Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Uniformity optimization of ion beam sputtering coating equipment based on strong current ion source

Li Sang-Ya Zhang Ai-Lin Xu Xin Lü Tao Wang Shi-Kang Luo Qing

Citation:

Uniformity optimization of ion beam sputtering coating equipment based on strong current ion source

Li Sang-Ya, Zhang Ai-Lin, Xu Xin, Lü Tao, Wang Shi-Kang, Luo Qing
PDF
HTML
Get Citation
  • The widespread application of ion beam sputtering coating, especially in optical devices, requires the improvement of beam current intensity and uniformity of large-area uniform coatings. The advent of high current Penning sources offers a potential solution. This study introduces an automated optimization simulation method based on a three-electrode extraction system to investigate its influence on ion beam quality and uniformity. Focusing on high current intensity and uniformity, our simulation explores the effects of plasma electrode, inhibition electrode, and extraction electrode angles and distances on ion beam performance. Evaluation metrics include average beam intensity density, average energy of a single particle, and reciprocal variance of each macro particle position, which are achieved through normalization functions, allowing comprehensive comparison of simulation results. To assess coating efficiency, we estimate sputtering yield and depth. The study identifies patterns among electrodes and emphasizes the influence of different ion ratios on beam extraction. The results indicate that optimizing the angle of the plasma electrode and the distance of the suppressed electrode yields a highly uniform ion beam for low charge ions. However, for highly charged ions, similar optimization will reduce the current strength, so compensation needs to be achieved through electrode shape optimization. This research provides a model for systematically optimizing the three-electrode extraction system, guiding researchers in achieving optimal solutions based on ion source characteristics and application requirements. Additionally, we introduce a method of estimating the sputtering depth of mixed ion beams. This study provides valuable insights for advancing ion beam sputtering coating technology and reference for making the decision on design and application of ion source.
      Corresponding author: Zhang Ai-Lin, ailinz@ustc.edu.cn ; Luo Qing, luoqing@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602201), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12105278), the Student Innovation and Entrepreneurship Fund of Action Plan for Student Innovation and Entrepreneurship and Achievement Transformation at the University of Science and Technology of China (Grant No. CY2022G07), the Quality Engineering Project for Higher Education Institutions of Anhui Province, China (Grant No. 2021jyxm1731), the International Partnership Program of the Chinese Academy of Sciences (Grant No. 211134KYSB20200057), and the Fundamental Research Fund for the Central Universities, China.
    [1]

    Wei D T 1989 Appl. Opt. 28 2813Google Scholar

    [2]

    Ristau D 2005 Proc. SPE 5963 596313Google Scholar

    [3]

    Becker J, Scheuer V 1990 Appl. Opt. 29 4303Google Scholar

    [4]

    刘金声2003离子束沉积薄膜技术及其应用(北京: 国防工业出版社)第50—58页

    Liu J S 2003 Ion Beam Deposition Film Technology and Application (Beijing: National Defense Industry Press) pp50–58

    [5]

    Kumar T S, Prabu S B, Manivasagam G 2014 J. Mater. Eng. Perform. 23 2877Google Scholar

    [6]

    Nouri Z, Li R, Holt R A 2010 Nuclear Instr. Meth. A 614 174Google Scholar

    [7]

    Mamedov N V, Maslennikov S P, Presnyakov Y K, Solodovnikov A A, Yurkov D I 2019 Tech. Phys. 64 1290Google Scholar

    [8]

    Zhang A L, Li D, Xu L C, Xiong Z J, Zhang J Y, Peng H P, Luo Q 2022 Phys. Rev. Accel. Beams 25 103501Google Scholar

    [9]

    方应翠 2014 真空镀膜原理与技术 (北京: 高等教育出版社) 第183—190页

    Fang Y C 2014 Principle and Technology of Vacuum Coating (Beijing: Higher Education Press) pp183–190

    [10]

