-
Piezochromic luminescent materials with multi-color switching have received considerable attention in fields such as displays, sensors, and biomedicine. However, enhancing the sensitivity of piezochromic color change through rational molecular design remains a significant challenge. Herein, we report the design, synthesis and high-pressure study of two 9-fluorenone derivatives of DPA (diphenylamine)-FO and DMAcr (9,9-dimethylcarbazine)-FO, realizing pronounced piezochromic phenomena in both emission colors and crystal colors. DPA-FO features a classic donor–acceptor molecular architecture. Its emission wavelength is highly sensitive to the solvent polarity, and as polarity increases, the redshift continues, indicating the emission nature of intramolecular charge transfer (ICT) luminescence. Under pressure, the emission color gradually changes from yellow to reddish brown, and a pressure coefficient of the emission wavelength is 10.7 nm/GPa. To amplify the piezochromic response, the donor unit is strategically modified by replacing the DPA group with DMAcr, a donor with stronger electron-donating ability. The resulting compound, DMAcr-FO, exhibits a more pronounced ICT process, as evidenced by its higher sensitivity of luminescence to solvent polarity. Under pressure, its emission color gradually changes from yellow to deep red. Correspondingly, the pressure coefficient of the emission wavelength increases 17.5 nm/GPa. Pressure-dependent UV-Vis absorption spectra reveal a continuous redshift in the absorption edge of both derivatives, attributed to structural shrinkage caused by enhanced orbital coupling. Notably, DMAcr-FO exhibits more significant changes in absorption edge and Stokes shift, indicating more substantial structural deformation under pressure. In addition, compared with DPA-FO, the infrared (IR) modes of DMAcr-FO present higher shifting rates with the increase of pressure, which also supports the above conclusion. Meanwhile, with the increase of pressure, the considerable structural distortion is also one of the factors that make DMAcr-FO has a more significant piezochromic phenomenon. This study not only deepens the understanding of structure–property relationships in piezochromic materials but also offers a viable strategy for designing high-performance piezo-responsive luminophores through tailored molecular engineering.
-
Keywords:
- diamond anvil cell /
- intramolecular charge transfer /
- force-sensitive smart luminescent material
[1] Li Q Q, Li Z 2020 Acc. Chem. Res. 53 962
Google Scholar
[2] Shao B, Jin R H, Li A S, Liu Y J, Li B, Xu S P, Xu W Q, Xu B, Tian W J 2019 J. Mater. Chem. C 7 3263
Google Scholar
[3] Jayaraman A, Laboratories B, Hill M, Jersey N 1983 Rev. Mod. Phys. 55 65
Google Scholar
[4] 郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃 2017 物理学报 66 030701
Google Scholar
Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017 Acta Phys. Sin. 66 030701
Google Scholar
[5] 王君龙, 张林基, 刘其军, 陈元正, 沈如, 何竹, 唐斌, 刘秀茹 2017 物理学报 66 166201
Google Scholar
Wang J L, Zhang L J, Liu Q J, Chen Y Z, Shen R, He Z, Tang B, Liu X R 2017 Acta Phys. Sin. 66 166201
Google Scholar
[6] Qi Q K, Qian J Y, Tan X, Zhang J B, Wang L J, Xu B, Zou B, Tian W J 2015 Adv. Funct. Mater. 25 4005
Google Scholar
[7] Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y, Yamaguchi S 2013 J. Am. Chem. Soc. 135 10322
Google Scholar
[8] Zhai C G, Yin X, Niu S F, Yao M G, Hu S H, Dong J J, Shang Y C, Wang Z G, Li Q J, Sundqvist B, Liu B B 2021 Nat. Commun. 12 4084
Google Scholar
[9] Liu Y J, Zeng Q X, Zou B, Liu Y, Xu B, Tian W J 2018 Angew. Chem. Int. Ed. 57 15670
Google Scholar
[10] Sui Q, Yuan Y, Yang N N, Li X, Gong T, Gao E Q, Wang L 2017 J. Mater. Chem. C 5 12400
Google Scholar
[11] Chen P Y, Curry M, Meyer T J 1989 Inorg. Chem. 28 2271
