Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Study of nuclear excitation by electron capture via the stopping of highly charged ions

Jia Chen-Xu Ding Bing Hua Wei Guo Song Qiang Yun-Hua Chen Hong-Xing Wei Rui Zhou Xiao-Hong

Citation:

Study of nuclear excitation by electron capture via the stopping of highly charged ions

Jia Chen-Xu, Ding Bing, Hua Wei, Guo Song, Qiang Yun-Hua, Chen Hong-Xing, Wei Rui, Zhou Xiao-Hong
PDF
HTML
Get Citation
  • The long-lived isomer is a potential energy-storage material with good energy storage density and storage period. However, releasing the stored energy from such an isomer is challenging. A recognized method is isomer depletion: the isomer is excited to an adjacent short-lived energy level, followed by de-excitation to the ground state, releasing all the stored energy. Six possible mechanisms for isomer depletion have been proposed, i.e. photoabsorption, coulomb excitation, inelastic scattering, nuclear excitation by electron transition, nuclear excitation by electron capture (NEEC), and electronic bridge. Among them, NEEC has attracted significant attention in recent years.The NEEC occurs when a free electron is captured into an empty atomic orbital, with the nucleus excited simultaneously. To observe the NEEC, one can utilize the stopping process of high-velocity, high-charge-state ions in solid materials. As injected into a stopping material, the ions will be decelerated and capture electrons in the material. In the resonant process of NEEC, the sum of the binding energy and the kinetic energy of the free electron matches the energy required for nuclear excitation. If they do not match, or if the orbitals are already occupied by electrons, the NEEC cannot occur, as indicated by the red arrows in the figure. $ ^{93{\mathrm{m}}} {\mathrm{Mo}} $ is an ideal candidate for NEEC measurements. It is an isomeric state with an excitation energy of 2.4 MeV, a spin-parity of $21/2 ^+ $, and a half-life of 6.85 h. In addition, there is an energy level with a spin-parity of $17/2 ^+ $ and half-life of 3.5 ns; its excitation energy is 4.8-keV higher than that of $ ^{93{\mathrm{m}}} {\mathrm{Mo}} $ and primarily de-excites to the $ 13/2^+ $ state through a 268-keV gamma ray. This level is referred to as the triggering level in the NEEC process. Once excited to the triggering level, the nucleus decays immediately to the ground state, releasing energy of about 2.4 MeV.In 2018, Chiara et al. reported the first experimental observation of $ ^{93{\mathrm{m}}} {\mathrm{Mo}} $ isomer depletion with a probability of 1.0(3)%, which was attributed to the NEEC mechanism. However, the following theoretical calculations fail to reproduce such a high probability. In 2022, another experiment was devoted to measuring the depletion of $ ^{93{\mathrm{m}}} {\mathrm{Mo}} $ in the stopping process. The measurements were performed at the Heavy Ion Research Facility in Lanzhou. However, no characteristic 268-keV transition caused by isomer depletion was observed, and it was inferred that the upper limit of the excitation probability was about $2\times 10^{-5} $, which is different from the previously reported value of 1%. The beam energy in the Lanzhou experiment is lower than that of the previous data, which can lead to different depletion probabilities. Thus, further experiments are required to clarify this issue.In this study, two experiments related to NEEC are conducted, the reliability of the experimental results is evaluated from a new perspective of error analysis, and a design scheme is provided for implementing further experiments. According to the proposed experimental setup, the recoil energy is considerably increased and particle-identification devices are added. The detectors for particle identification can cause energy loss, thus the increasing of the recoil energy is also a prerequisite for particle identification. Considering the recoil energy, production cross-section, and the population of high-spin states that can decay to$ ^{93{\mathrm{m}}} {\mathrm{Mo}} $, we recommend the $ ^{94}{\mathrm{Zr}}+ ^{4}{\mathrm{He }}$ as the beam-target candidate for future experiments based on the secondary beam line. In addition, a simple design for particle identification is also introduced in this study.
      Corresponding author: Ding Bing, dbing@impcas.ac.cn ; Hua Wei, huaw@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11175257, 12375128) and the Natural Science Foundation of Guangdong Province, China (Grant No. S2012010010306).
    [1]

    Walker P, Podolyák Z 2020 Phys. Scr. 95 044004Google Scholar

    [2]

