Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of mechanism of high birefringence in alkali metal vanadates AV3O8 (A = Li, Na, K, Rb)

WAN Fuhong DING Jiafu HE Zhihao WANG Yunjie CUI Jian LI Jiajun SU Xin HUANG Yineng

Citation:

First-principles study of mechanism of high birefringence in alkali metal vanadates AV3O8 (A = Li, Na, K, Rb)

WAN Fuhong, DING Jiafu, HE Zhihao, WANG Yunjie, CUI Jian, LI Jiajun, SU Xin, HUANG Yineng
cstr: 32037.14.aps.74.20241631
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Birefringence, as a fundamental parameter of optical crystals, plays a vital role in numerous optical applications such as phase modulation, light splitting, and polarization, thereby making them key materials in laser science and technology. The significant birefringence of vanadate polyhedra provides a new approach for developing birefringent materials. In this study, first-principles calculations are used to investigate the band structures, density of states (DOS), electron localization functions (ELFs), and birefringence behaviors of four alkali metal vanadate crystals AV3O8 (A = Li, Na, K, Rb). The computational results show that all AV3O8 crystals have indirect band gaps, whose values are 1.695, 1.898, 1.965, and 1.984 eV for LiV3O8, NaV3O8, KV3O8, and RbV3O8, respectively. The DOS analysis reveals that near the Fermi level, the conduction band minima (CBM) in these vanadates are predominantly occupied by the outermost orbitals of V atoms, while the valence band maxima (VBM) are primarily contributed by O-2p orbitals. The O-2p orbitals also exhibit strong localization near the Fermi level. Combined with highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) analysis and population analysis, the bonding interactions in all four crystals mainly arise from the hybridization between V-3p and O-2p orbitals, indicating strong covalent bonding in V—O bonds. Through the analysis of structure-property relationships, the large birefringence is primarily attributed to the pronounced structural anisotropy, high anisotropy index of responsive electron distribution, unique arrangement of anionic groups, and d-p orbital hybridization between V-3d and O-2p orbitals. The calculated birefringence values at a wavelength of 1064 nm for LiV3O8, NaV3O8, KV3O8, and RbV3O8 are 0.28, 0.30, 0.28, and 0.27, respectively.
      Corresponding author: SU Xin, suxin_phy@sina.com ; HUANG Yineng, ynhuang@nju.edu.cn
    • Funds: Project supported by the Open Project of Key Laboratory of Xinjiang Uygur Autonomous Region, China (Grant No. 2023D04074), the Scientific Research Project of Yili Normal University, China (Grant No. 22XKZZ21), and the Innovation Training Project for College Students of Yili Normal University, China (Grant Nos. S202210764014, S202210764015, S202210764016).
    [1]

    Pedrotti F L, Pedrotti L M, Pedrotti L S 2018 Introduction to optics (England: Cambridge University Press) pp333–360

    [2]

    Li X Z, Wang C, Chen X L, Li H, Jia L S, Wu L, Du Y X, Xu Y P 2004 Inorg. Chem. 43 8555Google Scholar

    [3]

    Nomura H, Furutono Y 2008 Microelectron. Eng. 85 1671Google Scholar

    [4]

    Aoki K, Miyazaki H T, Hirayama H 2003 Nat. Mater. 2 117Google Scholar

    [5]

    Lancry M, Desmarchelier R, Cook K, Poumellec B, Canning J 2014 Micromachines-Basel 5 825Google Scholar

    [6]

    Li R 2013 Z. Krist-Cryst. Mater. 228 526Google Scholar

    [7]

    Levy M, Jalali A A, Huang X 2009 J. Mater. Sci. Mater. El. 20 43Google Scholar

    [8]

    Zhang H, Zhang M, Pan S L, Yang Z H, Wang Z, Bian Q, Hou X L, Yu H W, Zhang F F, Wu K, Yang F, Peng Q J, Xu Z Y, Chang K B, Poeppelmeier K R 2015 Cryst. Growth Des. 15 523Google Scholar

    [9]

    Ghosh G 1999 Opt. Commun. 163 95Google Scholar

    [10]

    Luo H, Tkaczyk T, Sampson R, Dereniak E L 2006 Proc. SPIE 6119 136Google Scholar

    [11]

    Guoqing Z, Jun X, Xingda C, Heyu Z, Siting W, Ke X, Fuxi G 1998 J. Cryst. Growth 191 517Google Scholar

