Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of structure, elasticity, and electronic properties of ternary semiconductor Al4In2N6 under high pressure

CHEN Meijuan GUO Jiaxin WU Hao ZHENG Xiaoran MIN Nan TIAN Hui LI Quanjun DU Shiyu SHEN Longhai

Citation:

First-principles study of structure, elasticity, and electronic properties of ternary semiconductor Al4In2N6 under high pressure

CHEN Meijuan, GUO Jiaxin, WU Hao, ZHENG Xiaoran, MIN Nan, TIAN Hui, LI Quanjun, DU Shiyu, SHEN Longhai
cstr: 32037.14.aps.74.20250287
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The effects of pressure on the crystal structure, elastic properties, and electronic characteristics of Al4In2N6 are systematically studied using first-principles density functional theory. The lattice constants of Al4In2N6 decrease with the increase of pressure, exhibiting anisotropic compression with greater compressibility along the c-axis. In terms of mechanical properties, the bulk modulus increases with the increase of pressure, indicating enhanced compressive resistance. Notably, the Vickers hardness decreases with the increase of pressure, indicating that high pressure can induce plastic deformation in Al4In2N6. The calculations of elastic constants and phonon spectra confirm that Al4In2N6 retains mechanical and dynamical stability in the pressure range of 0–30 GPa. Electronic structure calculations reveal that Al4In2N6 possesses a direct band gap, and non-overlapping conduction and valence bands at the Fermi level. The conduction band has a higher carrier mobility than the valence band. The band gap increases almost linearly with pressure rising from 3.35 eV at 0 GPa to 4.24 eV at 30 GPa, demonstrating significant pressure-induced modulation of the electronic structure. Furthermore, the analysis of differential charge densities reveals that increasing pressure can strengthen the Al-N and In-N bonds in Al4In2N6 through shortened interatomic distances and stronger atomic interactions, increasing its compression resistance. In summary, this study not only deepens our understanding of the high-pressure properties of Al4In2N6 but also provides theoretical guidance for its application in UV optoelectronics. Pressure-driven modulation of its mechanical and electronic characteristics highlights its potential in efficient high-pressure optoelectronic devices and materials.
      Corresponding author: TIAN Hui, huitian2022sylu@126.com ; SHEN Longhai, shenlonghai@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274304, 12404060), the Liaoning Provincial Doctoral Research Initiation Fund of China (Grant No. 2024-BS-115), the Liaoning Provincial Department of Education Project (Independent Selection Project) of China (Grant No. LJ212410144038), the Shenyang Ligong University Introduced High-level Talents for Scientific Research Support Funds in 2022, China (Grant No. 1010147001132), and the Shenyang Ligong University Introduced High-Level Talents for Scientific Research Support Funds in 2024, China (Grant No. 1010147001325).
    [1]

    Liu B, Chen D, Lu H, Tao T, Zhuang Z, Shao Z, Xu W, Ge H, Zhi T, Ren F, Ye J, Xie Z, Zhang R 2020 Adv. Mater. 32 1904354Google Scholar

    [2]

    Hahn C, Zhang Z, Fu A, Wu C H, Hwang Y J, Gargas D J, Yang P 2011 ACS Nano 5 3970Google Scholar

    [3]

    Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B, Li H 2020 Adv. Mater. 32 1903407Google Scholar

    [4]

    Chen K, Kapadia R, Harker A, Desai S, Javey A 2016 Nat. Commun. 7 10502Google Scholar

    [5]

    仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和 2024 物理学报 73 038102Google Scholar

    Qiu P, Liu H, Zhu X L, Tian F, Du M C, Qiu H Y, Chen G L, Hu Y Y, Kong D L, Yang J, Wei H Y, Peng M Z, Zheng X H 2024 Acta Phys. Sin. 73 038102Google Scholar

    [6]

    Manjón F J, Errandonea D, Garro N, Romero A H, Serrano J, Kuball M 2007 Phys. Status Solidi B 244 42Google Scholar

    [7]

    E Abid A, Bensalem R, Sealy B J 1986 J. Mater. Sci. 21 1301Google Scholar

    [8]