    Audi G, Kondev F G, Wang M, Huang W J, Naimi S 2017 Chin. Phys. C 41 030001Google Scholar

    [3]

    Elekes Z, Timar J 2015 Nucl. Data Sheets 129 191Google Scholar

    [4]

    Hult M, Gasparro J, Marissens G, Lindahl P, Wätjen U, Johnston P N, Wagemans C, Köhler M 2006 Phys. Rev. C 74 054311Google Scholar

    [5]

    Smith M B, Walker P M, Ball G C, Carroll J J, Garrett P E, Hackman G, Propri R, Sarazin F, Scraggs H C 2003 Phys. Rev. C 68 031302Google Scholar

    [6]

    郑人洲, 陆景彬, 王宇, 李潇祎, 张雪, 陈子怡, 梁磊, 刘玉敏 2023 原子核物理评论 40 385Google Scholar

    Zheng R Z, Lu J B, Wang Y, Li X Y, Zhang X, Chen Z Y, Liang L, Liu Y M 2023 Nuclear Physics Review 40 385Google Scholar

    [7]

    Matinyan S 1998 Phys. Rep. 298 199Google Scholar

    [8]

    Collins C B, Davanloo F, Iosif M C, Dussart R, Hicks J M, Karamian S A, Ur C A, Popescu I I, Kirischuk V I, Carroll J J, Roberts H E, McDaniel P, Crist C E 1999 Phys. Rev. Lett. 82 695Google Scholar

    [9]

    Kirischuk V, Ageev V, Dovbnya A, Kandybei S, Ranyuk Y 2015 Phys. Lett. B 750 89Google Scholar

    [10]

    Carroll J J, Karamian S A, Rivlin L A, Zadernovsky A A 2001 Hyperfine Interact. 135 3Google Scholar

    [11]

    Hayes A B, Cline D, Wu C Y, Ai H, Amro H, Beausang C, Casten R F, Gerl J, Hecht A A, Heinz A, Hua H, Hughes R, Janssens R V F, Lister C J, Macchiavelli A O, Meyer D A, Moore E F, Napiorkowski P, Pardo R C, Schlegel C, Seweryniak D, Simon M W, Srebrny J, Teng R, Vetter K, Wollersheim H J 2007 Phys. Rev. C 75 034308Google Scholar

    [12]

    Karamian S A, Carroll J J 2007 Laser Phys. 17 80Google Scholar

    [13]

    Roig O, Méot V, Rossé B, Bélier G, Daugas J M, Letourneau A, Menelle A, Morel P 2011 Phys. Rev. C 83 064617Google Scholar

    [14]

    Karamian S A, Carroll J J 2011 Phys. Rev. C 83 024604Google Scholar

    [15]

    Kishimoto S, Yoda Y, Seto M, Kobayashi Y, Kitao S, Haruki R, Kawauchi T, Fukutani K, Okano T 2000 Phys. Rev. Lett. 85 1831Google Scholar

    [16]

    Morita M 1973 Prog. Theor. Phys. 49 1574Google Scholar

    [17]

    Goldanskii V, Namiot V 1976 Phys. Lett. B 62 393Google Scholar

    [18]

    Wang Y, Ma Z, Yang Y, Fu C, He W, Ma Y 2023 Front. Phys. 11 1203401Google Scholar

    [19]

    Bilous P V, Bekker H, Berengut J C, Seiferle B, von der Wense L, Thirolf P G, Pfeifer T, López-Urrutia J R C, Pálffy A 2020 Phys. Rev. Lett. 124 192502Google Scholar

    [20]

    Krutov V, Fomenko V 1968 Ann. Phys. 476 291Google Scholar

    [21]

    Porsev S G, Flambaum V V, Peik E, Tamm C 2010 Phys. Rev. Lett. 105 182501Google Scholar

    [22]

    Polasik M, Słabkowska K, Carroll J J, Chiara C J, Syrocki L, Weffder E, Rzadkiewicz J 2017 Phys. Rev. C 95 034312Google Scholar

    [23]

    Wu Y, Gunst J, Keitel C H, Pálffy A 2018 Phys. Rev. Lett. 120 052504Google Scholar

    [24]

    Gunst J, Litvinov Y A, Keitel C H, Pálffy A 2014 Phys. Rev. Lett. 112 082501Google Scholar

