Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of bending behavior of B2-FeAl alloy nanowires with different crystallographic orientations

WEI Zhaozhao

Citation:

Molecular dynamics simulation of bending behavior of B2-FeAl alloy nanowires with different crystallographic orientations

WEI Zhaozhao
cstr: 32037.14.aps.74.20241030
PDF
HTML
Get Citation
  • In nanosystems, the metallic nanowires are subjected to significant and cyclic bending deformation upon being integrated into stretchable and flexible nanoelectronic devices. The reliability and service life of these nanodevices depend fundamentally on the bending mechanical properties of the metallic nanowires that serve as the critical components. An in-depth understanding of the deformation behavior of the metallic nanowires under bending is not only essential but also imperative for designing and manufacturing high-performance nanodevices. To explore the mechanism of the bending plasticity of the metallic nanowire, the bending deformations of B2-FeAl alloy nanowires with various crystallographic orientations, sizes and cross-sectional shapes are investigated by using molecular dynamics simulation. The results show that the bending behavior of the B2-FeAl alloy nanowires is dependent on neither their size nor cross-sectional shape of the nanowire, but it is highly sensitive to its axial orientation. Specifically, both $\left\langle {111} \right\rangle $- and $\left\langle {110} \right\rangle $-oriented nanowires are generated through dislocation nucleation during bending, with the $\left\langle {111} \right\rangle $-oriented nanowires failling shortly after yielding due to brittle fracture, while the $\left\langle {110} \right\rangle $-oriented nanowires exhibit good ductility due to uniform plastic flow caused by continuous nucleation and stable motion of dislocations. Unlike the aforementioned two nanowires, the bending plasticity of the $\left\langle {001} \right\rangle $-oriented nanowire is mediated by the stress-induced transition from B2 phase to L10 phase, which leads to excellent ductility and higher fracture strain. The orientation dependence of bending deformation can be understood by considering the Schmid factor. Moreover, the plastically bent nanowires with $\left\langle {110} \right\rangle $ and $\left\langle {001} \right\rangle $ orientation are able to recover to their original shape upon unloading, particularly, the plastic deformation in the $\left\langle {001} \right\rangle $-oriented nanowire is recoverable completely via reverse transformation from L10 to B2 structures, exhibiting superelasticity. This work elucidates the deformation mechanism of the B2-FeAl alloy nanowires subjected to bending loads, which provides a crucial insight for designing and optimizing flexible and stretchable nanodevices based on metallic nanowires.
      Corresponding author: WEI Zhaozhao, wei_zhaozhao@163.com
    • Funds: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2017A030310657) and the Young Talents Project of Guangdong Provincial “University Innovation Acceleration Program”, China (Grant No. 2016KQNCX170).
    [1]

    Wu Y, Xiang J, Yang C, Lu W, Lieber C M 2004 Nature 430 61Google Scholar

    [2]

    Foss C A, Hornyak G L, Stockert J A, Martin C R 1992 J. Phys. Chem. 96 7497Google Scholar

    [3]

    Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Ko S H 2012 Adv. Mater. 24 3326Google Scholar

    [4]

    Kondo Y, Takayanagi K 1997 Phys. Rev. Lett. 79 3455Google Scholar

    [5]

    Huo Z Y, Tsung C K, Huang W Y, Zhang X F, Yang P D 2008 Nano Lett. 8 2041Google Scholar

    [6]

    Marszalek P E, Greenleaf W J, Li H, Oberhauser A F, Fernandez J M 2000 Proc. Natl. Acad. Sci. U. S. A. 97 6282Google Scholar

    [7]

    Wang J W, Zeng Z, Weinberger C R, Zhang Z, Zhu T, Mao S X 2015 Nat. Mater. 14 594Google Scholar

    [8]

    Yue Y H, Liu P, Deng Q S, Ma E, Zhang Z, Han X D 2012 Nano Lett. 12 4045Google Scholar

    [9]

    Seo J H, Yoo Y, Park N Y, Yoon S W, Lee H, Han S, Lee S W, Seong T Y, Lee S C, Lee K B, Cha P R, Park H S, Kim B, Ahn J P 2011 Nano Lett. 11 3499Google Scholar