[12] Wang E J, Lam J W Y, Hu R R, Zhang C, Zhao Y S, Tang B Z 2014 J. Mater. Chem. C 2 1801
Google Scholar
[13] Meng L C, Ma X B, Jiang S, Zhang S, Wu Z Y, Xu B, Lei Z, Liu L J, Tian W J 2020 CCS Chem. 2 2084
Google Scholar
[14] Jia H, Sun X N, Meng X M, Wu M, Li A S, Yang M, Wang C Y, Yang J X, Wang K, Li Q, Li L 2024 Mater. Chem. Front. 8 3064
Google Scholar
[15] Shen H, Li Y J, Li Y L 2020 Aggregate 1 57
Google Scholar
[16] Neha, Kaur N 2024 Coord. Chem. Rev. 521 216173
Google Scholar
[17] Kulkarni A P, Kong X X, Jenekhe S A 2006 Macromolecules 39 8699
Google Scholar
[18] Panthi K, El-Khoury P Z, Tarnovsky A N, Kinstle T H 2010 Tetrahedron 66 9641
Google Scholar
[19] Yang L, Zhu Y Q, Wu J L, Hu B, Pang Z G, Lu Z Y, Zhao S L, Huang Y 2019 Dyes Pigm. 171 107763
Google Scholar
[20] Zeng W X, Lai H Y, Lee W K, Jiao M, Shiu Y J, Zhong C, Gong S L, Zhou T, Xie G H, Sarma M, Wong K T, Wu C C, Yang C L 2018 Adv. Mater. 30 1704961
Google Scholar
[21] Liu M Y, Li H B, Ma H W, Yao C X, Zhao F G, Han S, Zhang Z Q, Wang N, Yin X D 2025 ACS Appl. Mater. Interfaces 17 21509
Google Scholar
[22] Makula P, Pacia M, Macyk W 2018 J. Phys. Chem. Lett. 9 6814
Google Scholar
[23] Ceriani C, Corsini F, Mattioli G, Mattiello S, Testa D, Po R, Botta C, Griffini G, Beverina L 2021 J. Mater. Chem. C 9 14815
Google Scholar
[24] Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y 2017 Angew. Chem. Int. Ed. 56 254
Google Scholar
[25] Zhang Y J, Qile M, Sun J W, Xu M H, Wang K, Cao F, Li W J, Song Q B, Zou B, Zhang C 2016 J. Mater. Chem. C 4 9954
Google Scholar
[26] Wang Y N, Wang Y Y, Wei L, Li A S, Fang Y Y, Li L, Li Q, Wang K 2025 Chem. Eng. J. 507 160849
Google Scholar
[27] Man Z W, Lv Z, Xu Z Z, Liao Q, Liu J X, Liu Y L, Fu L Y, Liu M H, Bai S M, Fu H B 2020 Adv. Funct. Mater. 30 2000105
Google Scholar
[28] Zhao G J, Han K L 2009 J. Phys. Chem. A 113 14329
Google Scholar
[29] Xie W T, Li B B, Cai X Y, Li M K, Qiao Z Y, Tang X H, Liu K K, Gu C, Ma Y G, Su S J 2019 Front. Chem. 7 276
Google Scholar
[30] Gao F W, Zhong R L, Xu H L, Su Z M 2017 J. Phys. Chem. C 121 25472
Google Scholar
[31] Kivala M, Boudon C, Gisselbrecht J P, Enko B, Seiler P, Müller I B, Langer N, Jarowski P D, Gescheidt G, Diederich F 2009 Chem. Eur. J. 15 4111
Google Scholar
[32] Bulović V, Shoustikov A, Baldo M A, Bose E, Kozlov V G, Thompson M E, Forrest S R 1998 Chem. Phys. Lett. 287 455
Google Scholar
[33] Chen L, Gao Z J, Li Q, Yan C X, Zhang H W, Li Y W, Liu C L 2024 APL Mater. 12 030602
Google Scholar
[34] You Z J, Xu B, Meng X M, Wu M, Li A S, Li L, Chen J, Li Q, Wang K 2024 Chem. Eng. J. 493 151597
Google Scholar
[35] Mishra M K, Ghalsasi P, Deo M N, Bhatt H, Poswal H K, Ghosh S, Ganguly S 2017 CrystEngComm 19 7083
Google Scholar
[36] Guan J W, Daljeet R, Kieran A, Song Y 2018 J. Phys. : Condens. Matter 30 224004
Google Scholar
[37] Park T R, Dreger Z A, Gupta Y M 2004 J. Phys. Chem. B 108 3174
Google Scholar
-
图 2 (a) DPA-FO的分子结构示意图及其在白光、紫外光(365 nm)照射下的晶体照片; (b) DPA-FO晶体归一化的荧光发射光谱(绿)和紫外-可见吸收光谱(蓝); (c) DPA-FO在不同溶剂(环己烷CyH、甲苯TOL、乙酸乙酯EtOAc、丙酮Acetone和二甲基甲酰胺DMF)中的归一化荧光发射光谱, 溶剂极性参考Snyder极性指数; (d) DPA-FO荧光发射波长与溶剂极性间的关系(绿色直线为拟合结果)
Figure 2. (a) Chemical structure of DPA-FO molecule and the photo of one typical crystal under visible (Vis) light and 365 nm ultraviolet (UV) irradiation; (b) comparison between the normalized luminescence (green) and UV-Vis absorption (blue) spectra of DPA-FO crystals; (c) normalized emission spectra of DPA-FO in various solvents of cyclohexane (CyH), toluene (TOL), ethyl acetate (EtOAc), acetone (Acetone) and N, N-dimethylformamide (DMF). Solvent polarity is referenced to the Snyder polarity index; (d) linear relationship between emission wavelength and solvent polarity. The green line represents the linear fitting result.