    Yu R, Liu G, Wang G, Chen C, Xu M, Zhou H, Wang T, Yu J, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852Google Scholar

    [9]

    Ibáñez J, Segura A, García-Domene B, Oliva R, Manjón F J, Yamaguchi T, Nanishi Y, Artús L 2012 Phys. Rev. B 86 035210Google Scholar

    [10]

    Khan N, Sedhain A, Li J, Lin J Y, Jiang H X 2008 Appl. Phys. Lett. 92 172101Google Scholar

    [11]

    Davydov V Y, Klochikhin A, Seisyan R, Emtsev V, Ivanov S, Bechstedt F, Furthmüller J, Harima H, Mudryi A, Aderhold J 2002 Phys. Status Solidi B 229 r1Google Scholar

    [12]

    Tansley T L, Foley C P 1986 J. Appl. Phys. 59 3241Google Scholar

    [13]

    Liu X K, Lin Z C, Lin Y H, Chen J J, Zou P, Zhou J, Li B, Shen L H, Zhu D L, Liu Q, Yu W J, Li X H, Zhu H, Wang X Z, Huang S W 2023 Chin. Phys. B 32 117701Google Scholar

    [14]

    Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967Google Scholar

    [15]

    Beladjal K, Kadri A, Zitouni K, Mimouni K 2021 Superlattices Microstruct. 155 106901Google Scholar

    [16]

    Guo Q G Q, Yoshida A Y A 1994 Jpn. J. Appl. Phys. 33 2453Google Scholar

    [17]

    Zhao F, Yao G R, Song J J, Ding B B, Xiong J Y, Su C, Zheng S W, Zhang T, Fan G H 2013 Chin. Phys. B 22 058503Google Scholar

    [18]

    Chen J J, Shen L H, Qi D L, Wu L J, Li X, Song J Y, Zhang X L 2022 Ceram. Int. 48 2802Google Scholar

    [19]

    Moussa R, Abdiche A, Khenata R, Wang X, Varshney D, Sun X W, Omran S B, Bouhemadou A, Rai D 2018 J. Phys. Chem. Solids 119 36Google Scholar

    [20]

    Mao W, Zhang J C, Xue J S, Hao Y, Ma X H, Wang C, Liu H X, Xu S R, Yang L A, Bi Z W, Liang X Z, Zhang J F, Kuang X W 2010 Chin. Phys. Lett. 27 128501Google Scholar

    [21]

    Wen X X, Yang X D, He M, Li Y, Wang G, Lu P Y, Qian W N, Li Y, Zhang W W, Wu W B, Chen F S, Ding L Z 2012 Chin. Phys. Lett. 29 097304Google Scholar

    [22]

    Zhang X F, Wang L, Liu J, Wei L, Xu J 2013 Chin. Phys. B 22 017202Google Scholar

    [23]

    Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301Google Scholar

    [24]

    Zhan X M, Hao M L, Wang Q, Li W, Xiao H L, Feng C, Jiang L J, Wang C M, Wang X L, Wang Z G 2017 Chin. Phys. Lett. 34 047301Google Scholar

    [25]

    Dong Y, Son D H, Dai Q, Lee J H, Won C H, Kim J G, Chen D, Lee J H, Lu H, Zhang R, Zheng Y 2018 Sensors 18 1314Google Scholar

    [26]

    Li A, Wang C, Xu S, Zheng X, He Y, Ma X, Lu X, Zhang J, Liu K, Zhao Y Hao Y 2021 Appl. Phys. Lett. 119 122104Google Scholar

    [27]

    Robin Chang Y H, Yoon T L, Lim T L 2016 Curr. Appl. Phys. 16 1277Google Scholar

    [28]

    Borovac D, Sun W, Song R, Wierer J J, Tansu N 2020 J. Cryst. Growth 533 125469Google Scholar

    [29]

    Yonenaga I, Ohkubo Y, Deura M, Kutsukake K, Tokumoto Y, Ohno Y, Yoshikawa A, Wang X Q 2015 AIP Adv. 5 077131Google Scholar

    [30]

    Tan X, Xin Z Y, Liu X J, Mu Q G 2013 Adv. Mater. Res. 821–822 841Google Scholar

    [31]

