Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-field simulation of domain switching in ferroelectric trilayer films under bending-induced strain gradient

GUO Changqing YANG Letao WANG Jing HUANG Houbing

Citation:

Phase-field simulation of domain switching in ferroelectric trilayer films under bending-induced strain gradient

GUO Changqing, YANG Letao, WANG Jing, HUANG Houbing
cstr: 32037.14.aps.74.20250334
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Flexible ferroelectric materials possess considerable potentials for wearable electronics and bio-inspired devices, yet their mechano-electric coupling mechanisms under dynamic bending conditions remain incompletely understood. In his work, the effects of bending deformation on domain structures and macroscopic ferroelectric responses in (SrTiO3)10/(PbTiO3)10/(SrTiO3)10 flexible ferroelectric trilayer films are systematically investigated using phase-field simulations. By constructing computational models for upward-concave (U-shaped) and downward-concave (N-shaped) bending configurations, the strain distribution and its regulation mechanism on polarization patterns under different curvature radii are analyzed. The results reveal distinct strain gradients across bending modes: U-shaped bending induces compressive strain in the upper layer and tensile strain in the lower layer, generating a negative out-of-plane strain gradient. Conversely, N-shaped bending reverses this strain distribution. Such inhomogeneous strains drive significant polarization reconfiguration within the PTO layer. At a moderate curvature (large R), the system retains stable vortex-antivortex pairs. Reducing bending radius (smaller R) promotes divergent topological transitions—U-shaped bending facilitates vortex pair transformation into zigzag-like domains, while N-shaped bending drives vortex-to-out-of-plane c-domain evolution. Notably, bending-induced strain gradients impose transverse flexoelectric fields that markedly change trilayer hysteresis loops. U-shaped bending introduces a negative flexoelectric field, shifting loops rightward with maximum polarization (Pmax) decreasing. In contrast, N-shaped bending generates a positive field, enhancing Pmax via leftward loop shifting. The polarization switching analysis under electric field further demonstrates bending-mediated control of domain evolution pathway and reversal dynamics. These findings not only elucidate profound bending effects on flexible ferroelectrics’ domain architectures and functional properties but also provide theoretical guidance for designing strain-programmable ferroelectric memories, adaptive sensors, and neuromorphic electronics.
      Corresponding author: HUANG Houbing, hbhuang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 92463306, 52372100, 52472119) and the Natural Science Foundation of Beijing, China (Grant No. 2242057).
    [1]

    Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606Google Scholar

    [2]

    Martin L W, Rappe A M 2017 Nat. Rev. Mater. 2 16087Google Scholar

    [3]

    Scott J F, Paz de Araujo C A 1989 Science 246 1400Google Scholar

    [4]

    Ramesh R, Aggarwal S, Auciello O 2001 Mater. Sci. Eng., R 32 191Google Scholar

    [5]

    R. Bowen C, A. Kim H M, Weaver P, Dunn S 2014 Energy Environ. Sci. 7 25Google Scholar

    [6]

    Silva J P B, Silva J M B, Oliveira M J S, Weingärtner T, Sekhar K C, Pereira M, Gomes M J M 2019 Adv. Funct. Mater. 29 1807196Google Scholar

    [7]

    Singh A, Monga S, Sharma N, Sreenivas K, Katiyar R S 2022 J. Asian Ceram. Soc. 10 275Google Scholar

    [8]

    Lancaster M J, Powell J, Porch A 1998 Supercond. Sci. Technol. 11 1323Google Scholar

    [9]

    Wang W, Li J, Liu H, Ge S 2021 Adv. Sci. 8 2003074Google Scholar

    [10]

    Han X, Ji Y, Yang Y 2022 Adv. Funct. Mater. 32 2109625Google Scholar

    [11]

    Park J S, Jung S Y, Kim D H, Park J H, Jang H W, Kim T G, Baek S H, Lee B C 2023 Microsyst. Nanoeng. 9 1Google Scholar

    [12]

    Yu H, Chung C C, Shewmon N, Ho S, Carpenter J H, Larrabee R, Sun T, Jones J L, Ade H, O’Connor B T, So F 2017 Adv. Funct. Mater. 27 1700461Google Scholar

    [13]

    Yao M, Cheng Y, Zhou Z, Liu M 2020 J. Mater. Chem. C 8 14Google Scholar

    [14]