图 3 (a) DPA-FO的高压荧光光谱; (b) 高压下DPA-FO的荧光显微照片; (c) DPA-FO荧光发射强度(绿)与发射波长(橙)随压力的变化, 橙色直线为发射波长数据的线性拟合, 斜率表示压力系数; 插图表示常压(1 atm)和6.0 GPa的CIE色度图及其坐标变化; (d) DPA-FO在三次压力循环(1 atm—5.0 GPa)过程中的可逆发射波长变化, 插图为相应压力的荧光照片
Figure 3. (a) High-pressure fluorescence spectra of DPA-FO; (b) fluorescence micrographs of DPA-FO at selected pressures; (c) pressure evolution of emission wavelength (orange) and intensity (green). The orange line represents the linear fitting of data for determining the pressure coefficient. Inset illustrates the enlarged view of CIE chromaticity diagram at 1 atm and 6.0 GPa, respectively; (d) reversible changes of emission wavelength during three pressurizing cycling between 1 atm and 5.0 GPa, the illustration is a fluorescence photograph of the corresponding pressure.
图 4 (a) DMAcr-FO的分子结构示意图和晶体在白光及紫外光(365 nm)照射下的照片; (b) DMAcr-FO的归一化的荧光图谱(粉)和紫外-可见吸收图谱(橙); (c) DMAcr-FO在不同溶剂中的荧光光谱(正己烷HEX、甲苯TOL、四氢呋喃THF、二甲基甲酰胺DMF), 溶剂极性参考Snyder极性指数; (d) DMAcr-FO荧光发射波长随溶剂极性变化的图(粉色直线为拟合结果)
Figure 4. (a) The chemical structure of DMAcr-FO and the photo of DMAcr-FO crystal under the Vis light and UV light (365 nm) irradiation; (b) normalized luminescence (pink) and UV-Vis absorption (orange) spectra of DMAcr-FO crystals; (c) normalized fluorescence spectra of DMAcr-FO in different solvents of n-hexane (HEX), toluene (TOL), tetrahydrofuran (THF), ethyl acetate (DMF). Solvent polarity is referenced to the Snyder polarity index; (d) the emission wavelength of DMAcr-FO with solvent polarity. The pink line represents the linear fitting result.
图 5 (a) 高压下DMAcr-FO的荧光光谱; (b) DMAcr-FO在选定压力下的荧光显微图片; (c) DMAcr-FO的荧光发射强度(粉)和发射波长(橙)随压力的变化, 其中橙色线条为荧光波长与压力的线性拟合结果, 插图为常压(1 atm)和4.7 GPa的CIE色度图和坐标; (d) DMAcr-FO在三次压力循环(1 atm—5.0 GPa)过程中发射波长的变化图, 插图为相应的荧光显微照片
Figure 5. (a) High-pressure photoluminescence spectra of DMAcr-FO; (b) selected luminescence micrographs at different pressures; (c) pressure dependent intensities (pink) and wavelengths (orange) of DMAcr-FO. The orange line represents linear fittings of the data to achieve pressure coefficients of emission wavelengths. The illustration shows the chromaticity diagram of CIE at 1 atm and 4.7 GPa; (d) reversible changes of emission wavelength during three pressurizing cycling between 1 atm and 5.0 GPa, the illustration is a fluorescence photograph of the corresponding pressure.
