Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Shockley-Queisser theory based calculation of efficiency limit of heterojunction solar cells

ZHU Zengwei ZHANG Meirong QIAO Baorong CHEN Jia YANG Huiyong ZHOU Dayong

Citation:

Shockley-Queisser theory based calculation of efficiency limit of heterojunction solar cells

ZHU Zengwei, ZHANG Meirong, QIAO Baorong, CHEN Jia, YANG Huiyong, ZHOU Dayong
cstr: 32037.14.aps.74.20240941
PDF
HTML
Get Citation
  • The ideal solar cell defined by the Shockley-Queisser (S-Q) theory is an important milestone in the analysis of photovoltaic devices based on some assumptions. One or more of the above assumptions are gradually avoided, and even exceed or approach the S-Q efficiency limit, so the development and improvement of S-Q theory is necessary. Heterojunction solar cells are one of the hot research fields in photovoltaics. In order to address the hindering effect of energy band discontinuity in the spatial barrier region of heterojunction solar cells on the transport of photogenerated carriers, the assumptions of S-Q theory based on the original S-Q theory of photovoltaic cells are revised in this work. The carrier mobility in the barrier region is assumed to be finite, and the infinite mobility in the S-Q model is abandoned. But the mobility in the N-type and the P-type neutral region are still infinite. The lumped relationship between carrier mobility and resistance in the barrier region is derived. Therefore, the physical process of charge transport is described in detail in this paper based on the continuity equation for semiconductors by considering the effect of absorption coefficients to prevent the quasi-Fermi level from crossing the conduction or valence band. Thus, the revised S-Q theoretical limit model of heterojunction solar cell is constructed. The diode equivalent circuit diagram is deduced and the photovoltaic conversion efficiency is evaluated eventually. The loss effects of charge transmission and band gap mismatch on the performance of heterojunction solar cells are analyzed in detail. The calculation results under the condition of 5780 K blackbody radiation and 300 K cell temperature with N-type wide bandgap (EH) and P-type narrow bandgap (EL) materials show that the highest conversion efficiency is about 31% with a hole resistance of 0.01 Ω·cm2 and electronic resistance of 0.01 Ω·cm2. The calculations show that the electronic resistance has a more negative and complicated effect on solar cell performance than hole resistance. When Re and Rh are small, the best conversion efficiency is in a range between 1.22 eV and 1.32 eV of the narrow bandgap. Increasing Re can increase the open circuit voltage of solar cells, but there are losses in efficiency and fill factor of solar cells. When Re is large enough, for example, Re = 1000 Ω·cm2, the open circuit voltage of solar cells is not limited by EL and can exceed the bandgap limit of the narrow bandgap material. Increasing Rh will also reduce efficiency, but the effect is not so great as Re. The change of absorption coefficient can cause the photogenerated current of L and H branches to change, and the radiation recombination losses of both branches can be regulated.
      Corresponding author: ZHOU Dayong, zhoudayong2021@gusulab.ac.cn
    • Funds: Project supported by the Carbon Peak and Carbon Neutrality Technology Innovation Special Fund (Industry Outlook and Key Core Technology Research Project) of Jiangsu Province, China (Grant No. BE2022021) and the Carbon Peak and Carbon Neutrality Technology Support Programm of Suzhou, China (Grant No. ST202219).
    [1]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件(北京: 科学出版社) 第28页

    Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) p28

    [2]

    Li Y, Ru X N, Yang M, et al. 2024 Nature 626 105Google Scholar

    [3]

    Wang M H, Shi Y 2024 Sci. China Chem. 67 1117Google Scholar

    [4]

    Wang T Y, Deng W Q, Cao J P, Yan F 2023 Adv. Energy Mater. 13 2201436Google Scholar

    [5]

    张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 058801Google Scholar

    Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 058801Google Scholar

    [6]

    王傲 2021 博士学位论文(南京: 南京理工大学)

    Wang A 2021 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [7]

    Li T H, Wang C, Hu C Z, Zhang N, Xiong Q, Zhang Z L, Li F, Zhang Y Y, Wu J H, Gao P 2024 Small Sci. 4 2300218Google Scholar

    [8]

    Zhao Y F, Procel P, Han C, et al. 2023 Sol. Energy Mater. Sol. Cells 258 112413Google Scholar

    [9]

    Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021 Sol. Energy Mater. Sol. Cells 231 111291Google Scholar

    [10]

    Jiang K, Zhang H H, Zhang L P, Meng F Y, Gao Y F, Yu X R, Zhao D M, Li R, Huang H W, Hao Z D, Liu Z X, Liu W Z 2023 Sci. China Mater. 66 4891Google Scholar

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [12]

    Ahmad F, Lakhtakia A, Monk P B 2020 Appl. Phys. Lett. 117 033901Google Scholar

    [13]