    Gao W, Zhu Y, Wang Y, Yuan G, Liu J M 2020 J. Materiomics 6 1Google Scholar

    [15]

    Jia X, Guo R, Tay B K, Yan X 2022 Adv. Funct. Mater. 32 2205933Google Scholar

    [16]

    Ryu J, Priya S, Park C S, Kim K Y, Choi J J, Hahn B D, Yoon W H, Lee B K, Park D S, Park C 2009 J. Appl. Phys. 106 024108Google Scholar

    [17]

    Shi Q, Parsonnet E, Cheng X, Fedorova N, Peng R C, Fernandez A, Qualls A, Huang X, Chang X, Zhang H, Pesquera D, Das S, Nikonov D, Young I, Chen L Q, Martin L W, Huang Y L, Íñiguez J, Ramesh R 2022 Nat. Commun. 13 1110Google Scholar

    [18]

    Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y, Pan X 2019 Nature 570 87Google Scholar

    [19]

    Dong G, Li S, Yao M, Zhou Z, Zhang Y Q, Han X, Luo Z, Yao J, Peng B, Hu Z, Huang H, Jia T, Li J, Ren W, Ye Z G, Ding X, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar

    [20]

    Peng B, Peng R C, Zhang Y Q, Dong G, Zhou Z, Zhou Y, Li T, Liu Z, Luo Z, Wang S, Xia Y, Qiu R, Cheng X, Xue F, Hu Z, Ren W, Ye Z G, Chen L Q, Shan Z, Min T, Liu M 2020 Sci. Adv. 6 eaba5847Google Scholar

    [21]

    Zhou Y, Guo C, Dong G, Liu H, Zhou Z, Niu B, Wu D, Li T, Huang H, Liu M, Min T 2022 Nano Lett. 22 2859Google Scholar

    [22]

    Cai S, Lun Y, Ji D, Lv P, Han L, Guo C, Zang Y, Gao S, Wei Y, Gu M, Zhang C, Gu Z, Wang X, Addiego C, Fang D, Nie Y, Hong J, Wang P, Pan X 2022 Nat. Commun. 13 5116Google Scholar

    [23]

    Wang J, Liu Z, Wang Q, Nie F, Chen Y, Tian G, Fang H, He B, Guo J, Zheng L, Li C, Lü W, Yan S 2024 Adv. Sci. 11 2401657Google Scholar

    [24]

    Tanwani M, Gupta P, Powar S, Das S 2025 Small 21 2405688Google Scholar

    [25]

    Yadav A K, Nelson C T, Hsu S L, et al. 2016 Nature 530 198Google Scholar

    [26]

    Hsu S L, McCarter M R, Dai C, Hong Z, Chen L Q, Nelson C T, Martin L W, Ramesh R 2019 Adv. Mater. 31 1901014Google Scholar

    [27]

    Hong Z, Damodaran A R, Xue F, Hsu S L, Britson J, Yadav A K, Nelson C T, Wang J J, Scott J F, Martin L W, Ramesh R, Chen L Q 2017 Nano Lett. 17 2246Google Scholar

    [28]

    Das S, Tang Y L, Hong Z, et al. 2019 Nature 568 368Google Scholar

    [29]

    Lun Y, Wang X, Kang J, Ren Q, Wang T, Han W, Gao Z, Huang H, Chen Y, Chen L Q, Fang D, Hong J 2023 Adv. Mater. 35 2302320Google Scholar

    [30]

    Guo C, Yang H, Dong S, Tang S, Wang J, Wang X, Huang H 2024 Adv. Electron. Mater. 10 2400001Google Scholar

    [31]

    Guo C, Wang J, Huang H 2024 Appl. Phys. Lett. 125 062903Google Scholar

    [32]

    Zhou M J, Peng K, Tan Y Z, Yang T N, Chen L Q, Nan C W 2025 Acta Mater. 288 120805Google Scholar

    [33]

    Li Q, Nelson C T, Hsu S L, et al. 2017 Nat. Commun. 8 1468Google Scholar

    [34]

    Xu T, Wu C, Zheng S, Wang Y, Wang J, Hirakata H, Kitamura T, Shimada T 2024 Phys. Rev. Lett. 132 086801Google Scholar

    [35]

    刘迪, 王静, 王俊升, 黄厚兵 2020 物理学报 69 127801Google Scholar

    Liu D, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 127801Google Scholar

    [36]

