Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Radian and rotation co-induced phase controlling terahertz metasurfaces

JIANG Mingyang LI Jiusheng

Citation:

Radian and rotation co-induced phase controlling terahertz metasurfaces

JIANG Mingyang, LI Jiusheng
cstr: 32037.14.aps.74.20241465
PDF
HTML
Get Citation
  • Metasurfaces have the characteristics of simple structure, easy fabrication, easy integration, etc., and can flexibly control electromagnetic waves. They are widely used in terahertz filters, lenses, polarization converters, wavefront adjustment and terahertz imaging and so on. By encoding and arranging unit cells with different amplitudes and phases according to a certain rule, the metasurfaces can achieve various functions such as imaging, focusing, beam splitting, and vortex beam. The reported coding metasurfaces are phase-modulated according to geometric phase or transmission phase theory. However, geometric phase has spin-locking property and transmission phase has single-frequency property, which hinder the applications of a unified metasurface in simultaneously regulating geometric phase and transmission phase.To address the above issues, in this work, we propose an radian and rotation co-induced phase modulation metasurface, whose unit cell independently modulates the cross-polarized reflection phases of LCP wave and RCP wave and has a certain bandwidth, which meets therequirement in a frequency region of 1–1.2 THz. Through the principle of phase convolution and shared aperture, the metasurface realizes the vortex beams with a topological charge of ±1, focusing with a focal length of 1500 μm, the deflected vortex beams with a topological charge of ±2, the quasi-perfect vortex beams, and the multichannel vortex beams. The structure has the advantages of simple structure, flexible and convenient regulation, and compact size, which improves the utilization of the electromagnetic space and has a broad application prospect in the future terahertz communication systems.
      Corresponding author: LI Jiusheng, lijsh2008@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62271460) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ24F050005).
    [1]

    Feng C H, Otani C 2021 Crit. Rev. Food Sci. Nutr. 61 2523Google Scholar

    [2]

    Song Z Y, Chen A P, Zhang J H 2020 Opt. Express 28 2037Google Scholar

    [3]

    Zhang Y B, Wu P H, Zhou Z G, Chen X F, Yi Z, Zhu J Y, Zhang T S, Ji H G 2020 IEEE Access 8 85154Google Scholar

    [4]

    Hu X Z, Zheng D Y, Lin Y S 2020 Appl. Phys. A: Mater. Sci. Process. 126 110Google Scholar

    [5]

    Liu X, Huang J, Chen H 2022 Photonics Res. 10 1090Google Scholar

    [6]

    Zhang Z, Wen D, Zhang C 2018 ACS Photonics 5 1794Google Scholar

    [7]

    Liu Y Q, Che Y X, Qi K N, Li L S, Yin H C 2020 Opt. Commun. 474 126061Google Scholar

    [8]

    Huang J, Fu T, Li H, Shou Z, Gao X 2020 Chin. Opt. Lett. 18 013102Google Scholar

    [9]

    Wang H, Zhang Z, Zhao K, Liu W, Wang P, Lu Y 2021 Chin. Opt. Lett. 19 053601Google Scholar

    [10]

    Ma Z J, Hanham S M, Gong Y D, Hong M H 2018 Opt. Lett. 43 911Google Scholar

    [11]

    Yang L J, Li J S, Yan D X 2022 Opt. Commun. 516 128234Google Scholar

    [12]

    Jiang Q, Jin G, Cao L 2019 Adv. Opt. Photonics 11 518Google Scholar

    [13]

    Bao Y, Yan J, Yang X, Qiu C, Li B 2020 Nano Lett. 21 2332Google Scholar

    [14]

    Gao P, Chen C, Dai Y W, Wang X L, Liu H 2023 Opt. Mater. 145 114448Google Scholar

    [15]

    Ma Z, Li P, Chen S, Wu X 2022 Nanophotonics 11 1847Google Scholar

    [16]

    Zang X, Yao B, Chen L, Xie J, Guo X, Balakin A, Shkurinov A, Zhuang S 2021 Light: Adv. Manuf. 2 148Google Scholar

    [17]

    Li S, Li Z, Han B, Huang G, Liu X, Yang H, Cao X 2022 Front. Magn. Mater. 9 854062Google Scholar

    [18]

    Liu J, Cheng Y, Chen F, Luo H, Li X 2023 Infrared Laser Eng. 52 20220377Google Scholar

