu B B, Li J 2022 Acta Materiae Compositae Sin. 39 2885 [李绍伟, 傅彬彬, 李静 2022 复合材料学报 39 2885]Google Scholar

    Li S W, Fu B B, Li J 2022 Acta Materiae Compositae Sin. 39 2885Google Scholar

    [34]

    Luo F B, He Y F, Cui W Q, Guo Y Y, Jin Y C, Li H Z, Huang B Q, Qian Q R 2022 Acs Appl. Polym. Mater. 4 2160Google Scholar

    [35]

    Cottrill A L, Wang S, Liu A T, Wang W J, Strano M S 2018 Adv. Energy Mater. 8 11Google Scholar

    [36]

    Moench S, Dittrich R 2022 Energies 15 11Google Scholar

  • 图 1  相变前后的S-PCMTD组成和传热形式

    Figure 1.  S-PCMTD composition and heat transfer form before and after phase transition.

    图 2  (a) S-PCMTD的示意图; (b) 稳态测量系统的组成

    Figure 2.  (a) Schematic diagram of S-PCMTD; (b) composition of the steady-state measurement system.

    图 3  CPP/CaCl2·6H2O的泄漏测试图像 (a) 加热前; (b) 加热后; (c) 10个热循环后

    Figure 3.  Leakage test image of CPP/CaCl2·6H2O: (a) Before heating; (b) after heating; (c) after 10 cycles.

    图 4  (a) CaCl2·6H2O和 (b) CPP/CaCl2·6H2O的DSC曲线

    Figure 4.  DSC curves of (a) CaCl2·6H2O and (b) CPP/ CaCl2·6H2O.

    图 5  S-PCMTD在逆重力方向(正向)和重力方向(反向)的相变和传热模型

    Figure 5.  Phase transition and heat transfer model of S-PCMTD in the inverse of gravity direction (forward) and towards gravity direction (reverse).

    图 6  S-PCMTD在逆重力方向(正向)和重力方向(反向)的热通量和热整流比

    Figure 6.  Heat flux and thermal rectification ratio of S-PCMTD in the inverse of gravity direction (forward) and towards gravity direction (reverse).

    图 7  S-PCMTD在逆重力方向(反向)的相变和传热模型

    Figure 7.  Phase transition and heat transfer model of S-PCMTD in the inverse of gravity direction (reverse).

    图 8  S-PCMTD在逆重力方向的热通量和热整流比

    Figure 8.  Heat flux and thermal rectification ratio of S-PCMTD in the inverse of gravity direction.

    图 9  S-PCMTD在垂直重力方向的相变与传热模型

    Figure 9.  Phase transition and heat transfer model of S-PCMTD in the vertical gravity direction.

    图 10  S-PCMTD在垂直重力方向的热通量和热整流比

    Figure 10.  Heat flux and thermal rectification ratio of S-PCMTD in the vertical gravity direction.

    表 1  测试系统测量结果

    Table 1.  Results of the measurement system.

    材料 厚度
    h/m
    冷源温度
    Tc/℃
    热源温度
    Th/℃
    样品两端温度 T1-T8温度梯度
    均值$ \tilde{T} $/(℃·m–1)
    计算热导率
    $ \dot{K} $/(W·(m·K)–1)
    文献值
    $ \ddot{K} $/(W·(m·K)–1)
    Thigh/℃ Tlow/℃
    CaCl2·6H2O 0.01 15 30 17.7 26.8 35 0.74 0.77[26]
    PEG4000 0.055 40 50 43.1 46.1 6.67 0.20 0.2319[34]
    DownLoad: CSV

    表 2  CaCl2·6H2O和CPP/CaCl2·6H2O的热物理性质

    Table 2.  Thermophysical properties of CaCl2·6H2O and CPP/CaCl2·6H2O.

    材料及其相态 等效导热系数
    K/(W·(m·K)–1)
    固态 CaCl2·6H2O 0.74
    自然对流态CaCl2·6H2O 1.10
    相变前CPP/CaCl2·6H2O 1.02
    相变后CPP/CaCl2·6H2O 0.61
    DownLoad: CSV

    表 3  CaCl2·6H2O和CPP/CaCl2·6H2O的相变相关温度点

    Table 3.  Temperature points related to phase transitions of CaCl2·6H2O and CPP/CaCl2·6H2O.