    [10]

    Cao G, Wang J W, Du K, Wang X L, Li J X, Zhang Z, Mao S X 2018 Adv. Funct. Mater. 28 1805258Google Scholar

    [11]

    Hagen A B, Snartland B D, Thaulow C 2017 Acta Mater. 129 398Google Scholar

    [12]

    Wang Q N, Wang J W, Li J X, Zhang Z, Mao S X 2018 Sci. Adv. 4 1Google Scholar

    [13]

    Wu B, Heidelberg A, Boland J J 2005 Nat. Mater. 4 525Google Scholar

    [14]

    Hu T, Ma K, Topping T D, Jiang L, Zhang D, Mukherjee A K, Schoenung J M, Lavernia E J 2016 Scr. Mater. 113 35Google Scholar

    [15]

    Wei S Y, Wang Q N, Wei H, Wang J W 2019 Mater. Res. Lett. 7 210Google Scholar

    [16]

    Sun S D, Li D W, Yang C P, Fu L B, Kong D L, Lu Y, Guo Y Z, Liu D M, Guan P F, Zhang Z, Chen J H, Ming W Q, Wang L H, Han X D 2022 Phys. Rev. Lett. 128 015701Google Scholar

    [17]

    Olsson P A T, Melin S, Persson C 2007 Phys. Rev. B 76 224112Google Scholar

    [18]

    McDowell M T, Leach A M, Gall K 2008 Model. Simul. Mater. Sci. Eng. 16 045003Google Scholar

    [19]

    Zhu W P, Wang H T, Yang W 2012 Acta Mater. 60 7112Google Scholar

    [20]

    Deb Nath S K 2014 Comput. Mater. Sci. 87 138Google Scholar

    [21]

    Zhang S B 2014 Comput. Mater. Sci. 95 53Google Scholar

    [22]

    Nöhring W G, Möller J J, Xie Z, Bitzek E 2016 Extrem. Mech. Lett. 8 140Google Scholar

    [23]

    Zhan H F, Gu Y T 2012 J. Appl. Phys. 111 084305Google Scholar

    [24]

    Yang Y, Li S Z, Ding X D, Sun J, Salje E K H 2016 Adv. Funct. Mater. 26 760Google Scholar

    [25]

    Yang Y, Li S Z, Ding X D, Sun J 2021 Comput. Mater. Sci. 188 110128Google Scholar

    [26]

    Mendelev M I, Srolovitz D J, Ackland G J, Han S 2005 J. Mater. Res. 20 208Google Scholar

    [27]

    Yan J X, Zhang Z J, Li K Q, Xia Z Y, Yang J B, Zhang Z F 2020 J. Alloys Compd. 815 152362Google Scholar

    [28]

    Dong S, Liu X Y, Zhou C 2021 J. Mater. Sci. 56 17080Google Scholar

    [29]

    Timoshenko S P, Gere J M 1961 Theory of Elastic Stability (New York: McGraw-Hill) p1

    [30]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [31]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [32]

    Faken D, Jonsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [33]

    Stukowski A, Albe K 2010 Model. Simul. Mater. Sci. Eng. 18 025016Google Scholar

    [34]

    Shimizu F, Ogata S, Li J 2007 Mater. Trans. 48 2923Google Scholar

    [35]

    陈煜, 姚正军, 张平则, 魏东博, 罗西希, 韩培德 2014 稀有金属材料与工程 43 2112

    Chen Y, Yao Z J, Zhang P Z, Wei D B, Luo X X, Han P D 2014 Rare Metal. Mat. Eng. 43 2112

    [36]

    Wang Z, Shi X, Yang X S, He W, Shi S Q, Ma X 2021 J. Mater. Sci. 56 2275Google Scholar

    [37]

    Horton J A, Ohr S M 1982 J. Mater. Sci. 17 3140Google Scholar

    [38]

    Colorado H A, Navarro A, Prikhodko S V, Yang J M, Ghoniem N, Gupta V 2013 J. Appl. Phys. 114 233510Google Scholar

    [39]

    Hwang B, Kim T, Han S M 2016 Extrem. Mech. Lett. 8 266Google Scholar

    [40]