    高荣贞, 王静, 王俊升, 黄厚兵 2020 物理学报 69 217801Google Scholar

    Gao R Z, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 217801Google Scholar

    [37]

    梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥 2021 物理学报 70 044202Google Scholar

    Liang D S, Huang H B, Zhao Y N, Liu Z H, Wang H Y, Ma X Q 2021 Acta Phys. Sin. 70 044202Google Scholar

    [38]

    Li Y, Zatterin E, Conroy M, et al. 2022 Adv. Mater. 34 2106826Google Scholar

  • 图 1  (a) 铁电三层膜的两种弯曲示意图, 这里R是弯曲曲率的半径; (b) 铁电三层膜在U型弯曲和N型弯曲下的面内应变εxx分布; (c) 铁电三层膜在U型弯曲和N型弯曲下的应变梯度εxx,z分布

    Figure 1.  (a) Schematic diagrams of the two bending configurations of the ferroelectric trilayer film, where R is the radius of curvature; (b) in-plane strain εxx of the ferroelectric trilayer film under U-shaped and N-shaped bending; (c) strain gradient εxx,z of the ferroelectric trilayer film under U-shaped and N-shaped bending.

    图 2  STO/PTO/STO三层膜在不同U型弯曲半径下畴结构演化行为

    Figure 2.  Domain evolution behavior in STO/PTO/STO trilayer films under different U-shaped bending radii.

    图 3  STO/PTO/STO三层膜在不同N型弯曲半径下畴结构演化行为

    Figure 3.  Domain evolution behavior in STO/PTO/STO trilayer films under different N-shaped bending radii.

    图 4  STO/PTO/STO三层膜在不同U型弯曲半径下的电滞回线

    Figure 4.  Hysteresis loops of STO/PTO/STO trilayer films under different U-shaped bending radii.

    图 5  STO/PTO/STO异质膜在U型弯曲变形下的电场调控极化分布特性

    Figure 5.  Electric field-modulated polarization distribution in STO/PTO/STO trilayers under U-shaped bending deformation.

    图 6  STO/PTO/STO三层膜在不同N型弯曲半径下的电滞回线

    Figure 6.  Hysteresis loops of STO/PTO/STO trilayer films under different N-shaped bending radii.

    图 7  STO/PTO/STO异质膜在N型弯曲变形下的电场调控极化分布特性

    Figure 7.  Electric field-modulated polarization distribution in STO/PTO/STO trilayers under N-shaped bending deformation.

    表 1  相场模拟所用的材料参数取值[33,34] (SI单位制, 温度为300 K)

    Table 1.  Material parameter values in the phase-field simulations (SI unit, T=300 K).