    王惠三, 简广德, 周才品, 雷光玖, 姜韶风, 卢大伦, 江涛 2001 核聚变与等离子体物理 21 101

    Wang H S, Jian G D, Zhou C P, Lei G J, Jiang S F, Lu D L, Jiang T 2001 Nuclear Fusion and Plasma Physics 21 101

    [11]

    陈佳洱 1993 加速器物理基础(初版) (北京: 原子能出版社) 第29—30页

    Chen J E 1993 Fundamentals of Accelerator Physics (First Edition) (Beijing: Atomic Energy Press) pp29–30

    [12]

    Macdonald J A 2020 Ph. D Dissertation (Columbia: The University of Columbiabritish

    [13]

    Zhang M, Vassiliadis S, Delgado-Frias J G 1996 IEEE Trans. Comput. 45 1045Google Scholar

    [14]

    Bohdansky J 1984 Nuclear Instrum. Methods Phys. Res. B 2 587Google Scholar

    [15]

    Seah M P, Clifford C A, Green F M, Gilmore I S 2005 Nuclear Instrum. Methods Phys. Res. B 37 444Google Scholar

    [16]

    王云, 陈志, 赵红卫, 赵阳阳, 孙良亭, 杨尧, 钱程, 武启, 马鸿义, 张文慧, 张子民, 张雪珍, 刘占稳 2013 原子核物理评论 30 141Google Scholar

    Wang Y, Chen Z, Zhao H W, Zhao Y Y, Sun L T, Yang Y, Qian C, Wu Q, MA H Y, Zhang W H, Zhang Z M, Zhang X Z, Liu Z W 2013 Nucl. Phys. Rev. 30 141Google Scholar

    [17]

    IBSimu Reference Manual, Doxygen https://ibsimu.sourceforge.net/manual.html [2023-9-13

    [18]

    Ren H T, Zhao J, Peng S X, Lu P N, Zhou Q F, Xu Y, Chen J, Zhang T, Zhang A L, Guo Z Y, Chen J E 2014 Rev. Sci. Instrum. 85 2Google Scholar

    [19]

    Yamamura Y, Tawara H 1996 At. Data Nucl. Data Tables 62 149Google Scholar

    [20]

    Wei Q, Li K D, Lian J, Wang L M 2008 J. Phys. D 41 172002Google Scholar

    [21]

    Sigmund P 1973 J. Mater. Sci. 8 1545Google Scholar

  • 图 1  初始引出电极设计

    Figure 1.  Initial extraction electrode design.

    图 2  优化前后的等离子体极形状 (a)两种初始等离子体电极设计; (b)优化后的等离子体电极设计(等离子体电极为15 keV, 抑制电极为–5 keV)

    Figure 2.  Optimized plasma pole shape: (a) Two initial plasma electrode designs; (b) optimized plasma electrode design (Plasma electrode is 15 keV, suppression electrode is –5 keV).

    图 3  各电极角度变化量对束流品质的影响 (a)三电极同步角度调整; (b)等离子体电极角度调整; (c)抑制电极角度调整; (d)引出电极角度调整

    Figure 3.  Influence of angle variation of each electrode on beam quality: (a) Three-electrode synchronization angle adjustment; (b) plasma electrode angle adjustment; (c) inhibit electrode angle adjustment; (d) extraction electrode angle adjustment.

    图 4  等离子电极与引出电极的角度共同作用对束流质量的影响

    Figure 4.  The influence of the angles of plasma electrode and extraction electrode on beam quality.

    图 5  有无抑制电极时的束流对比图 (a) 无抑制电极; (b) 有抑制电极

    Figure 5.  Comparison diagram of the beam with and without the suppression electrode: (a) Without the suppression electrode; (b) with the suppression electrode.

    图 6  各组别抑制电极距离对束流品质的影响

    Figure 6.  The influence of electrode distance on beam quality in each group.

    图 7  各组别引出电极距离对束流品质的影响

    Figure 7.  The influence of the distance of the leading electrode on the beam quality.