    [25]

    Karamian S A, Carroll J J 2012 Phys. At. Nucl. 75 1362Google Scholar

    [26]

    Pálffy A, Evers J, Keitel C H 2007 Phys. Rev. Lett. 99 172502Google Scholar

    [27]

    Wu Y, Keitel C H, Pálffy A 2019 Phys. Rev. A 100 063420Google Scholar

    [28]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, Burian T, Chalupský J, Falcone R W, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P A, Nagler B, Wark J S 2012 Nature 482 59Google Scholar

    [29]

    Gunst J, Wu Y, Kumar N, Keitel C H, Pálffy A 2015 Phys. Plasmas 22 112706Google Scholar

    [30]

    Feng J, Wang W, Fu C, Chen L, Tan J, Li Y, Wang J, Li Y, Zhang G, Ma Y, Zhang J 2022 Phys. Rev. Lett. 128 052501Google Scholar

    [31]

    Gagyi-Palffy A 2006 Ph. D. Dissertation (Hessian: Giessen University

    [32]

    Fan W, Qi W, Zhang J, Cao Z, Lan H, Li X, Xu Y, Gu Y, Deng Z, Zhang Z, Tan C, Luo W, Yuan Y, Zhou W 2023 Phys. Rev. Res. 5 043120Google Scholar

    [33]

    吴义恒, 陆景彬, 任臻 2023 原子核物理评论 40 519526Google Scholar

    Wu Y H, Lu J B, Ren Z 2023 Nucl. Phys. Rev. 40 519526Google Scholar

    [34]

    Fukuchi T, Gono Y, Odahara A, Tanaka S, Inoue M, Wakabayashi Y, Sasaki T, Kibe M, Hokoiwa N, Shinozuka T, Fujita M, Yamazaki A, Sonoda T, Lee C S, Kwon Y K, Moon J Y, Lee J H 2005 Eur. Phys. J. A 24 249Google Scholar

    [35]

    Chiara C J, Carroll J J, Carpenter M P, Greene J P, Hartley D J, Janssens R V F, Lane G J, Marsh J C, Matters D A, Polasik M, Rzadkiewicz J, Seweryniak D, Zhu S, Bottoni S, Hayes A B, Karamian S A 2018 Nature 554 216Google Scholar

    [36]

    Wu Y, Keitel C H, Pálffy A 2019 Phys. Rev. Lett. 122 212501Google Scholar

    [37]

    Rzadkiewicz J, Polasik M, Słabkowska K, Syrocki L, Carroll J J, Chiara C J 2021 Phys. Rev. Lett. 127 042501Google Scholar

    [38]

    Guo S, Fang Y, Zhou X, Petrache C M 2021 Nature 594 E1Google Scholar

    [39]

    Chiara C J, Carroll J J, Carpenter M P, Greene J P, Hartley D J, Janssens R V F, Lane G J, Marsh J C, Matters D A, Polasik M, Rzadkiewicz J, Seweryniak D, Zhu S, Bottoni S, Hayes A B 2021 Nature 594 E3Google Scholar

    [40]

    Guo S, Ding B, Zhou X H, Wu Y B, Wang J G, Xu S W, Fang Y D, Petrache C M, Lawrie E A, Qiang Y H, Yang Y Y, Ong H J, Ma J B, Chen J L, Fang F, Yu Y H, Lv B F, Zeng F F, Zeng Q B, Huang H, Jia Z H, Jia C X, Liang W, Li Y, Huang N W, Liu L J, Zheng Y, Zhang W Q, Rohilla A, Bai Z, Jin S L, Wang K, Duan F F, Yang G, Li J H, Xu J H, Li G S, Liu M L, Liu Z, Gan Z G, Wang M, Zhang Y H 2022 Phys. Rev. Lett. 128 242502Google Scholar

    [41]

    Sun Z Y, Zhan W, Guo Z Y, Xiao G Q, Li J 2023 Nucl. Instrum. Methods Phys. Res. 503 496503Google Scholar

    [42]

    王萱轩, 宋海声, 杨过, 段芳芳, 王康, 杨彦云 2023 原子核物理评论 40 244250Google Scholar

    Wang X X, Song H S, Yang G, Duan F F, Wang K, Yang Y Y 2023 Nucl. Phys. Rev. 40 244250Google Scholar

    [43]

    Rzadkiewicz J, Słabkowska K, Polasik M, Syrocki Ł, Carroll J J, Chiara C J 2023 Phys. Rev. C 108 L031302Google Scholar

    [44]

    Tarasov O, Bazin D 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 204 174Google Scholar

  • 图 1  六种可能的诱发退激模式示意图

    Figure 1.  Schematic diagram of six possible induced de-excitation modes.