    Nye J F 1953 Acta Metall. 1 153Google Scholar

    [41]

    Ashby M F 1969 Philos. Mag. 21 399Google Scholar

    [42]

    Greer J R, Nix W D 2006 Phys. Rev. B 73 245410Google Scholar

    [43]

    Shan Z W, Mishra R K, Syed Asif S A, Warren O L, Minor A M 2008 Nat. Mater. 7 115Google Scholar

    [44]

    Norfleet D M, Dimiduk D M, Polasik S J, Uchic M D, Mills M J 2008 Acta Mater. 56 2988Google Scholar

    [45]

    Lee S W, Han S M, Nix W D 2009 Acta Mater. 57 4404Google Scholar

    [46]

    Rodriguez-Nieva J F, Ruestes C J, Tang Y, Bringa E M 2014 Acta Mater. 80 67Google Scholar

    [47]

    Santhapuram R R, Spearot D E, Nair A K 2020 J. Mater. Sci. 55 16990Google Scholar

    [48]

    袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞 2023 物理学报 72 136801Google Scholar

    Yuan Y K, Chen Q, Gao T H, Liang Y C, Xie Q, Tian Z A, Zheng Q, Lu F 2023 Acta Phys. Sin. 72 136801Google Scholar

    [49]

    Saitoh K, Liu W K 2009 Comput. Mater. Sci. 46 531Google Scholar

    [50]

    Zhang Z, Ding X D, Sun J, Suzuki T, Lookman T, Otsuka K, Ren X B 2013 Phys. Rev. Lett. 111 145701Google Scholar

    [51]

    Mirzaeifar R, Gall K, Zhu T, Yavari A, Desroches R 2014 J. Appl. Phys. 115 194307Google Scholar

    [52]

    Morrison K R, Cherukara M J, Kim H, Strachan A 2015 Acta Mater. 95 37Google Scholar

    [53]

    Ahadi A, Sun Q 2013 Appl. Phys. Lett. 103 021902Google Scholar

    [54]

    Ahadi A, Sun Q 2014 Acta Mater. 76 186Google Scholar

  • 图 1  FeAl合金纳米线弯曲形变模拟过程示意图

    Figure 1.  Schematic illustration of the simulation setup for the bending of the FeAl alloy nanowire.

    图 2  不同取向FeAl合金纳米线弯曲形变时的F-d响应曲线

    Figure 2.  F-d curves of FeAl alloy nanowires with different orientations under bending.

    图 3  $\left\langle {111} \right\rangle $取向FeAl合金纳米线弯曲变形在d = 0 nm (a), 3.585 nm (b), 3.660 nm (c)和3.725 nm (d)时的原子构型, 图中颜色表征晶体结构, 其中蓝色表示BCC结构, 绿色表示FCC结构以及白色表示未知结构

    Figure 3.  Atomic configurations of the $\left\langle {111} \right\rangle $-oriented FeAl alloy nanowire upon bending deformation at d = 0 nm (a), 3.585 nm (b), 3.660 nm (c) and 3.725 nm (d), where colors denote the different local crystal structures: blue-BCC, green-FCC and white-unknown.

    图 4  $\left\langle {111} \right\rangle $取向FeAl合金纳米线断裂前的位错结构特征及其演化行为 (a) d = 3.585 nm; (b) d = 3.635 nm; (c) d = 3.660 nm; (d) d = 3.675 nm

    Figure 4.  Structural characteristics and evolution of dislocations in the $\left\langle {111} \right\rangle $-oriented FeAl alloy nanowire before fracture: (a) d = 3.585 nm; (b) d = 3.635 nm; (c) d = 3.660 nm; (d) d = 3.675 nm.