    图 8  不同离子比对引出束流质量的模拟

    Figure 8.  Simulation of extracted beam mass by different ion ratios.

    图 9  智能优化后的15 keV引出模拟

    Figure 9.  The optimized 15 keV extraction simulation.

    图 10  优化前后束流截面能量分布对比 (a)优化前; (b) 优化后

    Figure 10.  The comparison of energy distribution of the beam before and after optimation: (a) Before optimation; (b) after optimation.

    图 11  优化后的1.5 keV引出模拟

    Figure 11.  The optimized 1.5 keV extraction simulation.

    图 12  氢离子优化引出Ni靶的溅射深度估值

    Figure 12.  Estimation of sputtering depth of Ni target induced by hydrogen ion optimization.

    表 1  潘宁源参数

    Table 1.  Parameters of penning source.

    参数符号单位
    束流流强密度JA/m0.1
    等离子体极电位V1keV1.5
    引出电极电位V2V0
    电离室轴向引出开口rm0.003
    DownLoad: CSV

    表 2  优化参数

    Table 2.  Optimized parameters.

    参数符号单位
    束流流强密度JA/m20.1
    电极的角度变化Anglerad0
    抑制电极与离子源的距离l1m0.0185
    引出电极与离子源的距离l2m0.033
    DownLoad: CSV

    表 3  优化电极的角度选择

    Table 3.  Optimize electrode angle selection.

    组别 等离子体电极
    角度变化/rad
    引出电极
    角度变化/rad
    加权评估值
    1 0 0.331613 0.7300489
    2 0.24 0.19 0.7300489
    3 –0.0174 0.21 0.73071698
    4 0.21 0.227 0.73080603
    5 0.19 0.4 0.73085056
    DownLoad: CSV

    表 4  优化抑制电极的选择

    Table 4.  The selection of optimized inhibition electrode.

    组别 等离子体电极
    角度变化/rad
    引出电极
    角度变化/rad
    抑制电极位置/m
    1 0 0.331613 0.019
    2 0.21 0.227 0.030
    3 0.21 0.227 0.022
    DownLoad: CSV
  • [1]

    Wei D T 1989 Appl. Opt. 28 2813Google Scholar

    [2]

    Ristau D 2005 Proc. SPE 5963 596313Google Scholar

    [3]

    Becker J, Scheuer V 1990 Appl. Opt. 29 4303Google Scholar

    [4]

    刘金声2003离子束沉积薄膜技术及其应用(北京: 国防工业出版社)第50—58页

    Liu J S 2003 Ion Beam Deposition Film Technology and Application (Beijing: National Defense Industry Press) pp50–58

    [5]

    Kumar T S, Prabu S B, Manivasagam G 2014 J. Mater. Eng. Perform. 23 2877Google Scholar

    [6]

    Nouri Z, Li R, Holt R A 2010 Nuclear Instr. Meth. A 614 174Google Scholar

    [7]

    Mamedov N V, Maslennikov S P, Presnyakov Y K, Solodovnikov A A, Yurkov D I 2019 Tech. Phys. 64 1290Google Scholar

    [8]

    Zhang A L, Li D, Xu L C, Xiong Z J, Zhang J Y, Peng H P, Luo Q 2022 Phys. Rev. Accel. Beams 25 103501Google Scholar

    [9]

    方应翠 2014 真空镀膜原理与技术 (北京: 高等教育出版社) 第183—190页

    Fang Y C 2014 Principle and Technology of Vacuum Coating (Beijing: Higher Education Press) pp183–190

    [10]

    王惠三, 简广德, 周才品, 雷光玖, 姜韶风, 卢大伦, 江涛 2001 核聚变与等离子体物理 21 101

    Wang H S, Jian G D, Zhou C P, Lei G J, Jiang S F, Lu D L, Jiang T 2001 Nuclear Fusion and Plasma Physics 21 101

    [11]