    图 2  阻停过程中电子俘获致核激发的示意图

    Figure 2.  Schematic diagram of nuclear excitation by electron capture in ion-stopping process.

    图 3  $ ^{93} {\mathrm{Mo}} $能级纲图

    Figure 3.  Partial level scheme of $ ^{93} {\mathrm{Mo}} $.

    图 4  两次实验设置的对比 (a)美国阿贡实验室开展实验的设置示意图; (b)兰州重离子加速器装置开展实验的设置示意图

    Figure 4.  Comparison of two experimental Settings: (a) The setting diagram of the experiment carried out at Argonne Laboratory in the United States; (b) schematic diagram of the experiment based on the Heavy Ion Research Facility in Lanzhou.

    图 5  实验设置示意图

    Figure 5.  Experimental setup diagram.

    图 6  不同反应道下, $ ^{93} {\mathrm{Mo}} $的生成截面与其反冲能的关系

    Figure 6.  Relation between $ ^{93} {\mathrm{Mo}} $ cross section and recoil energy of different reaction channels

    图 7  不同反应道$ ^{93} {\mathrm{Mo}} $截面与入口态自旋的关系, @后面表示的是计算使用的束流能量

    Figure 7.  Relation between the $ ^{93} {\mathrm{Mo}} $ cross section and the spin of the entry state for different reaction channels, and the values after @ are the beam energies used in the calculations.

  • [1]

    Walker P, Podolyák Z 2020 Phys. Scr. 95 044004Google Scholar

    [2]

    Audi G, Kondev F G, Wang M, Huang W J, Naimi S 2017 Chin. Phys. C 41 030001Google Scholar

    [3]

    Elekes Z, Timar J 2015 Nucl. Data Sheets 129 191Google Scholar

    [4]

    Hult M, Gasparro J, Marissens G, Lindahl P, Wätjen U, Johnston P N, Wagemans C, Köhler M 2006 Phys. Rev. C 74 054311Google Scholar

    [5]

    Smith M B, Walker P M, Ball G C, Carroll J J, Garrett P E, Hackman G, Propri R, Sarazin F, Scraggs H C 2003 Phys. Rev. C 68 031302Google Scholar

    [6]

    郑人洲, 陆景彬, 王宇, 李潇祎, 张雪, 陈子怡, 梁磊, 刘玉敏 2023 原子核物理评论 40 385Google Scholar

    Zheng R Z, Lu J B, Wang Y, Li X Y, Zhang X, Chen Z Y, Liang L, Liu Y M 2023 Nuclear Physics Review 40 385Google Scholar

    [7]

    Matinyan S 1998 Phys. Rep. 298 199Google Scholar

    [8]

    Collins C B, Davanloo F, Iosif M C, Dussart R, Hicks J M, Karamian S A, Ur C A, Popescu I I, Kirischuk V I, Carroll J J, Roberts H E, McDaniel P, Crist C E 1999 Phys. Rev. Lett. 82 695Google Scholar

    [9]

    Kirischuk V, Ageev V, Dovbnya A, Kandybei S, Ranyuk Y 2015 Phys. Lett. B 750 89Google Scholar

    [10]

    Carroll J J, Karamian S A, Rivlin L A, Zadernovsky A A 2001 Hyperfine Interact. 135 3Google Scholar

    [11]

    Hayes A B, Cline D, Wu C Y, Ai H, Amro H, Beausang C, Casten R F, Gerl J, Hecht A A, Heinz A, Hua H, Hughes R, Janssens R V F, Lister C J, Macchiavelli A O, Meyer D A, Moore E F, Napiorkowski P, Pardo R C, Schlegel C, Seweryniak D, Simon M W, Srebrny J, Teng R, Vetter K, Wollersheim H J 2007 Phys. Rev. C 75 034308Google Scholar

    [12]