    [12]

    Appel R, Dyer C D, Lockwood J N 2002 Appl. Opt. 41 2470Google Scholar

    [13]

    Cyranoski D 2009 Nature 457 953Google Scholar

    [14]

    Krainer L, Paschotta R, Lecomte S, Moser M, Weingarten K J, Keller U 2002 IEEE J. Quantum Electron. 38 1331Google Scholar

    [15]

    Lisinetskii V A, Grabtchiko A S, Demidovich A A, Burakevich V N, Orlovich V A, Titov A N 2007 Appl. Phys. B 88 499Google Scholar

    [16]

    Vodchits A I, Orlovich V A, Apanasevich P A 2012 J. Appl. Spectrosc. 78 918Google Scholar

    [17]

    Yu H, Liu J, Zhang H, Kaminskii A A, Wang Z, Wang J 2014 Laser Photonics Rev. 8 847Google Scholar

    [18]

    Lei B H, Kong Q, Yang Z H, Yang Y, Wang Y J, Pan S L 2016 J. Mater. Chem. C 4 6295Google Scholar

    [19]

    Li K X, Zhang X Y, Chai B Q, Yu H W, Hu Z G, Wang J Y, Wu Y C, Wu H P 2025 Chem. Eur. J. 31 e202403515Google Scholar

    [20]

    Li K X, Wu H P, Yu H W, Hu Z G, Wang J Y, Wu Y C 2024 Chem. Commun. 60 12734Google Scholar

    [21]

    Lei B H, Yang Z H, Pan S L 2017 Chem. Commun. 53 2818Google Scholar

    [22]

    Huang Y, Zhang X Y, Zhao S G, Mao J G, Yang B P 2024 J. Mater. Chem. C 12 7286Google Scholar

    [23]

    Zhang S Z, Dong L F, Xu B H, Chen H G, Huo H, Liang F, Wu R, Gong P F, Lin Z S 2024 Inorg. Chem. Front. 11 5528Google Scholar

    [24]

    Cheng J L, Xu D, Lu J, Zhang F F, Hou X L 2023 Inorg. Chem. 62 20340Google Scholar

    [25]

    Chen Z X, Xu F, Cao S N, Li Z F, Yang H X, Ai X P, Cao Y L 2017 Small 13 1603148Google Scholar

    [26]

    Cao X Y, Yang Q, Zhu L M, Xie L L 2018 Ionics 24 943Google Scholar

    [27]

    Yang H, Li J, Zhang X G, Jin Y L 2008 J. Mater. Process. Technol. 207 265Google Scholar

    [28]

    Zhu L M, Li W X, Xie L L, Yang Q, Cao X Y 2019 Chem. Eng. J. 372 1056Google Scholar

    [29]

    Feng L L, Zhang W, Xu L N, Li D Z, Zhang Y Y 2020 Solid State Sci. 103 106187Google Scholar

    [30]

    Kim H J, Jo J H, Choi J U, Voronina N, Myung S T 2020 J. Power Sources 478 229072Google Scholar

    [31]

    Shchelkanova M, Shekhtman G, Pershina S, Vovkotrub E 2021 Materials 14 6976Google Scholar

    [32]

    Wu W Z, Ding J, Peng H R, Li G C 2011 Mater. Lett. 65 2155Google Scholar

    [33]

    Zhu J Z, Li X L, Chen S Y, Huang C M, Feng J J, Kuang Q, Fan Q H, Dong Y Z, Zhao Y M 2020 Electrochim. Acta 355 136799Google Scholar

    [34]

    Wadsley A D 1957 Acta Crystallogr. 10 261Google Scholar

    [35]

    Bachmann H G, Barnes W H 1962 Can Mineral 7 219

    [36]

    Baddour-Hadjean R, Boudaoud A, Bach S, Emery N, Pereira-Ramos J P 2014 Inorg. Chem. 53 1764Google Scholar

    [37]

    Oka Y, Yao T, Yamamoto N 1997 Mater. Res. Bull. 32 1201Google Scholar

    [38]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys. : Condens. Matter 14 2717Google Scholar

    [39]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos A J 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [40]

    Srivastava G P, Weaire D 1987 Adv. Phys. 36 463Google Scholar

    [41]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    Hamann D R, Schlüter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [44]

