Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Computational polarized colorful Fourier ptychography imaging: a novel information reuse technique of polarization of scattering light field

Xiang Meng He Piao Wang Tian-Yu Yuan Lin Deng Kai Liu Fei Shao Xiao-Peng

Citation:

Computational polarized colorful Fourier ptychography imaging: a novel information reuse technique of polarization of scattering light field

Xiang Meng, He Piao, Wang Tian-Yu, Yuan Lin, Deng Kai, Liu Fei, Shao Xiao-Peng
PDF
HTML
Get Citation
  • Fourier ptychography for high-resolution imaging has been a revolutionizing technical, since it can provide abundant information about target scene by changing illumination or pupil scanning. However, many objects are covered by dynamic scattering media, such as biological tissues and mist, that disrupts the light paths and forms the scattering wall, let alone high-resolution imaging. It is worth noting that the scatting effect caused by the scattering media will reduce the correlation of scattered light field, which makes the information aliasing difficult to extract. The situation becomes worse if the image scene is in color. Typically, the wavefront shaping, optical transmission matrix, and speckle correlation technique can successfully recover hidden targets form the scattered light field. Notably, the physical model of conventional method is limited by the difficultly in extracting target information from the strong scattering environment, especially in broadband light illumination imaging. Thus, it is limited to achieve super-resolution color imaging through scattering media by utilizing the current techniques.In this work, we present a computational polarized colorful Fourier ptychography imaging approach for super-resolution perspective in broadband dynamic scattering media. In order to address the challenge of current imaging methods that is limited by the width of the light spectrum, the polarization characteristics of the scattered-light-field are explored. After retrieving a series of sub-polarized images, which bring the information about different frequencies caused by the motion of scattering media and are processed by the common-mode rejection of polarization characteristic, our computational approach utilizes the iterative optimization algorithm to recover the scene. Notably, owning to the difference between the target scattering information and background scattering information of scattered light fields with different polarization rotation angles, we can obtain two images in which the target information and the background information are dominant in the scattered field. Afterwards, a series of images containing target information and background information is used to iterate the Fourier ptychographyprogram to update the target image based on the obtained image sequence until the estimation converges. During the updating procedure, the scattering effect can be removed, and the spatial-resolution is improved.Compared with traditional scattering imaging model, the proposed method can perform super-resolution color imaging and descattering under various conditions, and solve the problem of color cases. Furthermore, the proposed method is easy to incorporate into a traditional Fourier Ptychography imaging system to obtain high-fidelity images with better quality and effective detail information. Therefore, the proposed method has the potential to help super-resolution imaging to obtain more practical applications.
      Corresponding author: Shao Xiao-Peng, xpshao@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62205259, 62075175, 61975254, 62105254) and the Open Research Fund of CAS Key Laboratory of Space Precision Measurement Technology.
    [1]

    Dong Y, Liu S, Shen Y, He H, Ma H 2020 Biomed. Opt. Express 11 4960Google Scholar

    [2]

    Chen H, Wu X, Liu G, Chen Z, Pu J 2023 Results Phys. 44 106134Google Scholar

    [3]

    苏云, 葛婧菁, 王业超, 王乐然, 王钰, 郑子熙, 邵晓鹏 2023 中国光学 16 258Google Scholar

    Su Y, Ge J J, Wang Y C, Wang L R, Wang Y, Zheng Z X, Shao X P 2023 Chin. Opt. 16 258Google Scholar

    [4]

    邓红艳, 苏云, 郑国宪, 赵明, 张月, 田芷铭 2023 光子学报 52 0552219Google Scholar

    Deng H Y, Su Y, Zheng G X, Zhao M, Zhang Y, Tian Z M 2023 Acta Photonica Sin. 52 0552219Google Scholar

    [5]

    Bian Y, Li H, Wang Y, Zheng Z, Liu X 2015 Appl. Opt. 54 8241Google Scholar

    [6]

    Li L, Pan A, Li C, Zhao H 2023 Opt. Commun. 537 129393Google Scholar

    [7]

    潘安 2020 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Pan A 2020 Ph. D. Dissertation (Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences

    [8]

    Zheng G, Horstmeyer R, Yang C 2013 Nat. Photonics 7 739Google Scholar

    [9]

    Ou X, Horstmeyer R, Yang C, Zheng G 2013 Opt. Lett. 38 4845Google Scholar

    [10]