    Guillemoles J F, Kirchartz T, Cahen D, Rau U 2019 Nat. Photonics 13 501Google Scholar

    [14]

    Guillemoles J F, Kirchartz T, Cahen D, Rau U 2021 Nat. Photonics 15 165Google Scholar

    [15]

    Markvart T 2021 Nat. Photonics 15 163Google Scholar

    [16]

    Marti A 2019 IEEE J. Photovolt. 9 1590Google Scholar

    [17]

    熊超, 陈磊, 袁洪春, 姚若河 2013 太阳能学报 34 746

    Xiong C, Chen L, Yuan H C, Yao R H 2013 Acta Energ. Sol. Sin. 34 746

    [18]

    Anderson R L 1962 Solid-State Electron. 5 341Google Scholar

    [19]

    Qian C, Bai Y, Ye H R, Chen Y, Ye L, Zhang C, Ma Z, Chen T, Fan H L, Huang Y L, Liu W Z, Yu J S, Yu J 2024 Sol. Energy 274 112585Google Scholar

    [20]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第148页

    Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) p148

  • 图 1  (a)异质结结构图; (b)异质结等效电路图; (c)适当电压、无限迁移率能带分布; (d)大电压、无限/有限迁移率能带分布; 这里Re为对电子的电阻(Ω·cm2), Rh为对空穴的电阻(Ω·cm2), DL, DH为窄带隙、宽带隙材料等效二极管, JLJH为窄带隙、宽带隙材料产生的光生电流

    Figure 1.  (a) Heterojunction structure diagram; (b) heterojunction equivalent circuit diagram; (c) infinite mobility band distribution under appropriate voltage; (d) infinite/finite mobility band distribution under high voltage. Re is the resistance to electrons (Ω·cm2), and Rh is the resistance to holes (Ω·cm2). DL and DH are equivalent diodes made of narrow bandgap and wide bandgap materials. JL and JH are photocurrent generated by narrow bandgap and wide bandgap materials, respectively.

    图 2  有限迁移率条件下能带图

    Figure 2.  Energy band diagram under limited mobility conditions.

    图 3  Eff分布图(α = 1, Rh = 0.01 Ω·cm2, Re = 0.01 Ω·cm2, EH = 1.52—3.12 eV , EL = 0.52—1.42 eV)

    Figure 3.  Eff profile (α = 1, Rh = 0.01 Ω·cm2, Re = 0.01 Ω·cm2, EH = 1.52—3.12 eV , EL = 0.52—1.42 eV).

    图 4  I-V曲线(α = 1, EL = 0.82 eV, EH = 0.92, 1.52, 2.82 eV, Rh = 0.01 Ω·cm2, Re = 0.1, 1, 10, 1000 Ω·cm2)

    Figure 4.  I-V curves (α = 1, EL = 0.82 eV, EH = 0.92, 1.52, 2.82 eV, Rh = 0.01 Ω·cm2, Re = 0.1, 1, 10, 1000 Ω·cm2).

    图 5  Eff分布图(α = 1, Rh = 0.01Ω·cm2, Re = 1 Ω·cm2, EH = 1.52—3.12 eV, EL = 0.52—1.42 eV)

    Figure 5.  Eff profile (α = 1, Rh = 0.01 Ω·cm2, Re = 1 Ω·cm2, EH = 1.52–3.12 eV, EL = 0.52–1.42 eV).

    图 6  (a) Eff -EH曲线(Rh = 0.01 Ω·cm2, EL = 0.52 eV); (b) Voc -EH曲线(Rh = 0.01 Ω·cm2, EL = 0.52 eV); (c) Eff -EL曲线(Rh = 0.01 Ω·cm2, EH = 1.52 eV); (d) Jsc -EL曲线(Rh = 0.01 Ω·cm2, EH = 1.52 eV)

    Figure 6.  (a) Eff -EH curves (Rh = 0.01 Ω·cm2, EL = 0.52 eV); (b) Voc -EH curves (Rh = 0.01 Ω·cm2, EL = 0.52 eV); (c) Eff -EL curves (Rh = 0.01 Ω·cm2, EH = 1.52 eV); (d) Jsc -EL curves (Rh = 0.01 Ω·cm2, EH = 1.52 eV).

    图 7  Eff分布图(α = 1, Rh = 0.01 Ω·cm2, Re = 10 Ω·cm2, EH = 1.52—3.12 eV, EL = 0.52—1.42 eV)

    Figure 7.  Eff profile (α = 1, Rh = 0.01Ω·cm2, Re = 10 Ω·cm2, EH = 1.52–3.12 eV, EL = 0.52–1.42 eV).

    图 8  Eff -Re曲线

    Figure 8.  Eff -Re curves.