    Chen M, Guo G C, He L 2010 J. Phys. Condens. Matter 22 445501Google Scholar

    [32]

    Al-Khatatbeh Y, Lee K K M, Kiefer B 2009 Phys. Rev. B 79 134114Google Scholar

    [33]

    Man X X, Gong B C, Sun P H, Liu K, Lu Z Y 2022 Phys. Rev. B 106 035136Google Scholar

    [34]

    Yu F, Liu Y 2019 Computation 7 57Google Scholar

    [35]

    Velpula R T, Jain B, Philip M R, Nguyen H D, Wang R, Nguyen H P T 2020 Sci. Rep. 10 2547Google Scholar

    [36]

    Robin Chang Y H, Yoon T L, Lim T L, Rakitin M 2016 J. Alloys Compd. 682 338Google Scholar

    [37]

    Glass C W, Oganov A R, Hansen N 2006 Comput. Phys. Commun. 175 713Google Scholar

    [38]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227Google Scholar

    [39]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172Google Scholar

    [40]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [41]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [42]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [43]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116Google Scholar

    [44]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [45]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [46]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [47]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [48]

    Muscat J, Wander A, Harrison N M 2001 Chem. Phys. Lett. 342 397Google Scholar

    [49]

    Garza A J, Scuseria G E 2016 J. Phys. Chem. Lett. 7 4165Google Scholar

    [50]

    Sugita Y, Miyake T, Motome Y 2018 Phys. Rev. B 97 035125Google Scholar

    [51]

    Robin Chang Y H, Yoon T L, Lim T L, Tuh M H 2017 J. Alloys Compd. 704 160Google Scholar

    [52]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [53]

    Voigt W 1889 Ann. Phys. 274 573Google Scholar

    [54]

    Reuss A 1929 ZAMM - J. Appl. Math. Mech. Z. Für Angew. Math. Mech. 9 49Google Scholar

    [55]

    Hill R 1952 Proc. Phys. Soc. London, Sect. A 65 349Google Scholar

    [56]

    Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka) pp60–180

    [57]

    Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93Google Scholar

    [58]

    Meng J, Sun L, Zhang Y, Xue F, Chu C, Bai J 2020 Materials 13 427Google Scholar

  • 图 1  Al4In2N6的晶体结构

    Figure 1.  Crystal structure of Al4In2N6.

    图 2  Al4In2N6的相对晶格参数和相对体积随压力的变化

    Figure 2.  Pressure dependence of relative lattice parameters and relative unit cell volume for Al4In2N6.

    图 3  不同压力下Al4In2N6的差分电荷密度 (a) 0 GPa; (b) 15 GPa; (c) 30 GPa

    Figure 3.  Differential charge density of Al4In2N6 under different pressures: (a) 0 GPa; (b) 15 GPa; (c) 30 GPa.

    图 4  不同压力下Al4In2N6的声子色散曲线 (a) 0 GPa; (b) 10 GPa; (c) 20 GPa; (d) 30 GPa

    Figure 4.  Phonon dispersion curves for Al4In2N6 at different pressures: (a) 0 GPa; (b) 10 GPa; (c) 20 GPa; (d) 30 GPa.

    图 5  Al4In2N6的弹性常数(a)和弹性模量(b)随压力的变化

    Figure 5.  The elastic constants (a) and elastic modulus (b) of Al4In2N6 change with pressure.

    图 6  在0, 10, 20, 30 GPa压力下Al4In2N6的三维体积模量((a)—(d)), 剪切模量((e)—(h)), 杨氏模量((i)—(l))

    Figure 6.  The 3D plot of bulk modulus ((a)–(d)), shear modulus ((e)–(h)), and Young’s modulus ((i)–(l)) of Al4In2N6 under pressures of 0, 10, 20, and 30 GPa.

    图 7  Al4In2N6在(a) 0 GPa, (b) 5 GPa, (c) 10 GPa, (d) 15 GPa, (e) 20 GPa, (f) 25 GPa, (g) 30 GPa下的能带结构和(h)带隙随压强的变化趋势

    Figure 7.  The band structures of Al4In2N6 at (a) 0 GPa, (b) 5 GPa, (c) 10 GPa, (d) 15 GPa, (e) 20 GPa, (f) 25 GPa, (g) 30 GPa, and (h) the variation trend of the band gap with pressure.