    图 5  $\left\langle {110} \right\rangle $取向FeAl合金纳米线弯曲变形在d = 3.300 nm (a), 4.500 nm (b), 6.000 nm (c), 8.900 nm (d)和9.300 nm (e)时的原子构型, 图中颜色表征晶体结构, 其中, 蓝色表示BCC结构, 绿色表示FCC结构, 红色表示HCP结构以及白色表示未知结构; (f) d = 9.300 nm时纳米线在1860 ps时的应变分布图

    Figure 5.  Atomic configurations of the $\left\langle {110} \right\rangle $-oriented FeAl alloy nanowire upon bending deformation at d = 3.300 nm (a), 4.500 nm (b), 6.000 nm (c), 8.900 nm (d) and 9.300 nm (e), where colors denote the different local crystal structures: blue-BCC, green-FCC, red-HCP and white-unknown; (f) strain distribution within the nanowire at 1860 ps and d = 9.300 nm, where atoms are colored by their local shear strain.

    图 6  总位错密度及GND和SSD密度随弯曲角的演化过程

    Figure 6.  Evolutions of the total dislocation density as well as the densities of GND and SSD versus bending angle.

    图 7  $\left\langle {001} \right\rangle $取向FeAl合金纳米线弯曲变形在d = 4.200 nm (a), 6.000 nm (b), 8.000 nm (c), 9.440 nm (d) 和 9.540 nm (e)时的原子构型, 图中颜色表征晶体结构, 其中, 蓝色表示BCC结构, 绿色表示FCC结构, 红色表示HCP结构以及白色表示未知结构; (f) d = 9.540 nm时纳米线在1908 ps时的应变分布图

    Figure 7.  Atomic configurations of the $\left\langle {001} \right\rangle $-oriented FeAl alloy nanowire upon bending deformation at d = 4.200 nm (a), 6.000 nm (b), 8.000 nm (c), 9.440 nm (d) and 9.540 nm (e), where colors denote the different local crystal structures: blue-BCC, green-FCC, red-HCP and white-unknown; (f) strain distribution within the nanowire at 1908 ps and d = 9.540 nm, where atoms are colored by their local shear strain.

    图 8  $\left\langle {110} \right\rangle $取向FeAl纳米线弯曲形变加载和卸载过程的F-d响应曲线(a)及卸载过程各阶段的原子构型(b); $\left\langle {001} \right\rangle $取向FeAl纳米线弯曲形变加载和卸载过程的F-d响应曲线(c)及卸载过程各阶段的原子构型(d)

    Figure 8.  F-d curves of the $\left\langle {110} \right\rangle $-oriented FeAl alloy nanowire under loading and unloading (a) in addition to the atomic configurations during unloading (b); F-d curves of the $\left\langle {001} \right\rangle $-oriented FeAl alloy nanowire under loading and unloading (c) in addition to the atomic configurations during unloading (d).

    表 1  FeAl合金纳米线初始模型的晶体学取向特征

    Table 1.  Crystallographic orientation of the FeAl alloy nanowires.

    Orientation X Y Z
    $\left\langle {111} \right\rangle $ [111] $ [1\bar 1 0] $ $ [11\bar 2 ] $
    $\left\langle {001} \right\rangle $ [001] $ [1\bar 1 0] $ [110]
    $\left\langle {110} \right\rangle $ [110] $ [1\bar 1 0] $ [001]
    DownLoad: CSV
  • [1]

    Wu Y, Xiang J, Yang C, Lu W, Lieber C M 2004 Nature 430 61Google Scholar

    [2]

    Foss C A, Hornyak G L, Stockert J A, Martin C R 1992 J. Phys. Chem. 96 7497Google Scholar

    [3]

    Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Ko S H 2012 Adv. Mater. 24 3326Google Scholar

    [4]

    Kondo Y, Takayanagi K 1997 Phys. Rev. Lett. 79 3455Google Scholar

    [5]

    Huo Z Y, Tsung C K, Huang W Y, Zhang X F, Yang P D 2008 Nano Lett. 8 2041Google Scholar

    [6]

    Marszalek P E, Greenleaf W J, Li H, Oberhauser A F, Fernandez J M 2000 Proc. Natl. Acad. Sci. U. S. A. 97 6282Google Scholar

    [7]

    Wang J W, Zeng Z, Weinberger C R, Zhang Z, Zhu T, Mao S X 2015 Nat. Mater. 14 594Google Scholar

    [8]

    Yue Y H, Liu P, Deng Q S, Ma E, Zhang Z, Han X D 2012 Nano Lett. 12 4045Google Scholar