    图 9  (a) Eff -EH曲线(EL = 1.12 eV, Re = 0.01 Ω·cm2); (b) Eff -Rh曲线

    Figure 9.  (a) Eff -EH curves (EL = 1.12 eV, Re = 0.01 Ω·cm2); (b) Eff -Rh curves.

    图 10  Eff -α曲线(EL = 1.12 eV)

    Figure 10.  Eff -α curves (EL = 1.12 eV).

  • [1]

    沈文忠, 李正平 2014 硅基异质结太阳电池物理与器件(北京: 科学出版社) 第28页

    Shen W Z, Li Z P 2014 Physics and Devices of Silicon Heterojunction Solar Cells (Beijing: Science Press) p28

    [2]

    Li Y, Ru X N, Yang M, et al. 2024 Nature 626 105Google Scholar

    [3]

    Wang M H, Shi Y 2024 Sci. China Chem. 67 1117Google Scholar

    [4]

    Wang T Y, Deng W Q, Cao J P, Yan F 2023 Adv. Energy Mater. 13 2201436Google Scholar

    [5]

    张美荣, 祝曾伟, 杨晓琴, 于同旭, 郁骁琦, 卢荻, 李顺峰, 周大勇, 杨辉 2023 物理学报 72 058801Google Scholar

    Zhang M R, Zhu Z W, Yang X Q, Yu T X, Yu X Q, Lu D, Li S F, Zhou D Y, Yang H 2023 Acta Phys. Sin. 72 058801Google Scholar

    [6]

    王傲 2021 博士学位论文(南京: 南京理工大学)

    Wang A 2021 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [7]

    Li T H, Wang C, Hu C Z, Zhang N, Xiong Q, Zhang Z L, Li F, Zhang Y Y, Wu J H, Gao P 2024 Small Sci. 4 2300218Google Scholar

    [8]

    Zhao Y F, Procel P, Han C, et al. 2023 Sol. Energy Mater. Sol. Cells 258 112413Google Scholar

    [9]

    Long W, Yin S, Peng F G, Yang M, Fang L, Ru X N, Qu M H, Lin H F, Xu X X 2021 Sol. Energy Mater. Sol. Cells 231 111291Google Scholar

    [10]

    Jiang K, Zhang H H, Zhang L P, Meng F Y, Gao Y F, Yu X R, Zhao D M, Li R, Huang H W, Hao Z D, Liu Z X, Liu W Z 2023 Sci. China Mater. 66 4891Google Scholar

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510Google Scholar

    [12]

    Ahmad F, Lakhtakia A, Monk P B 2020 Appl. Phys. Lett. 117 033901Google Scholar

    [13]

    Guillemoles J F, Kirchartz T, Cahen D, Rau U 2019 Nat. Photonics 13 501Google Scholar

    [14]

    Guillemoles J F, Kirchartz T, Cahen D, Rau U 2021 Nat. Photonics 15 165Google Scholar

    [15]

    Markvart T 2021 Nat. Photonics 15 163Google Scholar

    [16]

    Marti A 2019 IEEE J. Photovolt. 9 1590Google Scholar

    [17]

    熊超, 陈磊, 袁洪春, 姚若河 2013 太阳能学报 34 746

    Xiong C, Chen L, Yuan H C, Yao R H 2013 Acta Energ. Sol. Sin. 34 746

    [18]

    Anderson R L 1962 Solid-State Electron. 5 341Google Scholar

    [19]

    Qian C, Bai Y, Ye H R, Chen Y, Ye L, Zhang C, Ma Z, Chen T, Fan H L, Huang Y L, Liu W Z, Yu J S, Yu J 2024 Sol. Energy 274 112585Google Scholar