    材料CaCl2·6H2O

    初始相变
    温度
    Tm1/℃
    CaCl2·6H2O

    相变峰值
    温度
    Tp1/℃
    CaCl2·4H2O

    相变峰值
    温度
    Tp2/℃
    CaCl2·6H2O25.227.645.13
    CPP/CaCl2·6H2O24.029.944.83
    DownLoad: CSV
  • [1]

    Pehl M, Arvesen A, Humpenoeder F, Popp A, Hertwich E G, Luderer G 2017 Nat. Energy 2 939Google Scholar

    [2]

    McGlade C, Ekins P 2015 Nature 517 187Google Scholar

    [3]

    赖明东, 雍熙, 史文静 , rhhz_volume 2022 rhhz_volume 自然辩证法研究 38 69Google Scholar

    Lai M D, Yong X, Shi W J 2022 Stud. Dialectics. Nat. 38 69Google Scholar

    [4]

    Yang L, Yan H Y, Lam J C 2014 Appl. Energ. 115 164Google Scholar

    [5]

    Guan L 2023 Ordnance Mater. Sci. Eng. 46 126 [关玲 2023 兵器材料科学与工程 46 126]Google Scholar

    Guan L 2023 Ordnance Mater. Sci. Eng. 46 126Google Scholar

    [6]

    Zhu H, Wang J J 2023 hydraul. Pneumatics Seals 43 55 [朱浩, 王晶晶 2023 液压气动与密封 43 55]Google Scholar

    Zhu H, Wang J J 2023 hydraul. Pneumatics Seals 43 55Google Scholar

    [7]

    Zhang X H, Li Z, Luo L G, Fan Y L, Du Z Y 2022 Energy 238 121652Google Scholar

    [8]

    Ma S, Jiang M D, Tao P, Song C Y, Wu J B, Wang J, Deng T, Shang W 2018 Prog. Nat. Sci. Mater. 28 653Google Scholar

    [9]

    Tran M-K, Mevawalla A, Aziz A, Panchal S, Xie Y, Fowler M 2022 Processes 10 6

    [10]

    Yuan K J, Shi J M, Aftab W, Qin M L, Usman A, Zhou F, Lv Y, Gao S, Zou R Q 2020 Adv. Funct. Mater. 30 8Google Scholar

    [11]

    Alva G, Lin Y X, Liu L K, Fang G Y 2017 Energ. Buildings 144 276Google Scholar

    [12]

    Giro-Paloma J, Martinez M, Cabeza L F, Ines F A 2016 Renew. Sust. Energ. Rev. 53 1059Google Scholar

    [13]

    Ghanekar A, Ji J, Zheng Y 2016 Appl. Phys. Lett. 109 5Google Scholar

    [14]

    Traipattanakul B, Tso C Y, Chao C Y H 2019 Int. J. Heat Mass Transf. 135 294Google Scholar

    [15]

    Meng Z N, Gulfam R, Zhang P, Ma F 2021 Int. J. Therm. Sci. 164 9Google Scholar

    [16]

    Kasali S O, Ordonez-Miranda J, Joulain K. 2020 Int. J. Therm. Sci. 153 106393Google Scholar

    [17]

    Ordonez-Miranda J, Hill J M, Joulain K, Ezzahri Y, Drevillon J 2018 J. Appl. Phys. 123 085102Google Scholar

    [18]

    Wehmeyer G, Yabuki T, Monachon C, Wu J Q, Dames C 2017 Appl. Phys. Rev. 4 041304Google Scholar

    [19]

    Zhang N, Yuan Y P, Cao X L, Du Y X, Zhang Z L, Gui Y W 2018 Adv. Eng. Mater. 20 1700753Google Scholar

    [20]

    Incropera F P, DeWitt D P, Bergman T L, Lavine A S 1996 Fundamentals of Heat and Mass Transfer (5th Ed.) (New York: Wiley) pp563–601

    [21]

    Tao W, Kong X F, Bao A Y, Fan C G, Zhang Y 2020 Materials 13 22Google Scholar

    [22]

    Wang Y, Ge S X, Huang B J, Zheng Z 2019 Mater. Chem. Phys. 223 723Google Scholar

    [23]

    Nagano K, Mochida T, Takeda S, Domanski R, Rebow M 2003 Appl. Therm. Eng. 23 229Google Scholar

    [24]

    Cui W W, Zhang H Z, Xia Y P, Zou Y J, Xiang C L, Chu H L, Qiu S J, Xu F, Sun L X 2018 J. Therm. Anal. Calorim. 131 57Google Scholar