    [9]

    Seo J H, Yoo Y, Park N Y, Yoon S W, Lee H, Han S, Lee S W, Seong T Y, Lee S C, Lee K B, Cha P R, Park H S, Kim B, Ahn J P 2011 Nano Lett. 11 3499Google Scholar

    [10]

    Cao G, Wang J W, Du K, Wang X L, Li J X, Zhang Z, Mao S X 2018 Adv. Funct. Mater. 28 1805258Google Scholar

    [11]

    Hagen A B, Snartland B D, Thaulow C 2017 Acta Mater. 129 398Google Scholar

    [12]

    Wang Q N, Wang J W, Li J X, Zhang Z, Mao S X 2018 Sci. Adv. 4 1Google Scholar

    [13]

    Wu B, Heidelberg A, Boland J J 2005 Nat. Mater. 4 525Google Scholar

    [14]

    Hu T, Ma K, Topping T D, Jiang L, Zhang D, Mukherjee A K, Schoenung J M, Lavernia E J 2016 Scr. Mater. 113 35Google Scholar

    [15]

    Wei S Y, Wang Q N, Wei H, Wang J W 2019 Mater. Res. Lett. 7 210Google Scholar

    [16]

    Sun S D, Li D W, Yang C P, Fu L B, Kong D L, Lu Y, Guo Y Z, Liu D M, Guan P F, Zhang Z, Chen J H, Ming W Q, Wang L H, Han X D 2022 Phys. Rev. Lett. 128 015701Google Scholar

    [17]

    Olsson P A T, Melin S, Persson C 2007 Phys. Rev. B 76 224112Google Scholar

    [18]

    McDowell M T, Leach A M, Gall K 2008 Model. Simul. Mater. Sci. Eng. 16 045003Google Scholar

    [19]

    Zhu W P, Wang H T, Yang W 2012 Acta Mater. 60 7112Google Scholar

    [20]

    Deb Nath S K 2014 Comput. Mater. Sci. 87 138Google Scholar

    [21]

    Zhang S B 2014 Comput. Mater. Sci. 95 53Google Scholar

    [22]

    Nöhring W G, Möller J J, Xie Z, Bitzek E 2016 Extrem. Mech. Lett. 8 140Google Scholar

    [23]

    Zhan H F, Gu Y T 2012 J. Appl. Phys. 111 084305Google Scholar

    [24]

    Yang Y, Li S Z, Ding X D, Sun J, Salje E K H 2016 Adv. Funct. Mater. 26 760Google Scholar

    [25]

    Yang Y, Li S Z, Ding X D, Sun J 2021 Comput. Mater. Sci. 188 110128Google Scholar

    [26]

    Mendelev M I, Srolovitz D J, Ackland G J, Han S 2005 J. Mater. Res. 20 208Google Scholar

    [27]

    Yan J X, Zhang Z J, Li K Q, Xia Z Y, Yang J B, Zhang Z F 2020 J. Alloys Compd. 815 152362Google Scholar

    [28]

    Dong S, Liu X Y, Zhou C 2021 J. Mater. Sci. 56 17080Google Scholar

    [29]

    Timoshenko S P, Gere J M 1961 Theory of Elastic Stability (New York: McGraw-Hill) p1

    [30]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [31]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [32]

    Faken D, Jonsson H 1994 Comput. Mater. Sci. 2 279Google Scholar

    [33]

    Stukowski A, Albe K 2010 Model. Simul. Mater. Sci. Eng. 18 025016Google Scholar

    [34]

    Shimizu F, Ogata S, Li J 2007 Mater. Trans. 48 2923Google Scholar

    [35]

    陈煜, 姚正军, 张平则, 魏东博, 罗西希, 韩培德 2014 稀有金属材料与工程 43 2112

    Chen Y, Yao Z J, Zhang P Z, Wei D B, Luo X X, Han P D 2014 Rare Metal. Mat. Eng. 43 2112

    [36]

    Wang Z, Shi X, Yang X S, He W, Shi S Q, Ma X 2021 J. Mater. Sci. 56 2275Google Scholar