    陈佳洱 1993 加速器物理基础(初版) (北京: 原子能出版社) 第29—30页

    Chen J E 1993 Fundamentals of Accelerator Physics (First Edition) (Beijing: Atomic Energy Press) pp29–30

    [12]

    Macdonald J A 2020 Ph. D Dissertation (Columbia: The University of Columbiabritish

    [13]

    Zhang M, Vassiliadis S, Delgado-Frias J G 1996 IEEE Trans. Comput. 45 1045Google Scholar

    [14]

    Bohdansky J 1984 Nuclear Instrum. Methods Phys. Res. B 2 587Google Scholar

    [15]

    Seah M P, Clifford C A, Green F M, Gilmore I S 2005 Nuclear Instrum. Methods Phys. Res. B 37 444Google Scholar

    [16]

    王云, 陈志, 赵红卫, 赵阳阳, 孙良亭, 杨尧, 钱程, 武启, 马鸿义, 张文慧, 张子民, 张雪珍, 刘占稳 2013 原子核物理评论 30 141Google Scholar

    Wang Y, Chen Z, Zhao H W, Zhao Y Y, Sun L T, Yang Y, Qian C, Wu Q, MA H Y, Zhang W H, Zhang Z M, Zhang X Z, Liu Z W 2013 Nucl. Phys. Rev. 30 141Google Scholar

    [17]

    IBSimu Reference Manual, Doxygen https://ibsimu.sourceforge.net/manual.html [2023-9-13

    [18]

    Ren H T, Zhao J, Peng S X, Lu P N, Zhou Q F, Xu Y, Chen J, Zhang T, Zhang A L, Guo Z Y, Chen J E 2014 Rev. Sci. Instrum. 85 2Google Scholar

    [19]

    Yamamura Y, Tawara H 1996 At. Data Nucl. Data Tables 62 149Google Scholar

    [20]

    Wei Q, Li K D, Lian J, Wang L M 2008 J. Phys. D 41 172002Google Scholar

    [21]