    变量 数值 变量 数值
    PTO $ {\alpha _1}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} m {\cdot} {{\mathrm{C}}^{ - 2}}) $ $ - 1.706 $ $ {{{Q}}_{11}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0.089
    $ {\alpha _{11}}/({10^7}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^5} {\cdot} {{\mathrm{C}}^{ - 4}}) $ $ - 7.3 $ $ {{{Q}}_{12}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ –0.026
    $ {\alpha _{12}}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^5} {\cdot} {{\mathrm{C}}^{ - 4}}) $ $ 7.5 $ $ {{{Q}}_{44}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0.0675
    $ {\alpha _{111}}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^9} {\cdot} {{\mathrm{C}}^{ - 6}}) $ $ 2.6 $ $ {{{G}}_{11}}/({10^{ - 10}}{\text{ }}{\mathrm{N}} {\cdot} {{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ $ 1.44 $
    $ {\alpha _{112}}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^9} {\cdot} {{\mathrm{C}}^{ - 6}}) $ $ 6.1 $ $ {{{G}}_{12}}/({\mathrm{N}} {\cdot} {{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0
    $ {\alpha _{123}}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^9} {\cdot} {{\mathrm{C}}^{ - 6}}) $ $ - 3.7 $ $ G_{44},G_{44}'/(10^{-11}\text{ }\mathrm{N}{\cdot}\mathrm{m}^4{\cdot}\mathrm{C}^{-2}) $ $ 7.2 $
    $ {{c}_{11}}/({10^{11}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 2.3 $ $ {{f}_{11}}/{\mathrm{V}} $ 1.6
    $ {{c}_{12}}/({10^{11}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 1 $ $ {{f}_{12}}/{\mathrm{V}} $ –0.8
    $ {{c}_{44}}/({10^{10}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 7 $ $ {{f}_{44}}/{\mathrm{V}} $ 0.15
    STO $ {\alpha _1}/({10^8}{\text{ }}{\mathrm{J}} {\cdot} {\mathrm{m}} {\cdot} {{\mathrm{C}}^{ - 2}}) $ $ 2.017 $ $ {{{Q}}_{44}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0.00957
    $ {\alpha _{11}}/({10^9}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^5} {\cdot} {{\mathrm{C}}^{ - 4}}) $ $ 1.7 $ $ {{{G}}_{11}}/({10^{ - 10}}{\text{ }}{\mathrm{N}} {\cdot} {{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ $ 1.44 $
    $ {\alpha _{12}}/({10^9}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^5} {\cdot} {{\mathrm{C}}^{ - 4}}) $ $ 4.45 $ $ {{{G}}_{12}}/({\mathrm{N}} {\cdot} {{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0
    $ {{c}_{11}}/({10^{11}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 3.3 $ $ {{{G}}_{44}}, {{G}}_{44}'/({10^{ - 11}}{\text{ }}{\mathrm{N}} {\cdot} {{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ $ 7.2 $
    $ {{c}_{12}}/({10^{11}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 1 $ $ {{f}_{11}}/{\mathrm{V}} $ –3.21
    $ {{c}_{44}}/({10^{11}}{\text{ }}{\mathrm{J}} {\cdot} {{\mathrm{m}}^{ - 3}}) $ $ 1.25 $ $ {{f}_{12}}/{\mathrm{V}} $ 1.47
    $ {{{Q}}_{11}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ 0.0457 $ {{f}_{44}}/{\mathrm{V}} $ 1.07
    $ {{{Q}}_{12}}/({{\mathrm{m}}^4} {\cdot} {{\mathrm{C}}^{ - 2}}) $ –0.0135 εr (PTO/STO) 20
    DownLoad: CSV

    表 2  STO/PTO/STO三层膜在U型弯曲变形下电滞回线的矫顽电场、最大极化强度和剩余极化强度

    Table 2.  Coercive electric field, maximum polarization, and remnant polarization of the ferroelectric hysteresis loop in STO/PTO/STO trilayer films under U-shaped bending deformation.

    U型弯曲-
    R/nm
    εxx,z/
    (106 m–1)
    Ec/
    (kV·cm–1)
    Pmax/
    (μC·cm–2)
    Pr/
    (μC·cm–2)
    未弯曲 0 0 43.90 0
    1200 –0.61 2.78 43.72 –0.29
    937 –0.77 2.78 43.64 –0.31
    600 –1.14 5.56 43.52 –0.46
    400 –1.82 11.11 43.30 –0.57
    300 –2.42 13.89 43.05 –0.64
    240 –3.03 16.67 42.86 –0.69
    DownLoad: CSV

    表 3  STO/PTO/STO三层膜在N型弯曲变形下电滞回线的矫顽电场、最大极化强度和剩余极化强度

    Table 3.  Coercive electric field, maximum polarization, and remnant polarization of the ferroelectric hysteresis loop in STO/PTO/STO trilayer films under N-shaped bending deformation.

    N型弯曲-
    R/nm
    εxx,z/
    (106 m–1)
    Ec/
    (kV·cm–1)
    Pmax/
    (μC·cm–2)
    Pr/
    (μC·cm–2)
    未弯曲 0 0 43.90 0
    1200 0.61 –2.78 44.13 0.21
    600 1.14 –5.56 44.33 0.43
    400 1.82 –8.33 44.53 0.67
    300 2.42 –13.89 44.78 0.93
    240 3.03 –16.67 44.88 1.18
    200 3.61 –19.44 45.15 1.42
    DownLoad: CSV
  • [1]

    Setter N, Damjanovic D, Eng L, Fox G, Gevorgian S, Hong S, Kingon A, Kohlstedt H, Park N Y, Stephenson G B, Stolitchnov I, Taganstev A K, Taylor D V, Yamada T, Streiffer S 2006 J. Appl. Phys. 100 051606Google Scholar

    [2]

    Martin L W, Rappe A M 2017 Nat. Rev. Mater. 2 16087Google Scholar

    [3]