    Karamian S A, Carroll J J 2007 Laser Phys. 17 80Google Scholar

    [13]

    Roig O, Méot V, Rossé B, Bélier G, Daugas J M, Letourneau A, Menelle A, Morel P 2011 Phys. Rev. C 83 064617Google Scholar

    [14]

    Karamian S A, Carroll J J 2011 Phys. Rev. C 83 024604Google Scholar

    [15]

    Kishimoto S, Yoda Y, Seto M, Kobayashi Y, Kitao S, Haruki R, Kawauchi T, Fukutani K, Okano T 2000 Phys. Rev. Lett. 85 1831Google Scholar

    [16]

    Morita M 1973 Prog. Theor. Phys. 49 1574Google Scholar

    [17]

    Goldanskii V, Namiot V 1976 Phys. Lett. B 62 393Google Scholar

    [18]

    Wang Y, Ma Z, Yang Y, Fu C, He W, Ma Y 2023 Front. Phys. 11 1203401Google Scholar

    [19]

    Bilous P V, Bekker H, Berengut J C, Seiferle B, von der Wense L, Thirolf P G, Pfeifer T, López-Urrutia J R C, Pálffy A 2020 Phys. Rev. Lett. 124 192502Google Scholar

    [20]

    Krutov V, Fomenko V 1968 Ann. Phys. 476 291Google Scholar

    [21]

    Porsev S G, Flambaum V V, Peik E, Tamm C 2010 Phys. Rev. Lett. 105 182501Google Scholar

    [22]

    Polasik M, Słabkowska K, Carroll J J, Chiara C J, Syrocki L, Weffder E, Rzadkiewicz J 2017 Phys. Rev. C 95 034312Google Scholar

    [23]

    Wu Y, Gunst J, Keitel C H, Pálffy A 2018 Phys. Rev. Lett. 120 052504Google Scholar

    [24]

    Gunst J, Litvinov Y A, Keitel C H, Pálffy A 2014 Phys. Rev. Lett. 112 082501Google Scholar

    [25]

    Karamian S A, Carroll J J 2012 Phys. At. Nucl. 75 1362Google Scholar

    [26]

    Pálffy A, Evers J, Keitel C H 2007 Phys. Rev. Lett. 99 172502Google Scholar

    [27]

    Wu Y, Keitel C H, Pálffy A 2019 Phys. Rev. A 100 063420Google Scholar

    [28]

    Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R D, Burian T, Chalupský J, Falcone R W, Graves C, Hájková V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P A, Nagler B, Wark J S 2012 Nature 482 59Google Scholar

    [29]

    Gunst J, Wu Y, Kumar N, Keitel C H, Pálffy A 2015 Phys. Plasmas 22 112706Google Scholar

    [30]

    Feng J, Wang W, Fu C, Chen L, Tan J, Li Y, Wang J, Li Y, Zhang G, Ma Y, Zhang J 2022 Phys. Rev. Lett. 128 052501Google Scholar

    [31]

    Gagyi-Palffy A 2006 Ph. D. Dissertation (Hessian: Giessen University

    [32]

    Fan W, Qi W, Zhang J, Cao Z, Lan H, Li X, Xu Y, Gu Y, Deng Z, Zhang Z, Tan C, Luo W, Yuan Y, Zhou W 2023 Phys. Rev. Res. 5 043120Google Scholar

    [33]

    吴义恒, 陆景彬, 任臻 2023 原子核物理评论 40 519526Google Scholar

    Wu Y H, Lu J B, Ren Z 2023 Nucl. Phys. Rev. 40 519526Google Scholar

    [34]

    Fukuchi T, Gono Y, Odahara A, Tanaka S, Inoue M, Wakabayashi Y, Sasaki T, Kibe M, Hokoiwa N, Shinozuka T, Fujita M, Yamazaki A, Sonoda T, Lee C S, Kwon Y K, Moon J Y, Lee J H 2005 Eur. Phys. J. A 24 249Google Scholar

    [35]

    Chiara C J, Carroll J J, Carpenter M P, Greene J P, Hartley D J, Janssens R V F, Lane G J, Marsh J C, Matters D A, Polasik M, Rzadkiewicz J, Seweryniak D, Zhu S, Bottoni S, Hayes A B, Karamian S A 2018 Nature 554 216Google Scholar