    [20]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第148页

    Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) p148

  • [1] Zhang Lei, Chen Qi-Hang, Cao Shuo, Qian Ping. First-principles calculations of carrier mobility in monolayer IrSCl and IrSI. Acta Physica Sinica, 2024, 73(21): 217201. doi: 10.7498/aps.73.20241044
    [2] Zhang Leng, Shen Yu-Hao, Tang Chao-Yang, Wu Kong-Ping, Zhang Peng-Zhan, Liu Fei, Hou Ji-Wei. Effect of uniaxial strain on Hole mobility of Sb2Se3. Acta Physica Sinica, 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [3] Zhang Leng, Zhang Peng-Zhan, Liu Fei, Li Fang-Zheng, Luo Yi, Hou Ji-Wei, Wu Kong-Ping. Carrier mobility in doped Sb2Se3 based on deformation potential theory. Acta Physica Sinica, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [4] Zhou Zhan-Hui, Li Qun, He Xiao-Min. Electron transport mechanism in AlN/β-Ga2O3 heterostructures. Acta Physica Sinica, 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [5] Wang Xiao-Bo, Li Ke-Wei, Gao Li-Juan, Cheng Xu-Dong, Jiang Rong. Preparation and thermal stability of CrAlON based spectrally selective absorbing coatings. Acta Physica Sinica, 2021, 70(2): 027103. doi: 10.7498/aps.70.20200845
    [6] Di Lin-Jia, Dai Xian-Ying, Song Jian-Jun, Miao Dong-Ming, Zhao Tian-Long, Wu Shu-Jing, Hao Yue. Calculations of energy band structure and mobility in critical bandgap strained Ge1-xSnx based on Sn component and biaxial tensile stress modulation. Acta Physica Sinica, 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [7] Zhang Xiao-Yu, Zhang Li-Ping, Ma Zhong-Quan, Liu Zheng-Xin. Numerical simulation of silicon heterojunction solar cells with Si/Si1-xGex quantum wells. Acta Physica Sinica, 2016, 65(13): 138801. doi: 10.7498/aps.65.138801
    [8] Lü Yi, Zhang He-Ming, Hu Hui-Yong, Yang Jin-Yong, Yin Shu-Juan, Zhou Chun-Yu. A Model of channel current for uniaxially strained Si NMOSFET. Acta Physica Sinica, 2015, 64(19): 197301. doi: 10.7498/aps.64.197301
    [9] Bai Min, Xuan Rong-Xi, Song Jian-Jun, Zhang He-Ming, Hu Hui-Yong, Shu Bin. Hole scattering and mobility in compressively strained Ge/(001)Si1-xGex. Acta Physica Sinica, 2015, 64(3): 038501. doi: 10.7498/aps.64.038501
    [10] Liu Bin-Li, Tang Yong, Luo Yi-Fei, Liu De-Zhi, Wang Rui-Tian, Wang Bo. Investigation of the prediction model of IGBT junction temperature based on the rate of voltage change. Acta Physica Sinica, 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [11] Dong Hai-Ming. Investigation on mobility of single-layer MoS2 at low temperature. Acta Physica Sinica, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [12] Luo Yang, Duan Yu, Chen Ping, Zang Chun-Liang, Xie Yue, Zhao Yi, Liu Shi-Yong. Preliminary investigation on the method of determining electron mobility of tris (8-hydroxyquinolinato) aluminum by space charge limited current. Acta Physica Sinica, 2012, 61(14): 147801. doi: 10.7498/aps.61.147801
    [13] Zhang Jin-Feng, Wang Ping-Ya, Xue Jun-Shuai, Zhou Yong-Bo, Zhang Jin-Cheng, Hao Yue. High electron mobility lattice-matched InAlN/GaN materials. Acta Physica Sinica, 2011, 60(11): 117305. doi: 10.7498/aps.60.117305
    [14] Su Fa-Gang, Liang Jing-Qiu, Liang Zhong-Zhu, Zhu Wan-Bin. Study on the surface morphology and absorptivity of light-absorbing materials. Acta Physica Sinica, 2011, 60(5): 057802. doi: 10.7498/aps.60.057802
    [15] Xu Miao, Peng Jun-Biao. Effect of casting process of polymer active layer on performances of polymer solar cells. Acta Physica Sinica, 2010, 59(3): 2131-2136. doi: 10.7498/aps.59.2131
    [16] Zhong Chun-Liang, Geng Kui-Wei, Yao Ruo-He. S-shaped J-V characteristic of a-Si:H/c-Si heterojunction solar cell. Acta Physica Sinica, 2010, 59(9): 6538-6544. doi: 10.7498/aps.59.6538
    [17] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E, Hu Yuan. An analytical model of mobility in nano-scaled n-MOSFETs. Acta Physica Sinica, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [18] Zhang Duan-Ming, Li Li, Li Zhi-Hua, Guan Li, Hou Si-Pu, Tan Xin-Yu. Variation of the target absorptance and target temperature distribution before melting in the pulsed laser ablation process. Acta Physica Sinica, 2005, 54(3): 1283-1289. doi: 10.7498/aps.54.1283
    [19] LIN XIU-CHUAN, SHAO TIAN-MIN. LUMPED METHOD FOR THE MEASUREMENT OF LASER ABSORPTANCE OF MATERIALS . Acta Physica Sinica, 2001, 50(5): 856-859. doi: 10.7498/aps.50.856
    [20] LI ZHI-FENG, LU WEI, YE HONG-JUAN, YUAN XIAN-ZHANG, SHEN XUE-CHU, G.Li, S.J.Chua. OPTICAL SPECTROSCOPY STUDY ON CARRIER CONCENTRATION AND MOBILITY IN GaN. Acta Physica Sinica, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
Metrics
  • Abstract views:  300
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2024
  • Accepted Date:  04 December 2024
  • Available Online:  17 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回