    Kong Q R, Yang Y, Liu L L, Bian Q, Lei B H, Li L P, Yang Z H, Su Z, Pan S L 2016 J. Mater. Res. 31 488Google Scholar

    [45]

    阎守胜 2011 固体物理基础(北京: 北京大学出版社)

    Yan S S 2011 Fundamentals of Solid-state Physics (Beijing: Peking University Press

    [46]

    Hiscocks J, Frisch M J 2009 Gaussian 09: IOps Reference 9 (USA: Gaussian

    [47]

    Riffet V, Contreras-Garcıa J, Carrasco J, Calatayud M 2016 J. Phys. Chem. C 120 4259Google Scholar

    [48]

    Mulliken R S 1931 Chem. Rev. 9 347Google Scholar

    [49]

    张博, 王云杰, 齐亚杰, 和志豪, 丁家福, 苏欣 2024 人工晶体学报 53 999Google Scholar

    Zhang B, Wang Y J, Qi Y J, He Z H, Ding J F, Su X 2024 J. Synth. Cryst. 53 999Google Scholar

    [50]

    Su X, Wang Y J, Yang Z H, Huang X C, Pan S L, Li F, Lee M H 2013 J. Phys. Chem. C 117 14149Google Scholar

    [51]

    Tudi A, Han S, Yang Z H, Pan S L 2022 Coord. Chem. Rev. 459 214380Google Scholar

    [52]

    Wang X Y, Zhang B B, Yang D Q, Wang Y 2022 Dalton Trans. 51 14059Google Scholar

    [53]

    Bai S, Yang D Q, Zhang B B, Li L, Wang Y 2022 Dalton Trans. 51 3421Google Scholar

    [54]

    Chu Y, Wang H S, Chen Q, Su X, Chen Z X, Yang Z H, Li J J, Pan S L 2024 Adv. Funct. Mater. 34 2314933Google Scholar

    [55]

    Ding Y Y, Zhu M M, Wang J B, Li B, Qi H X, Liu L L, Chu Y Q 2024 Inorg. Chem. 63 20003Google Scholar

    [56]

    Lin L, Jiang X X, Wu C, Lin Z S, Huang Z P, Humphrey M G, Zhang C 2021 Dalton Trans. 50 7238Google Scholar

    [57]

    Su X, Chu Y, Yang Z H, Lei B H, Cao C, Wang Y, Pan S L 2020 J. Phys. Chem. C 124 24949Google Scholar

    [58]

    Bai S, Zhang X, Zhang B B, Li L, Wang Y J 2021 Inorg. Chem. 60 10006Google Scholar

    [59]

    Li S, Dou D, Chen C, Shi Q, Zhang B B, Wang Y J 2024 Inorg. Chem. 63 24076Google Scholar

    [60]

    Chu Y, Wang H S, Abutukadi T, Li Z, Mutailipu M, Su X, Yang Z H, Li J J, Pan S L 2023 Small 19 2305074Google Scholar

    [61]

    Liu H J, Liang C W, Liang W I, Chen H J, Yang J C, Peng C Y, Chu Y H 2012 Phys. Rev. B Condens. Matter Mater. Phys. 85 014104Google Scholar

    [62]

    王云杰, 和志豪, 丁家福, 苏欣 2025 人工晶体学报 54 85Google Scholar

    Wang Y J, He Z H, Ding J F, Su X 2025 J. Synth. Cryst. 54 85Google Scholar

    [63]

    丁家福, 和志豪, 王云杰, 苏欣 2025 人工晶体学报 54 95Google Scholar

    Ding J F, He Z H, Wang Y J, Su X 2025 J. Synth. Cryst. 54 95Google Scholar

    [64]

    储冬冬, 杨志华, 潘世烈 2024 人工晶体学报 53 1475Google Scholar

    Chu D D, Yang Z H, Pan S L 2024 J. Synth. Cryst. 53 1475Google Scholar

  • 图 1  四种物质的晶体结构 (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Figure 1.  Four types of crystal structures of substances: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    图 2  四种化合物的能带结构图 (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Figure 2.  Band structure diagrams of four compounds: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    图 3  四种化合物的态密度图及HOMO&LUMO (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Figure 3.  Density of states diagrams for four compounds and HOMO&LUMO: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    图 4  四种化合物的电子局域函数 (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Figure 4.  Electron localization function of four compounds: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    图 5  双折射原理示意图

    Figure 5.  Schematic diagram of the principle of birefringence.