    Sigmund P 1973 J. Mater. Sci. 8 1545Google Scholar

  • [1] Fu Yu-Liang, Zhang Si-Yuan, Sun An-Bang, Ma Zu-Fu, Wang Ya-Nan. Electron extraction mechanism of magnet array microwave discharge neutralizer. Acta Physica Sinica, 2024, 73(11): 115203. doi: 10.7498/aps.73.20240273
    [2] Luo Ling-Feng, Yang Juan, Geng Hai, Wu Xian-Ming, Mou Hao. Numerical simulation of magnetic field influence on plasma and electron extraction of electron cyclotron resonance neutralizer. Acta Physica Sinica, 2024, 73(16): 165203. doi: 10.7498/aps.73.20240612
    [3] Zhang Gang, Yang Guo-Jun, He Xiao-Zhong, Du Yang, Shi Jin-Shui, Li Xiao-An. Key technologies of 18 MeV self-extraction cyclotron. Acta Physica Sinica, 2022, 71(21): 212901. doi: 10.7498/aps.71.20220934
    [4] Xia Xu, Yang Juan, Geng Hai, Wu Xian-Ming, Fu Yu-Liang, Mou Hao, Tan Ren-Wei. Numerical simulation of electron extraction from micro electron cyclotron resonance neutralizer under different magnetic circuits. Acta Physica Sinica, 2022, 71(4): 045201. doi: 10.7498/aps.71.20211519
    [5] Lu Xiao-Yong, Yuan Cheng, Gao Yang. Numerical research on ion extraction with resonant charge exchange process. Acta Physica Sinica, 2021, 70(14): 145201. doi: 10.7498/aps.70.20210105
    [6] Numerical Simulation of Miniature Electron Cyclotron Resonance Neutralizers with Different Magnetic Circuits. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211519
    [7] Chen Jian, Liu Zhi-Qiang, Guo Heng, Li He-Ping, Jiang Dong-Jun, Zhou Ming-Sheng. Physical characteristics of ion extraction simulation system based on gas discharge plasma jet. Acta Physica Sinica, 2018, 67(18): 182801. doi: 10.7498/aps.67.20180919
    [8] Jin Yi-Zhou, Yang Juan, Feng Bing-Bing, Luo Li-Tao, Tang Ming-Jie. Ion extraction experiment for electron cyclotron resonance ion source with different magnetic topology. Acta Physica Sinica, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [9] Yang Chao, Liu Da-Gang, Wang Hui-Hui, Yang Yu-Peng, Liao Fang-Yan, Peng Kai, Liu La-Qun. The MCC numerical algorithm of the extraction of the surface-produced negative hydrogen ions. Acta Physica Sinica, 2013, 62(2): 025206. doi: 10.7498/aps.62.025206
    [10] Yang Chao, Liu Da-Gang, Wang Hui-Hui, Yang Yu-Peng, Liao Fang-Yan, Liu La-Qun, Peng Kai, Xia Meng-Zhong. Numerical simulation of energy deposition and extraction efficiency of the volume produced negative hydrogen ions. Acta Physica Sinica, 2012, 61(23): 235201. doi: 10.7498/aps.61.235201
    [11] Gong Ye, Zhang Jian-Hong, Wang Xiao-Dong, Wu Di, Liu Jin-Yuan, Liu Yue, Wang Xiao-Gang, Ma Teng-Cai. Numerical simulation on the energy deposition of double-layer target irradiated by intense pulsed ion beam. Acta Physica Sinica, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [12] Properties of Co nano-films deposited on monocrystalline silicon surface by ion beam sputtering. Acta Physica Sinica, 2007, 56(12): 7158-7164. doi: 10.7498/aps.56.7158
    [13] Song Xiao-Peng, Chen Rong, Bao Cheng-Yu, Wang De-Wu. Dual extraction and collection of ions by parallel electrode method. Acta Physica Sinica, 2005, 54(9): 4198-4202. doi: 10.7498/aps.54.4198
    [14] Mu Zong-Xin, Li Guo-Qing, Qin Fu-Wen, Huang Kai-Yu, Che De-Liang. The model of the magnetic mirror effect in the unbalanced magnetron sputtering ion beams. Acta Physica Sinica, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [15] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong. Ion extraction and collection studied by parallel electrode method on considerin g sputtering loss. Acta Physica Sinica, 2005, 54(4): 1543-1551. doi: 10.7498/aps.54.1543
    [16] Xie Guo-Feng, Wang De-Wu, Ying Chun-Tong. Ions extraction and collection using the RF resonance method and taking into consideration the sputtering loss. Acta Physica Sinica, 2005, 54(5): 2147-2152. doi: 10.7498/aps.54.2147
    [17] Mu Zong-Xin, Li Guo-Qing, Che De-Liang, Huang Kai-Yu, Liu Cui. Investigation of the model of the discharge properties of the unbalanced magnetron sputtering system. Acta Physica Sinica, 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
    [18] Zhu Hong-Lian, Wang De-Wu. . Acta Physica Sinica, 2002, 51(6): 1338-1345. doi: 10.7498/aps.51.1338
    [19] XIONG JIA-GUI, WANG DE-WU. TWO-DIMENSIONAL PIC-MCC SIMULATION OF ION EXTRACTION. Acta Physica Sinica, 2000, 49(12): 2420-2426. doi: 10.7498/aps.49.2420
    [20] ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНЫХ РАЗМЕРОВ ВЫТЯГИВАЮЩЕГО УСТРОЙСТВА ВЫСОКОЧАСТОТНОГО ИОННОГО ИСТОЧНИКА. Acta Physica Sinica, 1963, 19(12): 782-790. doi: 10.7498/aps.19.782
Metrics
  • Abstract views:  2615
  • PDF Downloads:  74
  • Cited By: 0
Publishing process
  • Received Date:  14 September 2023
  • Accepted Date:  22 November 2023
  • Available Online:  05 December 2023
  • Published Online:  05 March 2024

/

返回文章
返回