    图 8  Al4In2N6在(a) 0, (b) 20和(c) 30 GPa下的总态密度和分波态密度

    Figure 8.  The total density of states and partial density of states of Al4In2N6 at (a) 0, (b) 20, and (c) 30 GPa.

    表 1  Al4In2N6在不同压力下的晶格参数

    Table 1.  Lattice parameters of Al4In2N6 under different pressures.

    Pressure/GPaab/Åc
    09.8325.6545.250
    59.7495.6035.195
    109.6695.5575.149
    159.6005.5165.107
    209.5355.4785.068
    259.4775.4455.032
    309.4225.4134.999
    DownLoad: CSV

    表 2  在0—30 GPa 压力 Al4In2N6的弹性常数

    Table 2.  Elastic constant of Al4In2N6 under 0–30 GPa pressures.

    Pressure/GPa C11/GPa C12/GPa C13/GPa C22/GPa C23/GPa C33/GPa C44/GPa C55/GPa C66/GPa
    0 318.606 113.886 89.017 305.200 92.444 311.408 84.739 84.903 95.602
    5 330.169 126.317 103.218 327.053 105.181 326.999 86.887 88.385 96.321
    10 340.077 143.266 118.822 337.579 124.623 338.138 85.186 87.028 94.397
    15 359.171 163.187 130.986 352.270 135.623 357.799 88.682 87.873 95.539
    20 375.952 175.971 146.621 363.912 151.179 361.684 89.566 86.445 93.548
    25 389.382 192.252 161.374 370.366 171.460 363.533 88.451 87.052 91.683
    30 402.037 207.158 171.490 379.130 181.476 381.927 86.653 84.002 90.021
    DownLoad: CSV

    表 3  0—30 GPa 压力下Al4In2N6的弹性模量(B, G, E, B/G)、硬度HV和泊松比$\mu $

    Table 3.  The elastic modulus (B, G, E, B/G), hardness (HV), and Poisson’s ratio ($\mu $) of Al4In2N6 under pressures of 0–30 GPa.

    Pressure/GPa B/GPa E/GPa G/GPa B/G $\mu $ HV/GPa
    0 169.443 240.336 95.099 1.782 0.264 11.998
    5 183.649 247.651 97.099 1.891 0.275 11.377
    10 198.718 245.38 94.800 2.096 0.294 9.952
    15 214.192 251.75 96.522 2.219 0.304 9.447
    20 227.465 250.967 95.344 2.386 0.316 8.625
    25 241.177 247.277 93.023 2.593 0.329 7.711
    30 253.426 245.888 91.866 2.759 0.338 7.123
    DownLoad: CSV
  • [1]

    Liu B, Chen D, Lu H, Tao T, Zhuang Z, Shao Z, Xu W, Ge H, Zhi T, Ren F, Ye J, Xie Z, Zhang R 2020 Adv. Mater. 32 1904354Google Scholar

    [2]

    Hahn C, Zhang Z, Fu A, Wu C H, Hwang Y J, Gargas D J, Yang P 2011 ACS Nano 5 3970Google Scholar

    [3]

    Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B, Li H 2020 Adv. Mater. 32 1903407Google Scholar

    [4]

    Chen K, Kapadia R, Harker A, Desai S, Javey A 2016 Nat. Commun. 7 10502Google Scholar

    [5]

    仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和 2024 物理学报 73 038102Google Scholar

    Qiu P, Liu H, Zhu X L, Tian F, Du M C, Qiu H Y, Chen G L, Hu Y Y, Kong D L, Yang J, Wei H Y, Peng M Z, Zheng X H 2024 Acta Phys. Sin. 73 038102Google Scholar

    [6]

    Manjón F J, Errandonea D, Garro N, Romero A H, Serrano J, Kuball M 2007 Phys. Status Solidi B 244 42Google Scholar

    [7]

    E Abid A, Bensalem R, Sealy B J 1986 J. Mater. Sci. 21 1301Google Scholar

    [8]