    Wang M Q, Zhang Y Z, Chen Q, Sun J S, Fan Y, Zuo C 2017 Opt. Commun. 405 406Google Scholar

    [11]

    Pan A, Zhang Y, Wen K, Zhou M, Min J, Lei M, Yao B 2018 Opt. Express 26 23119Google Scholar

    [12]

    Tian Z, Zhao M, Yang D, Wang S, Pan A 2023 Photonics Res. 11 2072Google Scholar

    [13]

    Holloway J, Wu Y, Sharma M K, Cossairt O, Veeraraghavan A 2017 Sci. adv. 3 e1602564Google Scholar

    [14]

    Xiang M, Pan A, Zhao Y, Fan X, Zhao H, Li C, Yao B 2021 Opt. Lett. 46 29Google Scholar

    [15]

    Dong S, Nanda P, Shiradkar R, Guo K, Zheng G 2014 Opt. Express 22 20856Google Scholar

    [16]

    Jiang S, Liao J, Bian Z, Song P, Soler G, Hoshino K, Zheng G 2019 Opt. Lett. 44 811Google Scholar

    [17]

    Liu Q, Chen Y, Liu W, Han Y, Cao R, Zhang Z, Kuang C, Liu X 2019 Opt. Lasers Eng. 123 45Google Scholar

    [18]

    Xie Z L, Qi B, Ma H T, Ren G, Tan Y F, He B, Zeng H L, Jiang C 2016 Chin. Phys. Lett. 33 044206Google Scholar

    [19]

    Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2015 Conference on Adaptive Optics and Wavefront Control for Biological Systems San Francisco, California, United States , February 7−9, 2015 p93350W

    [20]

    Zhu L, Soldevila F, Moretti C, d’Arco A, Boniface A, Shao X, De Aguiar H B, Gigan S 2022 Nat. Commun. 13 1447Google Scholar

    [21]

    Gao Y T, Chen J R, Wang A Y, Pan A, Ma C W, Yao B L 2021 Sci. China-Phys. Mech. Astron. 64 114211Google Scholar

    [22]

    Bian Y X, Xing T, Deng W J, Xian Q, Qiao H L, Yu Q, Peng J L, Yang X F, Jiang Y N, Wang J X, Yang S M, Shen R B, Shen H, Kuang C F 2022 Infrared Laser Eng. 51 20210891Google Scholar

    [23]

    Hu H, Jin H, Liu H, Li X, Cheng Z, Liu T, Zhai J 2023 Opt. Laser Technol. 166 109632Google Scholar

    [24]

    Schechner Y Y, Karpel N 2006 IEEE J. Oceanic Eng. 30 570Google Scholar

    [25]

    Han P, Liu F, Yang K, Ma J, Li J, Shao X 2017 Appl. Opt. 56 6631Google Scholar

    [26]

    Andreoli D, Volpe G, Popoff S, Katz O, Grésillon S, Gigan S 2015 Sci. Rep. 5 10347Google Scholar

    [27]

    Tao H C, Lü J G, Liang J Q, Zhao B X, Chen Y P, Zheng K F, Zhao Y Z, Wang W B, Qin Y X, Liu G H, Sheng K Y 2023 Photonics 10 566Google Scholar

    [28]

    Tyo J S 1998 J. Opt. Soc. Am. A 15 359Google Scholar

    [29]

    Yang L, Liang J, Zhang W, Ju H, Ren L, Shao X 2019 Opt. Commun. 438 96Google Scholar

    [30]

    Luo M R, Cui G, Rigg B 2001 Color Res. Appl. 26 340Google Scholar

  • 图 1  透过散射介质超分辨率彩色成像原理图

    Figure 1.  Schematic of super-resolution color imaging through scattering media.

    图 2  不同偏振方位角图像的均值强度分布

    Figure 2.  Mean intensity variation of different sub-polarized images.

    图 3  散射光场偏振特性分布情况 (a) 偏振度图像; (b) 偏振角图像; (c)—(e) RGB三通道的偏振度图像; (f)—(h) RGB三通道的偏振角图像; (i) RGB三通道的偏振角图像子区域的数值分析

    Figure 3.  Distribution of polarization characteristics of scattering light field: (a) DoLP images; (b) AoP images; (c)–(e) DoLP images in RGB channel; (f)–(h) AoP images in RGB channel; (i) numerical analysis for sub regions of AoP images in RGB channel.