    [25]

    Li G, Zhang B B, Li X, Zhou Y, Sun Q G, Yun Q 2014 Sol. Energ. Mater. Sol. C. 126 51Google Scholar

    [26]

    Meng Z N, Gulfam R, Zhang P, Ma F 2020 Int. J. Heat Mass Transf. 147 118915Google Scholar

    [27]

    Pallecchi E, Chen Z, Fernandes G E, Wan Y, Kim J H, Xu J 2015 Mater. Horiz. 2 125Google Scholar

    [28]

    Chen R J, Cui Y L, Tian H, Yao R M, Liu Z P, Shu Y, Li C, Yang Y, Ren T L, Zhang G, Zou R Q 2015 Sci. Rep. 5 8Google Scholar

    [29]

    Lyu J, Sheng Z Z, Xu Y Y, Liu C M, Zhang X T 2022 Adv. Funct. Mater. 32 19Google Scholar

    [30]

    Wong M Y, Traipattanakul B, Tso C Y, Chao C Y H, Qiu H H 2019 Int. J. Heat Mass Transf. 138 173Google Scholar

    [31]

    Swoboda T, Klinar K, Abbasi S, Brem G, Kitanovski A, Rojo M M 2021 Iscience 24 8Google Scholar

    [32]

    Zhang X X, Zhou Y, Li X, Shen Y, Hi C X, Dong O Y, Ren X F, Zeng J B, Sun Y X, Wang S J, Yang X B 2018 Energy Storage Sci. Technol. 7 40 [张新星, 周园, 李翔, 申月, 海春喜, 董欧阳, 任秀峰, 曾金波, 孙艳霞, 王石军, 杨小波 2018 储能科学与技术 7 40]Google Scholar

    Zhang X X, Zhou Y, Li X, Shen Y, Hi C X, Dong O Y, Ren X F, Zeng J B, Sun Y X, Wang S J, Yang X B 2018 Energy Storage Sci. Technol. 7 40Google Scholar

    [33]

    Li S W, Fu B B, Li J 2022 Acta Materiae Compositae Sin. 39 2885 [李绍伟, 傅彬彬, 李静 2022 复合材料学报 39 2885]Google Scholar

    Li S W, Fu B B, Li J 2022 Acta Materiae Compositae Sin. 39 2885Google Scholar

    [34]

    Luo F B, He Y F, Cui W Q, Guo Y Y, Jin Y C, Li H Z, Huang B Q, Qian Q R 2022 Acs Appl. Polym. Mater. 4 2160Google Scholar

    [35]

    Cottrill A L, Wang S, Liu A T, Wang W J, Strano M S 2018 Adv. Energy Mater. 8 11Google Scholar

    [36]