    [19]

    Fu C, Zhao J, Li F, Li H 2023 Micromachines 14 465Google Scholar

    [20]

    Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 11 2202275Google Scholar

    [21]

    Fan J, Cheng Y 2020 J. Phys. D: Appl. Phys. 53 025109Google Scholar

    [22]

    Fu X M, Yang J, Wang J F, Ding C, Han Y J, Jia Y X, Liu T H, Zhu R C, Qu S B 2023 Laser Photonics Rev. 17 2200678Google Scholar

    [23]

    Zhang L, Liu S, Cui T 2017 Chin. Opt. 10 1Google Scholar

    [24]

    Liu W, Yang Q, Xu Q, Jiang X, Wu T, Gu J, Han J, Zhang W 2022 Nanophotonics 11 3631Google Scholar

    [25]

    Li J S, Guo F L, Chen Y 2023 Opt. Commun. 537 129428Google Scholar

  • 图 1  弧度与旋转共同诱导相位调控超表面及其功能示意图

    Figure 1.  Schematic diagram of the proposed metasurface and its function induced by both arc and rotation co-induced phase modulation.

    图 2  单元尺寸参数

    Figure 2.  Dimensional parameters of the unit cells.

    图 3  超表面单元的反射系数与相位 (a) LCP入射下超表面单元反射系数; (b) LCP入射下超表面单元反射相位; (c) RCP入射下超表面单元反射系数; (d) RCP入射下超表面单元反射相位

    Figure 3.  Reflection coefficient and phase of the unit cells: (a) Reflection coefficients at LCP incidence; (b) reflection phases at LCP incidence; (c) reflection coefficients at RCP incidence; (d) reflection phases at RCP incidence.

    图 4  (a) l = 1超表面相位分布; (b) l = 1的超表面排布; (c) l = –1超表面相位分布; (d) l = –1超表面排布

    Figure 4.  (a) The phase distribution of the metasurfaces at l = 1; (b) metasurfaces arrangement at l = 1; (c) the phase distribution of the metasurfaces at l = –1; (d) metasurfaces arrangement at l = –1.

    图 5  (a), (e) LCP波入射下, l = 1涡旋波束远场图和模式纯度; (b), (f) RCP波入射下, l = 1涡旋波束远场图和模式纯度; (c), (g) LCP波下, l = –1涡旋波束远场图和模式纯度; (d), (h) RCP波入射下, l = –1涡旋波束远场图和模式纯度

    Figure 5.  (a), (e) Far-field patterns and mode purity of the vortex beam at l = 1 under LCP wave incidence; (b), (f) far-field patterns and mode purity of the vortex beam at l = 1 under RCP wave incidence; (c), (g) far-field patterns and mode purity of the vortex beam at l = –1 under LCP wave incidence; (d), (h) far-field patterns and mode purity of the vortex beam at l = –1 under RCP wave incidence.

    图 6  (a) zf = 1500μm超表面聚焦相位排布; (b) 超表面结构

    Figure 6.  (a) Focusing phase arrangement of zf = 1500 μm metasurfaces; (b) metasurface structure.

    图 7  (a) LCP波入射, zf = 1500 μm处x-y截面的二维电场; (b) LCP波入射, y = 0 μm处x-z截面的二维电场; (c) RCP波入射, zf = 1500 μm处x-y截面的二维电场; (d) RCP波入射, y = 0 μm处x-z截面的二维电场

    Figure 7.  (a) 2D electric field in x-y cross section at zf = 1500 μm under LCP wave incidence; (b) 2D electric field in x-z cross section at y = 0 under LCP wave incidence; (c) 2D electric field in x-y cross section at zf = 1500 μm under RCP wave incidence; (d) 2D electric field in the x-z cross section at y = 0 under RCP wave incidence.

    图 8  (a) l = 2涡旋波束相位图; (b)“64206420…”偏折相位图; (c) l = 2偏折卷积涡旋波束相位图; (d) l = 2偏折涡旋波束超表面结构; (e) l = –2涡旋波束相位图; (f)“0022446600224466…”偏折相位图; (g) l = –2偏折卷积涡旋波束相位图; (h) l = –2偏折涡旋波束超表面结构

    Figure 8.  (a) Vortex beam phase diagram at l = 2; (b) ‘64206420…’ deflection phase diagram; (c) deflection convolution vortex beam phase diagram at l = 2; (d) deflection vortex beam metasurfaces structure at l = 2; (e) vortex beam phase diagram at l = –2, (f) ‘0022446600224466…’ deflected phase diagram; (g) deflected convolved vortex beam phase diagram at l = –2; (h) deflected vortex beam metasurfaces structure at l = –2.