    图 4  偏振傅里叶叠层重建算法流程

    Figure 4.  Flow chart of the polarization Fourier Ptychography imaging.

    图 5  分辨率靶标的实验结果 (a) 探测器获取的原始强度图像; (b) 本文算法重建所得结果; (c) 原始强度图像的局部放大; (d) 本文重建结果的局部放大; (e) 传统偏振去散射算法重建结果; (f) 传统偏振去散射重建结果的局部放大

    Figure 5.  Imaging result of USAF target: (a) Raw intensity image; (b) the reconstructed resulted by proposed method; (c) the details information of the raw image (a); (d) the details information of the image (b); (e) the reconstructed resulted by the traditional polarimetric dehazing method; (f) the details information of the image (e)

    图 6  (a) 目标靶板的真值图像; (b) 图5所示的1组6的分辨率线对像素强度值分布图; (c), (d)和(e)分别为图6(a)图5(a)图5(b)的R, G, B三通道像素强度统计值

    Figure 6.  (a) Ground truth image; (b) the horizontal line plots at the resolution line pair of group 1, element 6; (c), (d) and (e) are the pixel intensity distribution of channel R, G and B of Fig. 6(a), Fig. 5(a) and Fig. 5(b).

    图 7  其他目标的重建结果: 纸质、塑料、病叶和编织布, 其中(a)—(c), (d)—(f), (g)—(i), (j)—(l)分别为不同目标的参考图像、直接采集原始强度图像和重建结果; (a1)—(l1), (a2)—(f2)分别为不同目标图像对应区域的细节信息对比结果

    Figure 7.  Reconstruction images of different objects (paper, plastic, diseased leaves and woven fabric) using the proposed method: (a)–(c), (d)–(f), (g)–(i), (j)–(l) The ground truth image, raw intensity image and reconstructed image; (a1)–(l1), (a2)–(f2) the detail information of area 1–6 in images.

  • [1]

    Dong Y, Liu S, Shen Y, He H, Ma H 2020 Biomed. Opt. Express 11 4960Google Scholar

    [2]

    Chen H, Wu X, Liu G, Chen Z, Pu J 2023 Results Phys. 44 106134Google Scholar

    [3]

    苏云, 葛婧菁, 王业超, 王乐然, 王钰, 郑子熙, 邵晓鹏 2023 中国光学 16 258Google Scholar

    Su Y, Ge J J, Wang Y C, Wang L R, Wang Y, Zheng Z X, Shao X P 2023 Chin. Opt. 16 258Google Scholar

    [4]

    邓红艳, 苏云, 郑国宪, 赵明, 张月, 田芷铭 2023 光子学报 52 0552219Google Scholar

    Deng H Y, Su Y, Zheng G X, Zhao M, Zhang Y, Tian Z M 2023 Acta Photonica Sin. 52 0552219Google Scholar

    [5]

    Bian Y, Li H, Wang Y, Zheng Z, Liu X 2015 Appl. Opt. 54 8241Google Scholar

    [6]

    Li L, Pan A, Li C, Zhao H 2023 Opt. Commun. 537 129393Google Scholar

    [7]

    潘安 2020 博士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Pan A 2020 Ph. D. Dissertation (Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences

    [8]

    Zheng G, Horstmeyer R, Yang C 2013 Nat. Photonics 7 739Google Scholar

    [9]

    Ou X, Horstmeyer R, Yang C, Zheng G 2013 Opt. Lett. 38 4845Google Scholar

    [10]

    Wang M Q, Zhang Y Z, Chen Q, Sun J S, Fan Y, Zuo C 2017 Opt. Commun. 405 406Google Scholar

    [11]

    Pan A, Zhang Y, Wen K, Zhou M, Min J, Lei M, Yao B 2018 Opt. Express 26 23119Google Scholar

    [12]

    Tian Z, Zhao M, Yang D, Wang S, Pan A 2023 Photonics Res. 11 2072Google Scholar

    [13]

    Holloway J, Wu Y, Sharma M K, Cossairt O, Veeraraghavan A 2017 Sci. adv. 3 e1602564Google Scholar

    [14]

    Xiang M, Pan A, Zhao Y, Fan X, Zhao H, Li C, Yao B 2021 Opt. Lett. 46 29Google Scholar