    [37]

    Horton J A, Ohr S M 1982 J. Mater. Sci. 17 3140Google Scholar

    [38]

    Colorado H A, Navarro A, Prikhodko S V, Yang J M, Ghoniem N, Gupta V 2013 J. Appl. Phys. 114 233510Google Scholar

    [39]

    Hwang B, Kim T, Han S M 2016 Extrem. Mech. Lett. 8 266Google Scholar

    [40]

    Nye J F 1953 Acta Metall. 1 153Google Scholar

    [41]

    Ashby M F 1969 Philos. Mag. 21 399Google Scholar

    [42]

    Greer J R, Nix W D 2006 Phys. Rev. B 73 245410Google Scholar

    [43]

    Shan Z W, Mishra R K, Syed Asif S A, Warren O L, Minor A M 2008 Nat. Mater. 7 115Google Scholar

    [44]

    Norfleet D M, Dimiduk D M, Polasik S J, Uchic M D, Mills M J 2008 Acta Mater. 56 2988Google Scholar

    [45]

    Lee S W, Han S M, Nix W D 2009 Acta Mater. 57 4404Google Scholar

    [46]

    Rodriguez-Nieva J F, Ruestes C J, Tang Y, Bringa E M 2014 Acta Mater. 80 67Google Scholar

    [47]

    Santhapuram R R, Spearot D E, Nair A K 2020 J. Mater. Sci. 55 16990Google Scholar

    [48]

    袁用开, 陈茜, 高廷红, 梁永超, 谢泉, 田泽安, 郑权, 陆飞 2023 物理学报 72 136801Google Scholar

    Yuan Y K, Chen Q, Gao T H, Liang Y C, Xie Q, Tian Z A, Zheng Q, Lu F 2023 Acta Phys. Sin. 72 136801Google Scholar

    [49]

    Saitoh K, Liu W K 2009 Comput. Mater. Sci. 46 531Google Scholar

    [50]

    Zhang Z, Ding X D, Sun J, Suzuki T, Lookman T, Otsuka K, Ren X B 2013 Phys. Rev. Lett. 111 145701Google Scholar

    [51]

    Mirzaeifar R, Gall K, Zhu T, Yavari A, Desroches R 2014 J. Appl. Phys. 115 194307Google Scholar

    [52]

    Morrison K R, Cherukara M J, Kim H, Strachan A 2015 Acta Mater. 95 37Google Scholar

    [53]

    Ahadi A, Sun Q 2013 Appl. Phys. Lett. 103 021902Google Scholar

    [54]