    图 6  四种化合物的双折射率 (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Figure 6.  Birefringence of four compounds: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    图 7  四种化合物的杨氏模量各向异性三维图 (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8

    Figure 7.  3D plot of Young’s modulus anisotropy for four compounds: (a) LiV3O8; (b) NaV3O8; (c) KV3O8; (d) RbV3O8.

    表 1  结构优化前后的AV3O8 (A = Li, Na, K, Rb)晶格参数

    Table 1.  Lattice parameters of AV3O8 (A = Li, Na, K, Rb) before and after geometry optimization.

    Compounds a/nm b/nm c/nm β/(°) b/c Error V/nm3
    LiV3O8 Before 0.668 0.360 1.203 107.830 0.299 1.67% 0.275
    After 0.695 0.358 1.219 108.397 0.294 0.288
    NaV3O8 Before 0.512 0.855 0.744 101.993 1.148 3.92% 0.319
    After 0.531 0.877 0.795 113.173 1.103 0.350
    KV3O8 Before 0.500 0.839 0.767 98.135 1.094 4.84% 0.319
    After 0.516 0.865 0.831 103.812 1.041 0.361
    RbV3O8 Before 0.501 0.842 0.791 96.943 1.064 2.16% 0.331
    After 0.516 0.865 0.831 100.581 1.041 0.365
    DownLoad: CSV

    表 2  AV3O8 (A = Li, Na, K, Rb)的布居数 (Mulliken)

    Table 2.  Population of AV3O8 (A = Li, Na, K, Rb) (Mulliken).

    Substance Species Atomic population Total Charge/e Bond Bond
    population
    Length/Å
    s p d
    LiV3O8Li–0.200.000.00–0.201.20Li—O–0.062.16
    V0.200.313.203.711.29O—V0.012.86
    O1.904.680.006.59–0.59O—V0.921.66
    NaV3O8Na2.075.950.008.010.99Na—O0.022.38
    V0.150.333.183.661.34O—V0.921.64
    O1.894.720.006.62–0.62O—V0.331.99
    KV3O8K2.035.910.007.951.05K—O0.042.72
    V0.150.343.323.721.28O—V0.971.64
    O1.894.740.006.63–0.63O—V0.331.98
    RbV3O8Rb2.045.860.007.901.10Rb—O0.042.97
    V0.160.353.233.741.26O—V0.981.64
    O1.894.740.006.64–0.64O—V0.341.98
    DownLoad: CSV

    表 3  AV3O8 (A = Li, Na, K, Rb)的响应电子分布各向异性指数(REDA)

    Table 3.  REDA of AV3O8 (A = Li, Na, K, Rb) of the electron distribution.

    CompoundsGroupsδΔn
    LiV3O8VO40.0110.28
    NaV3O8V3O80.0190.30
    KV3O8V3O80.0130.28
    RbV3O8V3O80.0120.27
    DownLoad: CSV
  • [1]

    Pedrotti F L, Pedrotti L M, Pedrotti L S 2018 Introduction to optics (England: Cambridge University Press) pp333–360

    [2]

    Li X Z, Wang C, Chen X L, Li H, Jia L S, Wu L, Du Y X, Xu Y P 2004 Inorg. Chem. 43 8555Google Scholar

    [3]

    Nomura H, Furutono Y 2008 Microelectron. Eng. 85 1671Google Scholar

    [4]

    Aoki K, Miyazaki H T, Hirayama H 2003 Nat. Mater. 2 117Google Scholar

    [5]

    Lancry M, Desmarchelier R, Cook K, Poumellec B, Canning J 2014 Micromachines-Basel 5 825Google Scholar

    [6]

    Li R 2013 Z. Krist-Cryst. Mater. 228 526Google Scholar

    [7]

    Levy M, Jalali A A, Huang X 2009 J. Mater. Sci. Mater. El. 20 43Google Scholar

    [8]

    Zhang H, Zhang M, Pan S L, Yang Z H, Wang Z, Bian Q, Hou X L, Yu H W, Zhang F F, Wu K, Yang F, Peng Q J, Xu Z Y, Chang K B, Poeppelmeier K R 2015 Cryst. Growth Des. 15 523Google Scholar

    [9]