    [15]

    Dong S, Nanda P, Shiradkar R, Guo K, Zheng G 2014 Opt. Express 22 20856Google Scholar

    [16]

    Jiang S, Liao J, Bian Z, Song P, Soler G, Hoshino K, Zheng G 2019 Opt. Lett. 44 811Google Scholar

    [17]

    Liu Q, Chen Y, Liu W, Han Y, Cao R, Zhang Z, Kuang C, Liu X 2019 Opt. Lasers Eng. 123 45Google Scholar

    [18]

    Xie Z L, Qi B, Ma H T, Ren G, Tan Y F, He B, Zeng H L, Jiang C 2016 Chin. Phys. Lett. 33 044206Google Scholar

    [19]

    Bertolotti J, van Putten E G, Blum C, Lagendijk A, Vos W L, Mosk A P 2015 Conference on Adaptive Optics and Wavefront Control for Biological Systems San Francisco, California, United States , February 7−9, 2015 p93350W

    [20]

    Zhu L, Soldevila F, Moretti C, d’Arco A, Boniface A, Shao X, De Aguiar H B, Gigan S 2022 Nat. Commun. 13 1447Google Scholar

    [21]

    Gao Y T, Chen J R, Wang A Y, Pan A, Ma C W, Yao B L 2021 Sci. China-Phys. Mech. Astron. 64 114211Google Scholar

    [22]

    Bian Y X, Xing T, Deng W J, Xian Q, Qiao H L, Yu Q, Peng J L, Yang X F, Jiang Y N, Wang J X, Yang S M, Shen R B, Shen H, Kuang C F 2022 Infrared Laser Eng. 51 20210891Google Scholar

    [23]

    Hu H, Jin H, Liu H, Li X, Cheng Z, Liu T, Zhai J 2023 Opt. Laser Technol. 166 109632Google Scholar

    [24]

    Schechner Y Y, Karpel N 2006 IEEE J. Oceanic Eng. 30 570Google Scholar

    [25]

    Han P, Liu F, Yang K, Ma J, Li J, Shao X 2017 Appl. Opt. 56 6631Google Scholar

    [26]

    Andreoli D, Volpe G, Popoff S, Katz O, Grésillon S, Gigan S 2015 Sci. Rep. 5 10347Google Scholar

    [27]

    Tao H C, Lü J G, Liang J Q, Zhao B X, Chen Y P, Zheng K F, Zhao Y Z, Wang W B, Qin Y X, Liu G H, Sheng K Y 2023 Photonics 10 566Google Scholar

    [28]

    Tyo J S 1998 J. Opt. Soc. Am. A 15 359Google Scholar

    [29]

    Yang L, Liang J, Zhang W, Ju H, Ren L, Shao X 2019 Opt. Commun. 438 96Google Scholar

    [30]