    [36]

    Wu Y, Keitel C H, Pálffy A 2019 Phys. Rev. Lett. 122 212501Google Scholar

    [37]

    Rzadkiewicz J, Polasik M, Słabkowska K, Syrocki L, Carroll J J, Chiara C J 2021 Phys. Rev. Lett. 127 042501Google Scholar

    [38]

    Guo S, Fang Y, Zhou X, Petrache C M 2021 Nature 594 E1Google Scholar

    [39]

    Chiara C J, Carroll J J, Carpenter M P, Greene J P, Hartley D J, Janssens R V F, Lane G J, Marsh J C, Matters D A, Polasik M, Rzadkiewicz J, Seweryniak D, Zhu S, Bottoni S, Hayes A B 2021 Nature 594 E3Google Scholar

    [40]

    Guo S, Ding B, Zhou X H, Wu Y B, Wang J G, Xu S W, Fang Y D, Petrache C M, Lawrie E A, Qiang Y H, Yang Y Y, Ong H J, Ma J B, Chen J L, Fang F, Yu Y H, Lv B F, Zeng F F, Zeng Q B, Huang H, Jia Z H, Jia C X, Liang W, Li Y, Huang N W, Liu L J, Zheng Y, Zhang W Q, Rohilla A, Bai Z, Jin S L, Wang K, Duan F F, Yang G, Li J H, Xu J H, Li G S, Liu M L, Liu Z, Gan Z G, Wang M, Zhang Y H 2022 Phys. Rev. Lett. 128 242502Google Scholar

    [41]

    Sun Z Y, Zhan W, Guo Z Y, Xiao G Q, Li J 2023 Nucl. Instrum. Methods Phys. Res. 503 496503Google Scholar

    [42]

    王萱轩, 宋海声, 杨过, 段芳芳, 王康, 杨彦云 2023 原子核物理评论 40 244250Google Scholar

    Wang X X, Song H S, Yang G, Duan F F, Wang K, Yang Y Y 2023 Nucl. Phys. Rev. 40 244250Google Scholar

    [43]

    Rzadkiewicz J, Słabkowska K, Polasik M, Syrocki Ł, Carroll J J, Chiara C J 2023 Phys. Rev. C 108 L031302Google Scholar

    [44]

    Tarasov O, Bazin D 2003 Nucl. Instrum. Methods Phys. Res., Sect. B 204 174Google Scholar