    图 9  (a), (b) LCP波入射, l = 2偏折涡旋波束的远场和偏折角度; (c), (d) RCP波入射, l = 2偏折涡旋波束的远场和偏折角度; (e), (f) LCP波入射, l = –2偏折涡旋波束的远场和偏折角度; (g), (h) RCP波入射, l = –2偏折涡旋波束的远场和偏折角度

    Figure 9.  (a), (b) Far field and deflection angle of l = 2 deflected vortex beam under LCP wave incidence; (c), (d) far field and deflection angle of l = 2 deflected vortex beam under RCP wave incidence; (e), (f) far field and deflection angle of l = –2 deflected vortex beam under LCP wave incidence; (g), (h) far field and deflection angle of l = –2 deflected vortex beam under RCP wave incidence.

    图 10  (a) zf = 1500 μm超表面聚焦相位; (b)“02460246…”偏折相位; (c)卷积后偏折聚焦相位; (d)偏折聚焦超表面结构

    Figure 10.  (a) zf = 1500 μm metasurfaces focusing phase, (b) ‘02460246…’ deflection phase, (c) deflection focusing phase after convolution, (d) deflection focusing metasurface structure

    图 11  (a) LCP波入射, zf = 1500 μm处x-y截面的二维电场; (b) LCP波入射, y = 0 μm处x-z截面的二维电场; (c) RCP波入射, zf = 1500 μm处x-y截面的二维电场; (d) RCP波入射, y = 0 μm处x-z截面的二维电场

    Figure 11.  (a) 2D electric field in x-y cross section at zf = 1500 μm under LCP wave incidence, (b) 2D electric field in x-z cross section at y = 0 under LCP wave incidence, (c) 2D electric field in x-y cross section at zf = 1500 μm under RCP wave incidence, (d) 2D electric field in the x-z cross section at y = 0 under RCP wave incidence.

    图 12  (a), (e)拓扑荷数为l = 1和 l = 2的涡旋相位排布; (b), (f)负轴向产生的反向贝塞尔光束的傅里叶变换相位排布; (c), (g) 焦透镜的相位排布; (d), (h) 拓扑荷数为l = 1和l = 2的完美涡旋相位排布

    Figure 12.  (a), (e) Vortex phase arrangement for the topological charges of l = 1 and l = 2; (b), (f) Fourier-transform phase arrangement of the inverted Bessel beam generated in the negative axial direction; (c), (g) phase arrangement of the focal lens; (d), (h) perfect vortex phase arrangement for the topological charges of l = 1 and l = 2.

    图 13  (a) 拓扑荷数l = 1的完美涡旋波束电场强度分布; (b) 拓扑荷数l = 2的完美涡旋波束电场强度分布

    Figure 13.  (a) Electric field strength distribution of a perfect vortex beam for the topological charge of l = 1; (b) electric field strength distribution of a perfect vortex beam for the topological charge of l = 2.

    图 14  (a)左偏 (l = 2) 涡旋波束的相位排布; (b) 右偏 (l = –2) 涡旋波束的相位排布; (c) 横向双通道涡旋波束的相位排布

    Figure 14.  (a) Phase arrangement of the left-biased vortex beam (l = 2); (b) phase arrangement of the right-biased vortex beam (l = –2); (c) phase arrangement of the transverse two-channel vortex beam.

    图 15  (a) LCP波入射下, 频率1.1 THz处, l = ±2双通道涡旋波束的远场强度; (b) RCP波入射下, 频率1.1 THz处, l = ±2双通道涡旋波束的远场强度

    Figure 15.  (a) Far-field intensity of two-channel vortex beam (l = ±2) at 1.1 THz under LCP wave incidence; (b) far-field intensity of two-channel vortex beam (l = ±2) at 1.1 THz under RCP wave incidence.