    Luo M R, Cui G, Rigg B 2001 Color Res. Appl. 26 340Google Scholar

  • [1] Xu Jing-Han, Wu Guo-Jun, Dong Jing, Yu Yang, Feng Fei, Liu Bo. Research on polarization characteristics of background light by modified polarization difference imaging method. Acta Physica Sinica, 2023, 72(24): 244201. doi: 10.7498/aps.72.20230639
    [2] Zhao Fu, Hu Yu-Yao, Wang Peng, Liu Jun. Polarization multiplexing scattering imaging. Acta Physica Sinica, 2023, 72(15): 154201. doi: 10.7498/aps.72.20230551
    [3] Gao Chen-Dong, Zhao Ming-Lin, Lu De-He, Dou Jian-Tai. Underwater polarization imaging based on two-layer multi-index optimization. Acta Physica Sinica, 2023, 72(7): 074202. doi: 10.7498/aps.72.20222017
    [4] Sui Yi-Hui, Guo Xing-Yi, Yu Jun-Jin, Alexander A. Solovev, Ta De-An, Xu Kai-Liang. Accelerating super-resolution ultrasound localization microscopy using generative adversarial net. Acta Physica Sinica, 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [5] Yu Jun-Jin, Guo Xing-Yi, Sui Yi-Hui, Song Jian-Ping, Ta De-An, Mei Yong-Feng, Xu Kai-Liang. Ultrafast ultrasound localization microscopy method for spinal cord mircovasculature imaging. Acta Physica Sinica, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [6] Sun Xue-Ying, Liu Fei, Duan Jing-Bo, Niu Geng-Tian, Shao Xiao-Peng. Broadband scattering imaging technology based on common-mode rejection of polarization characteristic. Acta Physica Sinica, 2021, 70(22): 224203. doi: 10.7498/aps.70.20210703
    [7] Liu Fei, Sun Shao-Jie, Han Ping-Li, Zhao Lin, Shao Xiao-Peng. Clear underwater vision in non-uniform scattering field by low-rank-and-sparse-decomposition-based olarization imaging. Acta Physica Sinica, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [8] Feng Shuai, Chang Jun, Hu Yao-Yao, Wu Hao, Liu Xin. Design and analysis of polarization imaging lidar and short wave infrared composite optical receiving system. Acta Physica Sinica, 2020, 69(24): 244202. doi: 10.7498/aps.69.20200920
    [9] Liu Fei, Wei Ya-Zhe, Han Ping-Li, Liu Jia-Wei, Shao Xiao-Peng. Design of monocentric wide field-of-view and high-resolution computational imaging system. Acta Physica Sinica, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [10] Wei Yi, Liu Fei, Yang Kui, Han Ping-Li, Wang Xin-Hua, Shao Xiao-Peng. Passive underwater polarization imaging detection method in neritic area. Acta Physica Sinica, 2018, 67(18): 184202. doi: 10.7498/aps.67.20180692
    [11] Cai Qi-Sheng, Huang Min, Han Wei, Cong Lin-Xiao, Lu Xiang-Ning. Heterodyne polarization interference imaging spectroscopy. Acta Physica Sinica, 2017, 66(16): 160702. doi: 10.7498/aps.66.160702
    [12] Zhuang Jia-Yan, Chen Qian, He Wei-Ji, Mao Tian-Yi. Imaging through dynamic scattering media with compressed sensing. Acta Physica Sinica, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [13] Bai Min, Xuan Rong-Xi, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Shu Bin. Hole scattering and mobility in compressively strained Ge/(001)Si1-xGex. Acta Physica Sinica, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [14] Guan Jin-Ge, Zhu Jing-Ping, Tian Heng, Hou Xun. Real-time polarization difference underwater imaging based on Stokes vector. Acta Physica Sinica, 2015, 64(22): 224203. doi: 10.7498/aps.64.224203
    [15] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-Ⅱ. optical design and analysis. Acta Physica Sinica, 2014, 63(11): 110705. doi: 10.7498/aps.63.110705
    [16] Mu Ting-Kui, Zhang Chun-Min, Li Qi-Wei, Wei Yu-Tong, Chen Qing-Ying, Jia Chen-Ling. The polarization-difference interference imaging spectrometer-I. concept, principle, and operation. Acta Physica Sinica, 2014, 63(11): 110704. doi: 10.7498/aps.63.110704
    [17] Liang Shan-Yong, Wang Jiang-An, Zong Si-Guang, Wu Rong-Hua, Ma Zhi-Guo, Wang Xiao-Yu, Wang Le-Dong. Laser detection method of ship wake bubbles based on multiple scattering intensity and polarization characteristics. Acta Physica Sinica, 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [18] Zhang Er-Feng, Dai Hong-Yi. Effect of light polarization on thermal light correlated imaging. Acta Physica Sinica, 2011, 60(6): 064209. doi: 10.7498/aps.60.064209
    [19] Liu Li-Xiang, Du Guo-Hao, Hu Wen, Luo Yu-Yu, Xie Hong-Lan, Chen Min, Xiao Ti-Qiao. Application of quantitative imaging to elimination of scattering effect on X-ray in-line outline imaging. Acta Physica Sinica, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
    [20] ZHANG HAI-TAO, GONG MA-LI, ZHAO DA-ZUN, YAN PING, CUI RUI-ZHEN, JIA WEI-PU. SUPERRESOLUTION BY MICRO-ZOOMING TECHNIQUE. Acta Physica Sinica, 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
Metrics
  • Abstract views:  1618
  • PDF Downloads:  137
  • Cited By: 0
Publishing process
  • Received Date:  16 February 2024
  • Accepted Date:  24 April 2024
  • Available Online:  06 May 2024
  • Published Online:  20 June 2024

/

返回文章
返回