    Yu R, Liu G, Wang G, Chen C, Xu M, Zhou H, Wang T, Yu J, Zhao G, Zhang L 2021 J. Mater. Chem. C 9 1852Google Scholar

    [9]

    Ibáñez J, Segura A, García-Domene B, Oliva R, Manjón F J, Yamaguchi T, Nanishi Y, Artús L 2012 Phys. Rev. B 86 035210Google Scholar

    [10]

    Khan N, Sedhain A, Li J, Lin J Y, Jiang H X 2008 Appl. Phys. Lett. 92 172101Google Scholar

    [11]

    Davydov V Y, Klochikhin A, Seisyan R, Emtsev V, Ivanov S, Bechstedt F, Furthmüller J, Harima H, Mudryi A, Aderhold J 2002 Phys. Status Solidi B 229 r1Google Scholar

    [12]

    Tansley T L, Foley C P 1986 J. Appl. Phys. 59 3241Google Scholar

    [13]

    Liu X K, Lin Z C, Lin Y H, Chen J J, Zou P, Zhou J, Li B, Shen L H, Zhu D L, Liu Q, Yu W J, Li X H, Zhu H, Wang X Z, Huang S W 2023 Chin. Phys. B 32 117701Google Scholar

    [14]

    Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H, Schaff W J, Saito Y, Nanishi Y 2002 Appl. Phys. Lett. 80 3967Google Scholar

    [15]

    Beladjal K, Kadri A, Zitouni K, Mimouni K 2021 Superlattices Microstruct. 155 106901Google Scholar

    [16]

    Guo Q G Q, Yoshida A Y A 1994 Jpn. J. Appl. Phys. 33 2453Google Scholar

    [17]

    Zhao F, Yao G R, Song J J, Ding B B, Xiong J Y, Su C, Zheng S W, Zhang T, Fan G H 2013 Chin. Phys. B 22 058503Google Scholar

    [18]

    Chen J J, Shen L H, Qi D L, Wu L J, Li X, Song J Y, Zhang X L 2022 Ceram. Int. 48 2802Google Scholar

    [19]

    Moussa R, Abdiche A, Khenata R, Wang X, Varshney D, Sun X W, Omran S B, Bouhemadou A, Rai D 2018 J. Phys. Chem. Solids 119 36Google Scholar

    [20]

    Mao W, Zhang J C, Xue J S, Hao Y, Ma X H, Wang C, Liu H X, Xu S R, Yang L A, Bi Z W, Liang X Z, Zhang J F, Kuang X W 2010 Chin. Phys. Lett. 27 128501Google Scholar

    [21]

    Wen X X, Yang X D, He M, Li Y, Wang G, Lu P Y, Qian W N, Li Y, Zhang W W, Wu W B, Chen F S, Ding L Z 2012 Chin. Phys. Lett. 29 097304Google Scholar

    [22]

    Zhang X F, Wang L, Liu J, Wei L, Xu J 2013 Chin. Phys. B 22 017202Google Scholar

    [23]

    Han T C, Zhao H D, Yang L, Wang Y 2017 Chin. Phys. B 26 107301Google Scholar

    [24]

    Zhan X M, Hao M L, Wang Q, Li W, Xiao H L, Feng C, Jiang L J, Wang C M, Wang X L, Wang Z G 2017 Chin. Phys. Lett. 34 047301Google Scholar

    [25]

    Dong Y, Son D H, Dai Q, Lee J H, Won C H, Kim J G, Chen D, Lee J H, Lu H, Zhang R, Zheng Y 2018 Sensors 18 1314Google Scholar

    [26]

    Li A, Wang C, Xu S, Zheng X, He Y, Ma X, Lu X, Zhang J, Liu K, Zhao Y Hao Y 2021 Appl. Phys. Lett. 119 122104Google Scholar

    [27]

    Robin Chang Y H, Yoon T L, Lim T L 2016 Curr. Appl. Phys. 16 1277Google Scholar

    [28]

    Borovac D, Sun W, Song R, Wierer J J, Tansu N 2020 J. Cryst. Growth 533 125469Google Scholar

    [29]

    Yonenaga I, Ohkubo Y, Deura M, Kutsukake K, Tokumoto Y, Ohno Y, Yoshikawa A, Wang X Q 2015 AIP Adv. 5 077131Google Scholar