    Ghosh G 1999 Opt. Commun. 163 95Google Scholar

    [10]

    Luo H, Tkaczyk T, Sampson R, Dereniak E L 2006 Proc. SPIE 6119 136Google Scholar

    [11]

    Guoqing Z, Jun X, Xingda C, Heyu Z, Siting W, Ke X, Fuxi G 1998 J. Cryst. Growth 191 517Google Scholar

    [12]

    Appel R, Dyer C D, Lockwood J N 2002 Appl. Opt. 41 2470Google Scholar

    [13]

    Cyranoski D 2009 Nature 457 953Google Scholar

    [14]

    Krainer L, Paschotta R, Lecomte S, Moser M, Weingarten K J, Keller U 2002 IEEE J. Quantum Electron. 38 1331Google Scholar

    [15]

    Lisinetskii V A, Grabtchiko A S, Demidovich A A, Burakevich V N, Orlovich V A, Titov A N 2007 Appl. Phys. B 88 499Google Scholar

    [16]

    Vodchits A I, Orlovich V A, Apanasevich P A 2012 J. Appl. Spectrosc. 78 918Google Scholar

    [17]

    Yu H, Liu J, Zhang H, Kaminskii A A, Wang Z, Wang J 2014 Laser Photonics Rev. 8 847Google Scholar

    [18]

    Lei B H, Kong Q, Yang Z H, Yang Y, Wang Y J, Pan S L 2016 J. Mater. Chem. C 4 6295Google Scholar

    [19]

    Li K X, Zhang X Y, Chai B Q, Yu H W, Hu Z G, Wang J Y, Wu Y C, Wu H P 2025 Chem. Eur. J. 31 e202403515Google Scholar

    [20]

    Li K X, Wu H P, Yu H W, Hu Z G, Wang J Y, Wu Y C 2024 Chem. Commun. 60 12734Google Scholar

    [21]

    Lei B H, Yang Z H, Pan S L 2017 Chem. Commun. 53 2818Google Scholar

    [22]

    Huang Y, Zhang X Y, Zhao S G, Mao J G, Yang B P 2024 J. Mater. Chem. C 12 7286Google Scholar

    [23]

    Zhang S Z, Dong L F, Xu B H, Chen H G, Huo H, Liang F, Wu R, Gong P F, Lin Z S 2024 Inorg. Chem. Front. 11 5528Google Scholar

    [24]

    Cheng J L, Xu D, Lu J, Zhang F F, Hou X L 2023 Inorg. Chem. 62 20340Google Scholar

    [25]

    Chen Z X, Xu F, Cao S N, Li Z F, Yang H X, Ai X P, Cao Y L 2017 Small 13 1603148Google Scholar

    [26]

    Cao X Y, Yang Q, Zhu L M, Xie L L 2018 Ionics 24 943Google Scholar

    [27]

    Yang H, Li J, Zhang X G, Jin Y L 2008 J. Mater. Process. Technol. 207 265Google Scholar

    [28]

    Zhu L M, Li W X, Xie L L, Yang Q, Cao X Y 2019 Chem. Eng. J. 372 1056Google Scholar

    [29]

    Feng L L, Zhang W, Xu L N, Li D Z, Zhang Y Y 2020 Solid State Sci. 103 106187Google Scholar

    [30]

    Kim H J, Jo J H, Choi J U, Voronina N, Myung S T 2020 J. Power Sources 478 229072Google Scholar

    [31]

    Shchelkanova M, Shekhtman G, Pershina S, Vovkotrub E 2021 Materials 14 6976Google Scholar

    [32]

    Wu W Z, Ding J, Peng H R, Li G C 2011 Mater. Lett. 65 2155Google Scholar

    [33]

    Zhu J Z, Li X L, Chen S Y, Huang C M, Feng J J, Kuang Q, Fan Q H, Dong Y Z, Zhao Y M 2020 Electrochim. Acta 355 136799Google Scholar

    [34]

    Wadsley A D 1957 Acta Crystallogr. 10 261Google Scholar

    [35]

    Bachmann H G, Barnes W H 1962 Can Mineral 7 219

    [36]

    Baddour-Hadjean R, Boudaoud A, Bach S, Emery N, Pereira-Ramos J P 2014 Inorg. Chem. 53 1764Google Scholar

    [37]