  • [1]

    Feng C H, Otani C 2021 Crit. Rev. Food Sci. Nutr. 61 2523Google Scholar

    [2]

    Song Z Y, Chen A P, Zhang J H 2020 Opt. Express 28 2037Google Scholar

    [3]

    Zhang Y B, Wu P H, Zhou Z G, Chen X F, Yi Z, Zhu J Y, Zhang T S, Ji H G 2020 IEEE Access 8 85154Google Scholar

    [4]

    Hu X Z, Zheng D Y, Lin Y S 2020 Appl. Phys. A: Mater. Sci. Process. 126 110Google Scholar

    [5]

    Liu X, Huang J, Chen H 2022 Photonics Res. 10 1090Google Scholar

    [6]

    Zhang Z, Wen D, Zhang C 2018 ACS Photonics 5 1794Google Scholar

    [7]

    Liu Y Q, Che Y X, Qi K N, Li L S, Yin H C 2020 Opt. Commun. 474 126061Google Scholar

    [8]

    Huang J, Fu T, Li H, Shou Z, Gao X 2020 Chin. Opt. Lett. 18 013102Google Scholar

    [9]

    Wang H, Zhang Z, Zhao K, Liu W, Wang P, Lu Y 2021 Chin. Opt. Lett. 19 053601Google Scholar

    [10]

    Ma Z J, Hanham S M, Gong Y D, Hong M H 2018 Opt. Lett. 43 911Google Scholar

    [11]

    Yang L J, Li J S, Yan D X 2022 Opt. Commun. 516 128234Google Scholar

    [12]

    Jiang Q, Jin G, Cao L 2019 Adv. Opt. Photonics 11 518Google Scholar

    [13]

    Bao Y, Yan J, Yang X, Qiu C, Li B 2020 Nano Lett. 21 2332Google Scholar

    [14]

    Gao P, Chen C, Dai Y W, Wang X L, Liu H 2023 Opt. Mater. 145 114448Google Scholar

    [15]

    Ma Z, Li P, Chen S, Wu X 2022 Nanophotonics 11 1847Google Scholar

    [16]

    Zang X, Yao B, Chen L, Xie J, Guo X, Balakin A, Shkurinov A, Zhuang S 2021 Light: Adv. Manuf. 2 148Google Scholar

    [17]

    Li S, Li Z, Han B, Huang G, Liu X, Yang H, Cao X 2022 Front. Magn. Mater. 9 854062Google Scholar

    [18]

    Liu J, Cheng Y, Chen F, Luo H, Li X 2023 Infrared Laser Eng. 52 20220377Google Scholar

    [19]

    Fu C, Zhao J, Li F, Li H 2023 Micromachines 14 465Google Scholar

    [20]

    Sun S, Ma H F, Gou Y, Zhang T Y, Wu L W, Cui T J 2023 Adv. Opt. Mater. 11 2202275Google Scholar

    [21]

    Fan J, Cheng Y 2020 J. Phys. D: Appl. Phys. 53 025109Google Scholar

    [22]

    Fu X M, Yang J, Wang J F, Ding C, Han Y J, Jia Y X, Liu T H, Zhu R C, Qu S B 2023 Laser Photonics Rev. 17 2200678Google Scholar

    [23]

    Zhang L, Liu S, Cui T 2017 Chin. Opt. 10 1Google Scholar

    [24]

    Liu W, Yang Q, Xu Q, Jiang X, Wu T, Gu J, Han J, Zhang W 2022 Nanophotonics 11 3631Google Scholar

    [25]