    [30]

    Tan X, Xin Z Y, Liu X J, Mu Q G 2013 Adv. Mater. Res. 821–822 841Google Scholar

    [31]

    Chen M, Guo G C, He L 2010 J. Phys. Condens. Matter 22 445501Google Scholar

    [32]

    Al-Khatatbeh Y, Lee K K M, Kiefer B 2009 Phys. Rev. B 79 134114Google Scholar

    [33]

    Man X X, Gong B C, Sun P H, Liu K, Lu Z Y 2022 Phys. Rev. B 106 035136Google Scholar

    [34]

    Yu F, Liu Y 2019 Computation 7 57Google Scholar

    [35]

    Velpula R T, Jain B, Philip M R, Nguyen H D, Wang R, Nguyen H P T 2020 Sci. Rep. 10 2547Google Scholar

    [36]

    Robin Chang Y H, Yoon T L, Lim T L, Rakitin M 2016 J. Alloys Compd. 682 338Google Scholar

    [37]

    Glass C W, Oganov A R, Hansen N 2006 Comput. Phys. Commun. 175 713Google Scholar

    [38]

    Oganov A R, Lyakhov A O, Valle M 2011 Acc. Chem. Res. 44 227Google Scholar

    [39]

    Lyakhov A O, Oganov A R, Stokes H T, Zhu Q 2013 Comput. Phys. Commun. 184 1172Google Scholar

    [40]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [41]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [42]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [43]

    Wu Z, Cohen R E 2006 Phys. Rev. B 73 235116Google Scholar

    [44]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [45]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106Google Scholar

    [46]

    Togo A, Tanaka I 2015 Scr. Mater. 108 1Google Scholar

    [47]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

    [48]

    Muscat J, Wander A, Harrison N M 2001 Chem. Phys. Lett. 342 397Google Scholar

    [49]

    Garza A J, Scuseria G E 2016 J. Phys. Chem. Lett. 7 4165Google Scholar

    [50]

    Sugita Y, Miyake T, Motome Y 2018 Phys. Rev. B 97 035125Google Scholar

    [51]

    Robin Chang Y H, Yoon T L, Lim T L, Tuh M H 2017 J. Alloys Compd. 704 160Google Scholar

    [52]

    Mouhat F, Coudert F X 2014 Phys. Rev. B 90 224104Google Scholar

    [53]

    Voigt W 1889 Ann. Phys. 274 573Google Scholar

    [54]

    Reuss A 1929 ZAMM - J. Appl. Math. Mech. Z. Für Angew. Math. Mech. 9 49Google Scholar

    [55]

    Hill R 1952 Proc. Phys. Soc. London, Sect. A 65 349Google Scholar

    [56]

    Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka) pp60–180

    [57]

    Tian Y, Xu B, Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93Google Scholar

    [58]