    Scott J F, Paz de Araujo C A 1989 Science 246 1400Google Scholar

    [4]

    Ramesh R, Aggarwal S, Auciello O 2001 Mater. Sci. Eng., R 32 191Google Scholar

    [5]

    R. Bowen C, A. Kim H M, Weaver P, Dunn S 2014 Energy Environ. Sci. 7 25Google Scholar

    [6]

    Silva J P B, Silva J M B, Oliveira M J S, Weingärtner T, Sekhar K C, Pereira M, Gomes M J M 2019 Adv. Funct. Mater. 29 1807196Google Scholar

    [7]

    Singh A, Monga S, Sharma N, Sreenivas K, Katiyar R S 2022 J. Asian Ceram. Soc. 10 275Google Scholar

    [8]

    Lancaster M J, Powell J, Porch A 1998 Supercond. Sci. Technol. 11 1323Google Scholar

    [9]

    Wang W, Li J, Liu H, Ge S 2021 Adv. Sci. 8 2003074Google Scholar

    [10]

    Han X, Ji Y, Yang Y 2022 Adv. Funct. Mater. 32 2109625Google Scholar

    [11]

    Park J S, Jung S Y, Kim D H, Park J H, Jang H W, Kim T G, Baek S H, Lee B C 2023 Microsyst. Nanoeng. 9 1Google Scholar

    [12]

    Yu H, Chung C C, Shewmon N, Ho S, Carpenter J H, Larrabee R, Sun T, Jones J L, Ade H, O’Connor B T, So F 2017 Adv. Funct. Mater. 27 1700461Google Scholar

    [13]

    Yao M, Cheng Y, Zhou Z, Liu M 2020 J. Mater. Chem. C 8 14Google Scholar

    [14]

    Gao W, Zhu Y, Wang Y, Yuan G, Liu J M 2020 J. Materiomics 6 1Google Scholar

    [15]

    Jia X, Guo R, Tay B K, Yan X 2022 Adv. Funct. Mater. 32 2205933Google Scholar

    [16]

    Ryu J, Priya S, Park C S, Kim K Y, Choi J J, Hahn B D, Yoon W H, Lee B K, Park D S, Park C 2009 J. Appl. Phys. 106 024108Google Scholar

    [17]

    Shi Q, Parsonnet E, Cheng X, Fedorova N, Peng R C, Fernandez A, Qualls A, Huang X, Chang X, Zhang H, Pesquera D, Das S, Nikonov D, Young I, Chen L Q, Martin L W, Huang Y L, Íñiguez J, Ramesh R 2022 Nat. Commun. 13 1110Google Scholar

    [18]

    Ji D, Cai S, Paudel T R, Sun H, Zhang C, Han L, Wei Y, Zang Y, Gu M, Zhang Y, Gao W, Huyan H, Guo W, Wu D, Gu Z, Tsymbal E Y, Wang P, Nie Y, Pan X 2019 Nature 570 87Google Scholar

    [19]

    Dong G, Li S, Yao M, Zhou Z, Zhang Y Q, Han X, Luo Z, Yao J, Peng B, Hu Z, Huang H, Jia T, Li J, Ren W, Ye Z G, Ding X, Sun J, Nan C W, Chen L Q, Li J, Liu M 2019 Science 366 475Google Scholar

    [20]

    Peng B, Peng R C, Zhang Y Q, Dong G, Zhou Z, Zhou Y, Li T, Liu Z, Luo Z, Wang S, Xia Y, Qiu R, Cheng X, Xue F, Hu Z, Ren W, Ye Z G, Chen L Q, Shan Z, Min T, Liu M 2020 Sci. Adv. 6 eaba5847Google Scholar

    [21]

    Zhou Y, Guo C, Dong G, Liu H, Zhou Z, Niu B, Wu D, Li T, Huang H, Liu M, Min T 2022 Nano Lett. 22 2859Google Scholar

    [22]

    Cai S, Lun Y, Ji D, Lv P, Han L, Guo C, Zang Y, Gao S, Wei Y, Gu M, Zhang C, Gu Z, Wang X, Addiego C, Fang D, Nie Y, Hong J, Wang P, Pan X 2022 Nat. Commun. 13 5116Google Scholar

    [23]

    Wang J, Liu Z, Wang Q, Nie F, Chen Y, Tian G, Fang H, He B, Guo J, Zheng L, Li C, Lü W, Yan S 2024 Adv. Sci. 11 2401657Google Scholar