图 6 (a) DPA-FO和(b) DMAcr-FO的高压紫外-可见吸收光谱, 插图为相应压力的晶体显微照片; (c) DPA-FO和DMAcr-FO的吸收边波长随压力的变化, 直线为吸收边波长的线性拟合, 斜率表示压力系数; (d) DPA-FO和DMAcr-FO的斯托克斯位移随压力的变化, 直线为斯托克斯位移数据的线性拟合, 斜率表示压力系数
Figure 6. High-pressure UV-Vis absorption spectra of (a) DPA-FO and (b) DMAcr-FO. The insets illustrate the micrographs of the sample at corresponding pressures; (c) pressure evolution of absorption edges of DPA-FO and DMAcr-FO. The lines represent the linear fitting of data for determining the pressure coefficient; (d) pressure evolution of Stokes shift of DPA-FO and DMAcr-FO.
图 7 DPA-FO和DMAcr-FO在(a) 1095—1400 cm–1和(b) 1420—1800 cm–1波数范围内的高压红外吸收光谱; (c) DPA-FO和DMAcr-FO的红外振动峰ν(C—N)(上)、ν(C=C)(中)和ν(C=O)(下)峰位随压力的变化, 直线为红外峰位数据的线性拟合, 斜率表示压力系数
Figure 7. High-pressure infrared (IR) spectra of DPA-FO and DMAcr-FO in the frequency ranges of (a) 1095—1400 cm–1 and (b) 1420—1800 cm–1; (c) the wavelengths of selected IR modes of ν(C—N) (up), ν(C=C) (middle) and ν(C=O) (down) at high pressure. The lines represent linear fittings of the data to achieve pressure coefficients of IR modes.
-
[1] Li Q Q, Li Z 2020 Acc. Chem. Res. 53 962
Google Scholar
[2] Shao B, Jin R H, Li A S, Liu Y J, Li B, Xu S P, Xu W Q, Xu B, Tian W J 2019 J. Mater. Chem. C 7 3263
Google Scholar
[3] Jayaraman A, Laboratories B, Hill M, Jersey N 1983 Rev. Mod. Phys. 55 65
Google Scholar
[4] 郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃 2017 物理学报 66 030701
Google Scholar
Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017 Acta Phys. Sin. 66 030701
Google Scholar
[5] 王君龙, 张林基, 刘其军, 陈元正, 沈如, 何竹, 唐斌, 刘秀茹 2017 物理学报 66 166201
Google Scholar
Wang J L, Zhang L J, Liu Q J, Chen Y Z, Shen R, He Z, Tang B, Liu X R 2017 Acta Phys. Sin. 66 166201
Google Scholar
[6] Qi Q K, Qian J Y, Tan X, Zhang J B, Wang L J, Xu B, Zou B, Tian W J 2015 Adv. Funct. Mater. 25 4005
Google Scholar
[7] Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y, Yamaguchi S 2013 J. Am. Chem. Soc. 135 10322
Google Scholar
[8] Zhai C G, Yin X, Niu S F, Yao M G, Hu S H, Dong J J, Shang Y C, Wang Z G, Li Q J, Sundqvist B, Liu B B 2021 Nat. Commun. 12 4084
Google Scholar
[9] Liu Y J, Zeng Q X, Zou B, Liu Y, Xu B, Tian W J 2018 Angew. Chem. Int. Ed. 57 15670
Google Scholar
[10] Sui Q, Yuan Y, Yang N N, Li X, Gong T, Gao E Q, Wang L 2017 J. Mater. Chem. C 5 12400
Google Scholar
[11] Chen P Y, Curry M, Meyer T J 1989 Inorg. Chem. 28 2271
[12] Wang E J, Lam J W Y, Hu R R, Zhang C, Zhao Y S, Tang B Z 2014 J. Mater. Chem. C 2 1801
Google Scholar
[13] Meng L C, Ma X B, Jiang S, Zhang S, Wu Z Y, Xu B, Lei Z, Liu L J, Tian W J 2020 CCS Chem. 2 2084
Google Scholar
[14] Jia H, Sun X N, Meng X M, Wu M, Li A S, Yang M, Wang C Y, Yang J X, Wang K, Li Q, Li L 2024 Mater. Chem. Front. 8 3064