    Meng J, Sun L, Zhang Y, Xue F, Chu C, Bai J 2020 Materials 13 427Google Scholar

  • [1] Wei Wei, Guan Feng, Fang Xin. Integrated vibration absorption and isolation design method for metamaterial beams based on bandgap wave-insulating vibration isolatior. Acta Physica Sinica, 2024, 73(22): 224602. doi: 10.7498/aps.73.20241135
    [2] Ding Yi, Sheng Lei-Mei. First-principles study of torsional single-walled carbon nanotubes. Acta Physica Sinica, 2023, 72(19): 197302. doi: 10.7498/aps.72.20230566
    [3] Shi Xu-Han, Li Hai-Yan, Yao Zhen, Liu Bing-Bing. First-principles study of Ca5N4 at high pressure. Acta Physica Sinica, 2020, 69(6): 067101. doi: 10.7498/aps.69.20191808
    [4] Yao Pan-Pan, Wang Ling-Rui, Wang Jia-Xiang, Guo Hai-Zhong. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure. Acta Physica Sinica, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [5] Wang Yan, Cao Qian-Hui, Hu Cui-E, Zeng Zhao-Yi. First-principles calculations of high pressure phase transition of Ce-La-Th alloy. Acta Physica Sinica, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [6] Guo Jing, Wu Qi, Sun Li-Ling. Pressure-induced phenomena and physics in iron-based superconductors. Acta Physica Sinica, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [7] Duan De-Fang, Ma Yan-Bin, Shao Zi-Ji, Xie Hui, Huang Xiao-Li, Liu Bing-Bing, Cui Tian. Structures and novel superconductivity of hydrogen-rich compounds under high pressures. Acta Physica Sinica, 2017, 66(3): 036102. doi: 10.7498/aps.66.036102
    [8] Dong Jia-Jun, Yao Ming-Guang, Liu Shi-Jie, Liu Bing-Bing. Studies of quasi one-dimensional nanostructures at high pressures. Acta Physica Sinica, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [9] Liu Bo, Wang Xuan-Jun, Bu Xiao-Yu. First principles investigations of structural, electronic and elastic properties of ammonium perchlorate under high pressures. Acta Physica Sinica, 2016, 65(12): 126102. doi: 10.7498/aps.65.126102
    [10] Wang Jin-Rong, Zhu Jun, Hao Yan-Jun, Ji Guang-Fu, Xiang Gang, Zou Yang-Chun. First-principles study of the structural, elastic and electronic properties of RhB under high pressure. Acta Physica Sinica, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [11] Yan Xiao-Zhen, Kuang Xiao-Yu, Mao Ai-Jie, Kuang Fang-Guang, Wang Zhen-Hua, Sheng Xiao-Wei. First-principles study on the elastic, electronic and thermodynamic properties of ErNi2B2C under high pressure. Acta Physica Sinica, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [12] Wang Hai-Yan, Li Chang-Yun, Gao Jie, Hu Qian-Ku, Mi Guo-Fa. First-principles studies of the structural and thermodynamic properties of TiAl3 under high pressure. Acta Physica Sinica, 2013, 62(6): 068105. doi: 10.7498/aps.62.068105
    [13] Zhang Pin-Liang, Gong Zi-Zheng, Ji Guang-Fu, Liu Song. First-principles study of high-pressure physical properties of α-Ti2Zr. Acta Physica Sinica, 2013, 62(4): 046202. doi: 10.7498/aps.62.046202
    [14] Zhou Da-Wei, Lu Cheng, Li Gen-Quan, Song Jin-Fan, Song Yu-Ling, Bao Gang. First principles investigations of the structural stability and thermal dynamical properties of metal Ba under high pressure. Acta Physica Sinica, 2012, 61(14): 146301. doi: 10.7498/aps.61.146301
    [15] Chen Zhong-Jun. First principles study of the elastic, electronic and optical properties of MgS under pressure. Acta Physica Sinica, 2012, 61(17): 177104. doi: 10.7498/aps.61.177104
    [16] Ming Xing, Wang Xiao-Lan, Du Fei, Chen Gang, Wang Chun-Zhong, Yin Jian-Wu. Phase transition and properties of siderite FeCO3 under high pressure: an ab initio study. Acta Physica Sinica, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [17] Hu Jia-Guang, Xu Wen, Xiao Yi-Ming, Zhang Ya-Ya. The two-dimensional phononic crystal band gaps tuned by the symmetry and orientation of the additional rods in the center of unit cell. Acta Physica Sinica, 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [18] Deng Yang, Wang Ru-Zhi, Xu Li-Chun, Fang Hui, Yan Hui. Pressure induced band-gap changes in (Ba0.5Sr0.5)TiO3 (BST) from first-principles calculations. Acta Physica Sinica, 2011, 60(11): 117309. doi: 10.7498/aps.60.117309
    [19] Mu Zhong-Fei, Wu Fu-Gen, Zhang Xin, Zhong Hui-Lin. Effect of translation group symmetry on phononic band gaps studied by supercell calculation. Acta Physica Sinica, 2007, 56(8): 4694-4699. doi: 10.7498/aps.56.4694
    [20] Wu Fu-Gen, Liu You-Yan. . Acta Physica Sinica, 2002, 51(7): 1434-1434. doi: 10.7498/aps.51.1434
Metrics
  • Abstract views:  956
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2025
  • Accepted Date:  05 April 2025
  • Available Online:  14 May 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回