    [24]

    Tanwani M, Gupta P, Powar S, Das S 2025 Small 21 2405688Google Scholar

    [25]

    Yadav A K, Nelson C T, Hsu S L, et al. 2016 Nature 530 198Google Scholar

    [26]

    Hsu S L, McCarter M R, Dai C, Hong Z, Chen L Q, Nelson C T, Martin L W, Ramesh R 2019 Adv. Mater. 31 1901014Google Scholar

    [27]

    Hong Z, Damodaran A R, Xue F, Hsu S L, Britson J, Yadav A K, Nelson C T, Wang J J, Scott J F, Martin L W, Ramesh R, Chen L Q 2017 Nano Lett. 17 2246Google Scholar

    [28]

    Das S, Tang Y L, Hong Z, et al. 2019 Nature 568 368Google Scholar

    [29]

    Lun Y, Wang X, Kang J, Ren Q, Wang T, Han W, Gao Z, Huang H, Chen Y, Chen L Q, Fang D, Hong J 2023 Adv. Mater. 35 2302320Google Scholar

    [30]

    Guo C, Yang H, Dong S, Tang S, Wang J, Wang X, Huang H 2024 Adv. Electron. Mater. 10 2400001Google Scholar

    [31]

    Guo C, Wang J, Huang H 2024 Appl. Phys. Lett. 125 062903Google Scholar

    [32]

    Zhou M J, Peng K, Tan Y Z, Yang T N, Chen L Q, Nan C W 2025 Acta Mater. 288 120805Google Scholar

    [33]

    Li Q, Nelson C T, Hsu S L, et al. 2017 Nat. Commun. 8 1468Google Scholar

    [34]

    Xu T, Wu C, Zheng S, Wang Y, Wang J, Hirakata H, Kitamura T, Shimada T 2024 Phys. Rev. Lett. 132 086801Google Scholar

    [35]

    刘迪, 王静, 王俊升, 黄厚兵 2020 物理学报 69 127801Google Scholar

    Liu D, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 127801Google Scholar

    [36]

    高荣贞, 王静, 王俊升, 黄厚兵 2020 物理学报 69 217801Google Scholar

    Gao R Z, Wang J, Wang J S, Huang H B 2020 Acta Phys. Sin. 69 217801Google Scholar

    [37]

    梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥 2021 物理学报 70 044202Google Scholar

    Liang D S, Huang H B, Zhao Y N, Liu Z H, Wang H Y, Ma X Q 2021 Acta Phys. Sin. 70 044202Google Scholar

    [38]