    Oka Y, Yao T, Yamamoto N 1997 Mater. Res. Bull. 32 1201Google Scholar

    [38]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys. : Condens. Matter 14 2717Google Scholar

    [39]

    Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos A J 1992 Rev. Mod. Phys. 64 1045Google Scholar

    [40]

    Srivastava G P, Weaire D 1987 Adv. Phys. 36 463Google Scholar

    [41]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [42]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [43]

    Hamann D R, Schlüter M, Chiang C 1979 Phys. Rev. Lett. 43 1494Google Scholar

    [44]

    Kong Q R, Yang Y, Liu L L, Bian Q, Lei B H, Li L P, Yang Z H, Su Z, Pan S L 2016 J. Mater. Res. 31 488Google Scholar

    [45]

    阎守胜 2011 固体物理基础(北京: 北京大学出版社)

    Yan S S 2011 Fundamentals of Solid-state Physics (Beijing: Peking University Press

    [46]

    Hiscocks J, Frisch M J 2009 Gaussian 09: IOps Reference 9 (USA: Gaussian

    [47]

    Riffet V, Contreras-Garcıa J, Carrasco J, Calatayud M 2016 J. Phys. Chem. C 120 4259Google Scholar

    [48]

    Mulliken R S 1931 Chem. Rev. 9 347Google Scholar

    [49]

    张博, 王云杰, 齐亚杰, 和志豪, 丁家福, 苏欣 2024 人工晶体学报 53 999Google Scholar

    Zhang B, Wang Y J, Qi Y J, He Z H, Ding J F, Su X 2024 J. Synth. Cryst. 53 999Google Scholar

    [50]

    Su X, Wang Y J, Yang Z H, Huang X C, Pan S L, Li F, Lee M H 2013 J. Phys. Chem. C 117 14149Google Scholar

    [51]

    Tudi A, Han S, Yang Z H, Pan S L 2022 Coord. Chem. Rev. 459 214380Google Scholar

    [52]

    Wang X Y, Zhang B B, Yang D Q, Wang Y 2022 Dalton Trans. 51 14059Google Scholar

    [53]

    Bai S, Yang D Q, Zhang B B, Li L, Wang Y 2022 Dalton Trans. 51 3421Google Scholar

    [54]

    Chu Y, Wang H S, Chen Q, Su X, Chen Z X, Yang Z H, Li J J, Pan S L 2024 Adv. Funct. Mater. 34 2314933Google Scholar

    [55]

    Ding Y Y, Zhu M M, Wang J B, Li B, Qi H X, Liu L L, Chu Y Q 2024 Inorg. Chem. 63 20003Google Scholar

    [56]

    Lin L, Jiang X X, Wu C, Lin Z S, Huang Z P, Humphrey M G, Zhang C 2021 Dalton Trans. 50 7238Google Scholar

    [57]

    Su X, Chu Y, Yang Z H, Lei B H, Cao C, Wang Y, Pan S L 2020 J. Phys. Chem. C 124 24949Google Scholar

    [58]

    Bai S, Zhang X, Zhang B B, Li L, Wang Y J 2021 Inorg. Chem. 60 10006Google Scholar

    [59]

    Li S, Dou D, Chen C, Shi Q, Zhang B B, Wang Y J 2024 Inorg. Chem. 63 24076Google Scholar

    [60]

    Chu Y, Wang H S, Abutukadi T, Li Z, Mutailipu M, Su X, Yang Z H, Li J J, Pan S L 2023 Small 19 2305074Google Scholar

    [61]

    Liu H J, Liang C W, Liang W I, Chen H J, Yang J C, Peng C Y, Chu Y H 2012 Phys. Rev. B Condens. Matter Mater. Phys. 85 014104Google Scholar

    [62]

    王云杰, 和志豪, 丁家福, 苏欣 2025 人工晶体学报 54 85Google Scholar

    Wang Y J, He Z H, Ding J F, Su X 2025 J. Synth. Cryst. 54 85Google Scholar

    [63]

    丁家福, 和志豪, 王云杰, 苏欣 2025 人工晶体学报 54 95Google Scholar

    Ding J F, He Z H, Wang Y J, Su X 2025 J. Synth. Cryst. 54 95Google Scholar

    [64]