    Moench S, Dittrich R 2022 Energies 15 11Google Scholar

  • [1] Ren Xing, Yu Hong-Yu, Zhang Yong. Electroluminescence efficiency and stability of near ultraviolet organic light-emitting diodes based on BCPO luminous materials. Acta Physica Sinica, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [2] Du Te, Ma Han-Si, Jiang Xin-Peng, Zhao Fen, Zhang Zhao-Jian, Wang Zhi-Cheng, Peng Zheng, Zhang Yi-Yi, Zhang Yu-Qing, Luo Ming-Yu, Zou Hong-Xin, Wu Jia-Gui, Yan Pei-Guang, Zhu Gang-Yi, Yu Yang, He Xin, Chen Huan, Zhang Zhen-Fu, Yang Jun-Bo. Research progress of intelligent design of on-chip optical interconnection devices. Acta Physica Sinica, 2023, 72(18): 184204. doi: 10.7498/aps.72.20230705
    [3] Zhou Kun, Ma Hao-Yue, Sun Xi-Xian, Wu Xiao-Hu. Active tuning hBN phonon polaritons and spontaneous emission rates based on VO2 and graphene. Acta Physica Sinica, 2023, 72(7): 074201. doi: 10.7498/aps.72.20222167
    [4] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [5] Zhang Yi-Yi, Wei Xue-Ling, Nong Jie, Ma Han-Si, Ye Zi-Yang, Xu Wen-Jie, Zhang Zhen-Rong, Yang Jun-Bo. Ultra-compact In2Se3 tunable power splitter based on direct binary search algorithm. Acta Physica Sinica, 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [6] Zhu Xiang-Ning, Feng Dai-Li, Feng Yan-Hui, Lin Lin, Zhang Xin-Xin. Enhanced heat storage and heat transfer performance of wood-based biomass carbonized skeleton loaded with polyethylene glycol phase change material by surface modification. Acta Physica Sinica, 2023, 72(8): 088801. doi: 10.7498/aps.72.20222466
    [7] He Kun, Guo Xiu-Ya, Zhang Xiao-Ying, Wang Lei. Numerical investigation of electrohydrodynamic solid-liquid phase change in square enclosure. Acta Physica Sinica, 2021, 70(14): 149101. doi: 10.7498/aps.70.20202127
    [8] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [10] Jiang Feng-Yi, Liu Jun-Lin, Zhang Jian-Li, Xu Long-Quan, Ding Jie, Wang Guang-Xu, Quan Zhi-Jue, Wu Xiao-Ming, Zhao Peng,  Liu Bi-Yu,  Li Dan, Wang Xiao-Lan, Zheng Chang-Da, Pan Shuan, Fang Fang, Mo Chun-Lan. Semiconductor yellow light-emitting diodes. Acta Physica Sinica, 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [11] Liu Guo-Qiang, Ke Ya-Jiao, Zhang Kong-Bin, He Xiong, Luo Feng, He Bin, Sun Zhi-Gang. Research progress of physical model of full-solid-state magnetic refrigeration system. Acta Physica Sinica, 2019, 68(21): 217501. doi: 10.7498/aps.68.20191139
    [12] Sun Liang-Kui, Yu Zhe-Feng, Huang Jie. Research and design of directional heat transmission structure based on metamaterial. Acta Physica Sinica, 2015, 64(8): 084401. doi: 10.7498/aps.64.084401
    [13] Sun Liang-Kui, Yu Zhe-Feng, Huang Jie. Design of two-dimensional plate directional heat transmission structure based on meta materials. Acta Physica Sinica, 2015, 64(22): 224401. doi: 10.7498/aps.64.224401
    [14] Li Man, Dai Zhi-Gao, Ying Jian-Jian, Xiao Xiang-Heng, Yue Ya-Nan. Thermal characterization of carbon nanotube fibers based on steady-state electro-Raman-thermal technique. Acta Physica Sinica, 2015, 64(12): 126501. doi: 10.7498/aps.64.126501
    [15] Tian Man-Man, Wang Guo-Xiang, Shen Xiang, Chen Yi-Min, Xu Tie-Feng, Dai Shi-Xun, Nie Qiu-Hua. Phase change properties of ZnSb-doped Ge2Sb2Te5 films. Acta Physica Sinica, 2015, 64(17): 176802. doi: 10.7498/aps.64.176802
    [16] Chen Wei-Chao, Tang Hui-Li, Luo Ping, Ma Wei-Wei, Xu Xiao-Dong, Qian Xiao-Bo, Jiang Da-Peng, Wu Feng, Wang Jing-Ya, Xu Jun. Research progress of substrate materials used for GaN-Based light emitting diodes. Acta Physica Sinica, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [17] Wang Bao-Zheng, Zhang An-Qi, Wu Hong-Bin, Yang Wei, Wen Shang-Sheng. Polymer white light-emitting diodes with a single emission layer of fluorescent polymer blend. Acta Physica Sinica, 2010, 59(6): 4240-4244. doi: 10.7498/aps.59.4240
    [18] Wang Jun, Wei Xiao-Qiang, Rao Hai-Bo, Cheng Jian-Bo, Jiang Ya-Dong. High-efficiency and high-stability phosphorescent OLED based on new Ir complex. Acta Physica Sinica, 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [19] Liu Li-Feng, Lü Hui-Bin, Dai Shou-Yu, Chen Zheng-Hao. Rectifying characteristics of La0.9Sr0.1MnO3/Si p-n diodes. Acta Physica Sinica, 2005, 54(5): 2342-2345. doi: 10.7498/aps.54.2342
    [20] Zhang Peng, Wang Ru-Zu, Murakami Masahide. . Acta Physica Sinica, 2002, 51(6): 1350-1354. doi: 10.7498/aps.51.1350
Metrics
  • Abstract views:  669
  • PDF Downloads:  26
  • Cited By: 0
Publishing process
  • Received Date:  23 October 2023
  • Accepted Date:  04 December 2023
  • Available Online:  12 December 2023
  • Published Online:  05 March 2024

/

返回文章
返回