    Li Y, Zatterin E, Conroy M, et al. 2022 Adv. Mater. 34 2106826Google Scholar

  • [1] Xie Xiao-Jie, Sun Jun-Song, Qin Ji-Hong, Guo Huai-Ming. Pseudo-Landau levels of hexagonal lattice quantum antiferromagnets under bending strain. Acta Physica Sinica, 2024, 73(2): 020202. doi: 10.7498/aps.73.20231231
    [2] Liu Xu-Xi, Gao Shi-Sen, La Yong-Xiao, Yu Dong-Liang, Liu Wen-Bo. Phase-field simulation of high-temperature corrosion of binary Zr-2.5Sn alloy. Acta Physica Sinica, 2024, 73(14): 148201. doi: 10.7498/aps.73.20240393
    [3] Liao Yu-Xuan, Shen Wen-Long, Wu Xue-Zhi, La Yong-Xiao, Liu Wen-Bo. Phase-field simulation of sintering process of ceramic composite fuel. Acta Physica Sinica, 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [4] Wang Ji-Guang, Li Long-Ling, Qiu Jia-Tu, Chen Xu-Min, Cao Dong-Xing. Tuning two-dimensional electron gas at LaAlO3/KNbO3 interface by strain gradient. Acta Physica Sinica, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [5] Xia Wen-Qiang, Zhao Yan, Liu Zhen-Zhi, Lu Xiao-Gang. Phase field crystal simulation of strain-induced square phase low-angle symmetric tilt grain boundary dislocation reaction. Acta Physica Sinica, 2022, 71(9): 096102. doi: 10.7498/aps.71.20212278
    [6] Jiang Yan-Bo, Liu Wen-Bo, Sun Zhi-Peng, La Yong-Xiao, Yun Di. Phase-field simulation of void evolution in UO2 under applied stress. Acta Physica Sinica, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [7] Yang Zhao-Xi, Liu Wen-Bo, Zhang Cong-Yu, He Xin-Fu, Sun Zheng-Yang, Jia Li-Xia, Shi Tian-Tian, Yun Di. Phase field simulation of grain boundary segregation and radiation-enhanced segregation in Fe-Cr alloys. Acta Physica Sinica, 2021, 70(11): 116101. doi: 10.7498/aps.70.20201840
    [8] Liu Di, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing. Phase field simulation of misfit strain manipulating domain structure and ferroelectric properties in PbZr(1–x)TixO3 thin films. Acta Physica Sinica, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [9] Zhang Jun, Chen Wen-Xiong, Zheng Cheng-Wu, Li Dian-Zhong. Phase-field modeling of ferrite morphology in austenite-to-ferrite transformation with considering anisotropic effects. Acta Physica Sinica, 2017, 66(7): 070701. doi: 10.7498/aps.66.070701
    [10] Song Zong-Gen, Deng Ke, He Zhao-Jian, Zhao He-Ping. Bending and splitting of self-collimated beams in high symmetry sonic crystal. Acta Physica Sinica, 2016, 65(9): 094301. doi: 10.7498/aps.65.094301
    [11] Gao Ying-Jun, Quan Si-Long, Deng Qian-Qian, Luo Zhi-Rong, Huang Chuang-Gao, Lin Kui. Phase-field-crystal simulation of edge dislocation climbing and gliding under shear strain. Acta Physica Sinica, 2015, 64(10): 106104. doi: 10.7498/aps.64.106104
    [12] Duan Pei-Pei, Xing Hui, Chen Zhi, Hao Guan-Hua, Wang Bi-Han, Jin Ke-Xin. Phase-field modeling of free dendritic growth of magnesium based alloy. Acta Physica Sinica, 2015, 64(6): 060201. doi: 10.7498/aps.64.060201
    [13] Cao Ye, Pei Yong-Wei, Tong Zheng-Rong. Simultaneous measurement of temperature and bending-curvature using a single local micro-structured longperiod fiber grating. Acta Physica Sinica, 2014, 63(2): 024206. doi: 10.7498/aps.63.024206
    [14] Feng Xiao-Qin, Jia Jian-Ming, Chen Gui-Bin. Electronic properties and modulation of structurally bent BN nanoribbon. Acta Physica Sinica, 2014, 63(3): 037101. doi: 10.7498/aps.63.037101
    [15] Du Li-Fei, Zhang Rong, Xing Hui, Zhang Li-Min, Zhang Yang, Liu Lin. Phase-field simulation of solidified microstructure evolution in the presence of lateral constraint. Acta Physica Sinica, 2013, 62(10): 106401. doi: 10.7498/aps.62.106401
    [16] Pan Shi-Yan, Zhu Ming-Fang. Quantitative phase-field model for dendritic growth with two-sided diffusion. Acta Physica Sinica, 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [17] Wei Cheng-Yang, Li Sai-Yi. Effect of temperature gradient on grain growth behavior from phase field simulations. Acta Physica Sinica, 2011, 60(10): 100701. doi: 10.7498/aps.60.100701
    [18] Shao Jian-Li, He An-Min, Duan Su-Qing, Wang Pei, Qin Cheng-Sen. Atomistic simulation of the bcc—hcp transition in iron driven by uniaxial strain. Acta Physica Sinica, 2010, 59(7): 4888-4894. doi: 10.7498/aps.59.4888
    [19] Wang Gang, Xu Dong-Sheng, Yang Rui. Phase field simulation on sideplates formation in Ti-6Al-4V alloy. Acta Physica Sinica, 2009, 58(13): 343-S348. doi: 10.7498/aps.58.343
    [20] WU ZHI-YU, WANG KE-LIN. THE FIELD EQUATION OF HALF-INTEGER SPIN IN CURVED SPACE-TIME. Acta Physica Sinica, 1985, 34(5): 588-593. doi: 10.7498/aps.34.588
Metrics
  • Abstract views:  352
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  13 March 2025
  • Accepted Date:  14 April 2025
  • Available Online:  24 April 2025
  • Published Online:  20 June 2025

/

返回文章
返回