Google Scholar
[15] Shen H, Li Y J, Li Y L 2020 Aggregate 1 57
Google Scholar
[16] Neha, Kaur N 2024 Coord. Chem. Rev. 521 216173
Google Scholar
[17] Kulkarni A P, Kong X X, Jenekhe S A 2006 Macromolecules 39 8699
Google Scholar
[18] Panthi K, El-Khoury P Z, Tarnovsky A N, Kinstle T H 2010 Tetrahedron 66 9641
Google Scholar
[19] Yang L, Zhu Y Q, Wu J L, Hu B, Pang Z G, Lu Z Y, Zhao S L, Huang Y 2019 Dyes Pigm. 171 107763
Google Scholar
[20] Zeng W X, Lai H Y, Lee W K, Jiao M, Shiu Y J, Zhong C, Gong S L, Zhou T, Xie G H, Sarma M, Wong K T, Wu C C, Yang C L 2018 Adv. Mater. 30 1704961
Google Scholar
[21] Liu M Y, Li H B, Ma H W, Yao C X, Zhao F G, Han S, Zhang Z Q, Wang N, Yin X D 2025 ACS Appl. Mater. Interfaces 17 21509
Google Scholar
[22] Makula P, Pacia M, Macyk W 2018 J. Phys. Chem. Lett. 9 6814
Google Scholar
[23] Ceriani C, Corsini F, Mattioli G, Mattiello S, Testa D, Po R, Botta C, Griffini G, Beverina L 2021 J. Mater. Chem. C 9 14815
Google Scholar
[24] Naito H, Nishino K, Morisaki Y, Tanaka K, Chujo Y 2017 Angew. Chem. Int. Ed. 56 254
Google Scholar
[25] Zhang Y J, Qile M, Sun J W, Xu M H, Wang K, Cao F, Li W J, Song Q B, Zou B, Zhang C 2016 J. Mater. Chem. C 4 9954
Google Scholar
[26] Wang Y N, Wang Y Y, Wei L, Li A S, Fang Y Y, Li L, Li Q, Wang K 2025 Chem. Eng. J. 507 160849
Google Scholar
[27] Man Z W, Lv Z, Xu Z Z, Liao Q, Liu J X, Liu Y L, Fu L Y, Liu M H, Bai S M, Fu H B 2020 Adv. Funct. Mater. 30 2000105
Google Scholar
[28] Zhao G J, Han K L 2009 J. Phys. Chem. A 113 14329
Google Scholar
[29] Xie W T, Li B B, Cai X Y, Li M K, Qiao Z Y, Tang X H, Liu K K, Gu C, Ma Y G, Su S J 2019 Front. Chem. 7 276
Google Scholar
[30] Gao F W, Zhong R L, Xu H L, Su Z M 2017 J. Phys. Chem. C 121 25472
Google Scholar
[31] Kivala M, Boudon C, Gisselbrecht J P, Enko B, Seiler P, Müller I B, Langer N, Jarowski P D, Gescheidt G, Diederich F 2009 Chem. Eur. J. 15 4111
Google Scholar
[32] Bulović V, Shoustikov A, Baldo M A, Bose E, Kozlov V G, Thompson M E, Forrest S R 1998 Chem. Phys. Lett. 287 455
Google Scholar
[33] Chen L, Gao Z J, Li Q, Yan C X, Zhang H W, Li Y W, Liu C L 2024 APL Mater. 12 030602
Google Scholar
[34] You Z J, Xu B, Meng X M, Wu M, Li A S, Li L, Chen J, Li Q, Wang K 2024 Chem. Eng. J. 493 151597
Google Scholar
[35] Mishra M K, Ghalsasi P, Deo M N, Bhatt H, Poswal H K, Ghosh S, Ganguly S 2017 CrystEngComm 19 7083
Google Scholar
[36] Guan J W, Daljeet R, Kieran A, Song Y 2018 J. Phys. : Condens. Matter 30 224004
Google Scholar
[37] Park T R, Dreger Z A, Gupta Y M 2004 J. Phys. Chem. B 108 3174
Google Scholar
Catalog
Metrics
- Abstract views: 864
- PDF Downloads: 15
- Cited By: 0