    储冬冬, 杨志华, 潘世烈 2024 人工晶体学报 53 1475Google Scholar

    Chu D D, Yang Z H, Pan S L 2024 J. Synth. Cryst. 53 1475Google Scholar

  • [1] Liu Jun-Ling, Bai Yu-Jie, Xu Ning, Zhang Qin-Fang. First-principles study on electronic structure of GaS/Mg(OH)2 heterostructure. Acta Physica Sinica, 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] Chen Guo-Xiang, Fan Xiao-Bo, Li Si-Qi, Zhang Jian-Min. First-principles study of magnetic properties of alkali metals and alkaline earth metals doped two-dimensional GaN materials. Acta Physica Sinica, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [3] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan, Liu Han-Jun. First-principles study on half-metallic ferromagnetism of half-Heusler alloys VLiBi and CrLiBi. Acta Physica Sinica, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [4] Yao Zhong-Yu, Sun Li, Pan Meng-Mei, Sun Shu-Juan. First-principle studies of half-metallicities and magnetisms of the semi-Heusler alloys CoCrTe and CoCrSb. Acta Physica Sinica, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [5] Luo Zui-Fen, Cen Wei-Fu, Fan Meng-Hui, Tang Jia-Jun, Zhao Yu-Jun. First-principles study of electronic and optical properties of BiTiO3. Acta Physica Sinica, 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [6] Yang Biao, Wang Li-Ge, Yi Yong, Wang En-Ze, Peng Li-Xia. First-principles calculations of the diffusion behaviors of C, N and O atoms in V metal. Acta Physica Sinica, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [7] Ma Zhen-Ning, Jiang Min, Wang Lei. First-principles study of electronic structures and phase stabilities of ternary intermetallic compounds in the Mg-Y-Zn alloys. Acta Physica Sinica, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [8] Cheng He-Ping, Dan Jia-Kun, Huang Zhi-Meng, Peng Hui, Chen Guang-Hua. First-principles study on the electronic structure and optical properties of RDX. Acta Physica Sinica, 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [9] Huang You-Lin, Hou Yu-Hua, Zhao Yu-Jun, Liu Zhong-Wu, Zeng De-Chang, Ma Sheng-Can. Influences of strain on electronic structure and magnetic properties of CoFe2O4 from first-principles study. Acta Physica Sinica, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [10] Zhou Ping, Wang Xin-Qiang, Zhou Mu, Xia Chuan-Hui, Shi Ling-Na, Hu Cheng-Hua. First-principles study of pressure induced phase transition, electronic structure and elastic properties of CdS. Acta Physica Sinica, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [11] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [12] Hu Jie-Qiong, Xie Ming, Zhang Ji-Ming, Liu Man-Men, Yang You-Cai, Chen Yong-Tai. First principles study of Au-Sn intermetallic compounds. Acta Physica Sinica, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [13] Song Qing-Gong, Liu Li-Wei, Zhao Hui, Yan Hui-Yu, Du Quan-Guo. First-principles study on the electronic structure and optical properties of YFeO3. Acta Physica Sinica, 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [14] Wang Yu-Mei, Pei Hui-Xia, Ding Jun, Wen Li-Wei. First-principles study of magnetism and electronic structureof Sb-containing half-Heusler alloys. Acta Physica Sinica, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] Nie Zhao-Xiu, Wang Feng, Cheng Zhi-Mei, Wang Xin-Qiang, Lu Li-Ya, Liu Gao-Bin, Duan Zhuang-Fen. First-principles study on electronic structure and half-metallicferromagnetism of ternary compound ZnCrS. Acta Physica Sinica, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [16] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [17] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [18] Ni Jian-Gang, Liu Nuo, Yang Guo-Lai, Zhang Xi. First-principle study on electronic structure of BaTiO3 (001) surfaces. Acta Physica Sinica, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] Duan Man-Yi, Xu Ming, Zhou Hai-Ping, Shen Yi-Bin, Chen Qing-Yun, Ding Ying-Chun, Zhu Wen-Jun. First-principles study on the electronic structure and optical properties of ZnO doped with transition metal and N. Acta Physica Sinica, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] Pan Zhi-Jun, Zhang Lan-Ting, Wu Jian-Sheng. First-principles study of electronic structure for CoSi. Acta Physica Sinica, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
Metrics
  • Abstract views:  420
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  24 November 2024
  • Accepted Date:  06 March 2025
  • Available Online:  26 March 2025
  • Published Online:  20 May 2025

/

返回文章
返回