    Ahadi A, Sun Q 2014 Acta Mater. 76 186Google Scholar

  • [1] Zhang Bo-Jia, An Min-Rong, Hu Teng, Han La. Molecular dynamics simulation of mechanism of interaction between dislocation and amorphism in magnesium. Acta Physica Sinica, 2022, 71(14): 143101. doi: 10.7498/aps.71.20212318
    [2] Pan Ling, Zhang Hao, Lin Guo-Bin. Molecular dynamics simulation on dynamic behaviors of nanodroplets impinging on solid surfaces decorated with nanopillars. Acta Physica Sinica, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [3] Xin Yong, Bao Hong-Wei, Sun Zhi-Peng, Zhang Ji-Bin, Liu Shi-Chao, Guo Zi-Xuan, Wang Hao-Yu, Ma Fei, Li Yuan-Ming. Effects of Th doping on mechanical properties of U1–xThxO2: An atomistic simulation. Acta Physica Sinica, 2021, 70(12): 122801. doi: 10.7498/aps.70.20202239
    [4] Han Rui-Qi, Song Hai-Yang, An Min-Rong, Li Wei-Wei, Ma Jia-Li. Simulation of interaction behavior between dislocation and graphene during nanoindentation of graphene/aluminum matrix nanocomposites. Acta Physica Sinica, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [5] He Ju-Sheng, Zhang Meng, Zou Ji-Jun, Pan Hua-Qing, Qi Wei-Jing, Li Ping. Analyses of determination conditions of n-GaN dislocation density by triple-axis X-ray diffraction. Acta Physica Sinica, 2017, 66(21): 216102. doi: 10.7498/aps.66.216102
    [6] He Ju-Sheng, Zhang Meng, Pan Hua-Qing, Zou Ji-Jun, Qi Wei-Jing, Li Ping. Determination of dislocation density of a class of n-GaN based on the variable temperature Hall-effect method. Acta Physica Sinica, 2017, 66(6): 067201. doi: 10.7498/aps.66.067201
    [7] He Ju-Sheng, Zhang Meng, Pan Hua-Qing, Qi Wei-Jing, Li Ping. A new method to determine the dislocation density in wurtzite n-GaN. Acta Physica Sinica, 2016, 65(16): 167201. doi: 10.7498/aps.65.167201
    [8] Si Li-Na, Wang Xiao-Li. A molecular dynamics study on adhesive contact processes of surfaces with nanogrooves. Acta Physica Sinica, 2014, 63(23): 234601. doi: 10.7498/aps.63.234601
    [9] Qi Yu, Qu Chang-Rong, Wang Li, Fang Teng. Liquid-liquid phase segregation process of Fe50Cu50 melt by molecular dynamics simulation. Acta Physica Sinica, 2014, 63(4): 046401. doi: 10.7498/aps.63.46401
    [10] Yan Xiao, Xin Zi-Hua, Zhang Jiao-Jiao. Molecular dynamics study on the structure and properties of silicon-graphdiyne. Acta Physica Sinica, 2013, 62(23): 238101. doi: 10.7498/aps.62.238101
    [11] Sun Wei-Feng, Wang Xuan. Molecular dynamics simulation study of polyimide/copper-nanoparticle composites. Acta Physica Sinica, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [12] Chen Qing, Sun Min-Hua. Molecular dynamics simulation of isothermal crystallization dynamics in Cu nanocluster. Acta Physica Sinica, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [13] Xia Dong, Wang Xin-Qiang. Structures and melting behaviors of ultrathin platinum nanowires. Acta Physica Sinica, 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [14] Xie Hong-Xian, Yu Tao, Liu Bo. Effect of temperature on motion of misfit dislocation in γ/γ'interface of a Ni-based single-crystal superalloy:molecular dynamic simulations. Acta Physica Sinica, 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [15] Liu Hong, Wang Xi-Tao, Chen Leng. Modelling the strain induced precipitation in Nb-containing micro-alloyed steels. Acta Physica Sinica, 2009, 58(13): 151-S155. doi: 10.7498/aps.58.151
    [16] Xie Fang, Zhu Ya-Bo, Zhang Zhao-Hui, Zhang Lin. Molecular dynamics simulation of multi-wall carbon nanotube oscillators. Acta Physica Sinica, 2008, 57(9): 5833-5837. doi: 10.7498/aps.57.5833
    [17] Meng Li-Jun, Zhang Kai-Wang, Zhong Jian-Xin. Molecular dynamics simulation of formation of silicon nanoparticles on surfaces of carbon nanotubes. Acta Physica Sinica, 2007, 56(2): 1009-1013. doi: 10.7498/aps.56.1009
    [18] Yang Hong, Chen Min. A molecular dynamics simulation of thermodynamic properties of undercooled liquid Ni2TiAl alloy. Acta Physica Sinica, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [19] Li Rui, Hu Yuan-Zhong, Wang Hui, Zhang Yu-Jun. Molecular dynamics simulation of motion of single-walled carbon nanotubes on graphite substrate. Acta Physica Sinica, 2006, 55(10): 5455-5459. doi: 10.7498/aps.55.5455
    [20] Wang Chang-Qing, Jia Yu, Ma Bing-Xian, Wang Song-You, Qin Zhen, Wang Fei, Wu Le-Ke, Li Xin-Jian. Molecular dynamics simulations of various metastable structures on Si(001) at different temperatures. Acta Physica Sinica, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
Metrics
  • Abstract views:  318
  • PDF Downloads:  13
  • Cited By: 0
Publishing process
  • Received Date:  24 July 2024
  • Accepted Date:  29 November 2024
  • Available Online:  19 December 2024
  • Published Online:  05 February 2025

/

返回文章
返回