  • [1] Xiao Shi-Liang, Wang Zhao-Hui, Wu Hong-Yi, Chen Xiong-Jun, Sun Qi, Tan Bo-Yu, Wang Hao, Qi Fu-Gang. Spectral analysis techniques in measuring neutron-induced gamma production cross-section. Acta Physica Sinica, 2024, 73(7): 072901. doi: 10.7498/aps.73.20231980
    [2] Xing Feng-Zhu, Cui Jian-Po, Wang Yan-Zhao, Gu Jian-Zhong. Two-proton emission from excited states of proton-rich nuclei. Acta Physica Sinica, 2022, 71(6): 062301. doi: 10.7498/aps.71.20211839
    [3] Zhu Xing-Long, Wang Wei-Min, Yu Tong-Pu, He Feng, Chen Min, Weng Su-Ming, Chen Li-Ming, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Research progress of ultrabright γ-ray radiation and electron-positron pair production driven by extremely intense laser fields. Acta Physica Sinica, 2021, 70(8): 085202. doi: 10.7498/aps.70.20202224
    [4] Wang Chong, Xing Qiao-Xia, Xie Yuan-Gang, Yan Hu-Gen. Spectroscopic studies of plasmons in topological materials. Acta Physica Sinica, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [5] Jia Qing-Gang, Zhang Tian-Kui, Xu Hai-Bo. Optimization design of a Gamma-to-electron spectrometer for high energy gammas induced by fusion. Acta Physica Sinica, 2017, 66(1): 010703. doi: 10.7498/aps.66.010703
    [6] Liang Teng, Ma Kun, Wu Zhong-Wen, Zhang Deng-Hong, Dong Chen-Zhong, Shi Ying-Long. Theoretical studies on the radiative electron capture and subsequent radiative decay in the collision of Xe53+ ions with neutral Xe. Acta Physica Sinica, 2016, 65(14): 143401. doi: 10.7498/aps.65.143401
    [7] Liang Teng, Ma Kun, Chen Xi, Xie Lu-You, Dong Chen-Zhong, Shao Cao-Jie, Yu De-Yang, Cai Xiao-Hong. Theoretical study on radiative electron capture and subsequent radiative decay in collision of Xe54+ with Xe. Acta Physica Sinica, 2015, 64(15): 153401. doi: 10.7498/aps.64.153401
    [8] Yang Yi-Wei, Liu Rong, Yan Xiao-Song. Thorium capture ratio determination through γ-ray off-line method. Acta Physica Sinica, 2013, 62(3): 032801. doi: 10.7498/aps.62.032801
    [9] Li Yan, Cai Jie, Lü Peng, Zou Yang, Wan Ming-Zhen, Peng Dong-Jin, Gu Qian-Qian, Guan Qing-Feng. Surface microstructure and stress characteristics in pure titanium after high-current pulsed electron beam irradiation. Acta Physica Sinica, 2012, 61(5): 056105. doi: 10.7498/aps.61.056105
    [10] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [11] Zou Hui, Jing Hong-Yang, Wamg Zhi-Ping, Guan Qing-Feng. The vacancy defect clusters in polycrystalline pure nickle induced by high-current pulsed electron beam. Acta Physica Sinica, 2010, 59(9): 6384-6389. doi: 10.7498/aps.59.6384
    [12] Guan Qing-Feng, Cheng Du-Qing, Qiu Dong-Hua, Zhu Jian, Wang Xue-Tao, Cheng Xiu-Wei. The vacancy defect clusters in polycrystalline pure aluminum induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(7): 4846-4852. doi: 10.7498/aps.58.4846
    [13] Cheng Du-Qing, Guan Qing-Feng, Zhu Jian, Qiu Dong-Hua, Cheng Xiu-Wei, Wang Xue-Tao. Mechanism of surface nanocrystallization in pure nickel induced by high-current pulsed electron beam. Acta Physica Sinica, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [14] Xia Liang-Bin, Ouyang Xiao-Ping, Wang Qun-Shu, Kang Ke-Jun, He Xiao-Ling, Gu Mu. Lead-tin-fluorophosphates scintillating glass doped with stilbene 420 excited by gamma ray. Acta Physica Sinica, 2009, 58(2): 882-886. doi: 10.7498/aps.58.882
    [15] Guan Qing-Feng, An Chun-Xiang, Qin Ying, Zou Jian-Xin, Hao Sheng-Zhi, Zhang Qing-Yu, Dong Chuang, Zou Guang-Tian. Microstructure induced by stress generated by high-current pulsed electron beam. Acta Physica Sinica, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [16] Shi Zhu-Yi, Ni Shao-Yong, Tong Hong, Zhao Xing-Zhi. Microscopic approach of the spectral property of 1+ and high-spin states in 124 Te nucleus. Acta Physica Sinica, 2004, 53(3): 734-737. doi: 10.7498/aps.53.734
    [17] ZHANG ZONG-YE, LI GUANG-LIE. SYMMETRY CLASSIFICATION FOR EXCITED STATES OF HYPERNUCLEI. Acta Physica Sinica, 1977, 26(6): 467-476. doi: 10.7498/aps.26.467
    [18] ZHANG ZONG-YE, LI GUANG-LIE. THE SYMMETRY CLASSIFICATION FOR THE EXCITED STATES OF HYPERNUCLEI. Acta Physica Sinica, 1976, 25(2): 172-174. doi: 10.7498/aps.25.172
    [19] CHANG LI-NING, DAI YUAN-BENG. THE RADIATIVE CAPTURE OF μ- MESON BY NUCLEUS. Acta Physica Sinica, 1961, 17(1): 41-44. doi: 10.7498/aps.17.41
    [20] HO KUO-CHU. THE EXCITATION OF NUCLEI BY ELECTRONS AND X-RAYS. Acta Physica Sinica, 1958, 14(4): 289-299. doi: 10.7498/aps.14.289
Metrics
  • Abstract views:  1593
  • PDF Downloads:  30
  • Cited By: 0
Publishing process
  • Received Date:  19 February 2024
  • Accepted Date:  03 May 2024
  • Available Online:  30 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回