    Li J S, Guo F L, Chen Y 2023 Opt. Commun. 537 129428Google Scholar

  • [1] Ju Xue-Wei, Zhang Lin-Feng, Huang Feng, Zhu Guo-Feng, Li Shu-Jin, Chen Yan-Qing, Wang Jia-Xun, Zhong Shun-Cong, Chen Ying, Wang Xiang-Feng. Reverse design and optimization of digital terahertz bandpass filters. Acta Physica Sinica, 2024, 73(6): 060702. doi: 10.7498/aps.73.20231584
    [2] Yao Hai-Yun, Yan Xin, Liang Lan-Ju, Yang Mao-Sheng, Yang Qi-Li, Lü Kai-Kai, Yao Jian-Quan. Terahertz dynamic multidimensional modulation at Dirac point based on patterned graphene/gallium nitride hybridized with metasurfaces. Acta Physica Sinica, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [3] Qin Zhao-Fu, Chen Hao, Hu Tao-Zheng, Chen Zhuo, Wang Zhen-Lin. Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [4] Li Hai-Peng, Wu Xiao, Ding Hai-Yang, Xin Ke-Wei, Wang Guang-Ming. Wideband circularly-polarized bifunction devices employing composite metasurfaces. Acta Physica Sinica, 2021, 70(2): 027803. doi: 10.7498/aps.70.20201150
    [5] Fundamental wave and second-harmonic focusing based on guided wave-driven phase-change materials metasurfaces. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211596
    [6] Jiang Guang-Yu, Sun Chao, Li Qin-Ran. Effect of mesoscale eddies on the vertical spatial characteristics of wind-generated noise in deep ocean. Acta Physica Sinica, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [7] Liu Kang, He Tao, Liu Tao, Li Guo-Qing, Tian Bo, Wang Jia-Yi, Yang Shu-Ming. Effect of laser illumination conditions on focusing performance of super-oscillatory lens. Acta Physica Sinica, 2020, 69(18): 184215. doi: 10.7498/aps.69.20200577
    [8] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [9] Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna. Acta Physica Sinica, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [10] Gu Wen-Hao, Chang Sheng-Jiang, Fan Fei, Zhang Xuan-Zhou. InSb based subwavelength array for terahertz wave focusing. Acta Physica Sinica, 2016, 65(1): 010701. doi: 10.7498/aps.65.010701
    [11] Jiang Zhong-Jun, Liu Jian-Jun. Progress in far-field focusing and imaging with super-oscillation. Acta Physica Sinica, 2016, 65(23): 234203. doi: 10.7498/aps.65.234203
    [12] Li Jia-Ming, Tang Peng, Wang Jia-Jian, Huang Tao, Lin Feng, Fang Zhe-Yu, Zhu Xing. Focusing surface plasmon polaritons in archimedes' spiral nanostructure. Acta Physica Sinica, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [13] Shi Liang-Ma, Zhou Ming-Jian, Zhu Ren-Yi. Evolution of vortex configuration for superconducting ring in the presence of an externally applied field. Acta Physica Sinica, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [14] Rao Huang-Yun, Liu Yi-Bao, Jiang Yan-Yan, Guo Li-Ping, Wang Zi-Sheng. Geometric quantum phase for three-level mixed state. Acta Physica Sinica, 2012, 61(2): 020302. doi: 10.7498/aps.61.020302
    [15] Zheng Li-Ming, Liu Song-Hao, Wang Fa-Qiang. Geometric phase evolution of atom under non-Markovian environment. Acta Physica Sinica, 2009, 58(4): 2430-2434. doi: 10.7498/aps.58.2430
    [16] Zheng Wei-Wei, Wang Li-Qin, Xu Jing-Ping, Wang Li-Gang. Studies on propagation of laser beam array with initial phase distributions in a turbulent atmosphere. Acta Physica Sinica, 2009, 58(7): 5098-5103. doi: 10.7498/aps.58.5098
    [17] Wang Li, Wang Qing-Feng, Wang Xi-Qing, Lü Bai-Da. Transversal optical vortex in the interference field of two off-axis Gaussian beams. Acta Physica Sinica, 2007, 56(1): 201-207. doi: 10.7498/aps.56.201
    [18] Li Yong-Qing, Li Xi-Guo, Liu Zi-Yu, Luo Pei-Yan, Zhang Peng-Ming. New vortex solutions of Jackiw-Pi model. Acta Physica Sinica, 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [19] Zheng Ying-Hong, Chen Tong, Wang Ping, Chang Zhe. Properties of geometric phase under Galilean transformation. Acta Physica Sinica, 2007, 56(11): 6199-6203. doi: 10.7498/aps.56.6199
    [20] Zhuang Fei, Shen Jian-Qi. Investigation of photon geometric phases inside a curved fiber made of biaxially anisotropic left-handed media. Acta Physica Sinica, 2005, 54(2): 955-960. doi: 10.7498/aps.54.955
Metrics
  • Abstract views:  296
  • PDF Downloads:  8
  • Cited By: 0
Publishing process
  • Received Date:  20 October 2024
  • Accepted Date:  24 November 2024
  • Available Online:  03 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回