Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

High-precision analysis of nonlinear effects in single-mode fiber based on physically constrained neural network (MSPC-Net)

ZHU Mu TONG Shoufeng DING Yunfeng ZHANG Peng

Citation:

High-precision analysis of nonlinear effects in single-mode fiber based on physically constrained neural network (MSPC-Net)

ZHU Mu, TONG Shoufeng, DING Yunfeng, ZHANG Peng
cstr: 32037.14.aps.74.20250804
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In view of the difficulty in analyzing the strong nonlinear coupling effect between four-wave mixing and stimulated Raman scattering in single-mode optical fibers, this paper introduces a novel multi-scale physically constrained network (MSPC-Net), which effectively integrates fundamental physical mechanisms with advanced neural network techniques. The proposed model incorporates the frequency domain residual derived from the nonlinear Schrödinger equation directly into the network optimization procedure as a differentiable physical constraint term. This strategic inclusiveness ensures that the learning process is consistent with the fundamental physical principles governing light propagation in optical fibers. Furthermore, the model architecture adopts a multi-scale dilated convolution module specifically designed to capture and fuse features across different granularities, including fine local spectral details, intermediate-range broadening effects, and long-range attenuation trends. This multi-scale approach can realize the simultaneous and high-precision inversion of both separated spectral components and critical physical parameters.Experimental evaluations are conducted using single-mode quartz fibers with lengths of 250 meters and 500 meters, respectively. The results demonstrate that the Stokes spectra reconstructed by MSPC-Net achieve remarkably low root mean square errors, only 0.014 and 0.0173 for the two fiber lengths respectively. This performance represents a reduction of more than 68% compared with that of traditional convolutional neural networks. Additionally, the average absolute errors of frequency offset prediction are as low as 0.03 nmr and 0.04 nm, with an accuracy improvement of approximately 90% compared with those of existing state-of-the-art methods. Under noisy conditions with a signal-to-noise ratio of 6 dB, the model maintains an exceptional detection accuracy of up to 95.3% for identifying four wave mixing (FWM) sub-peak information, while keeping the pseudo-peak rate below 4.7%.Owing to the embedded physical constraints and lightweight structural design, the proposed model shows just a 9.8% increase in root mean square error even under challenging noise conditions with a signal-to-noise ratio of 15 dB. Moreover, MSPC-Net demonstrates satisfactory real-time processing capabilities, making it suitable for deployment on embedded devices. This practical efficiency makes the model a promising solution for optimizing high-power optical communication systems and advancing distributed optical fiber sensing applications. By successfully combining strict physical laws with multi-scale feature extraction, this research presents an effective approach to resolving the analytical difficulties associated with complex nonlinear effects in long-distance optical fibers, while significantly improving both the theoretical consistency and noise robustness of the prediction outcomes.
      Corresponding author: ZHANG Peng, zp@cust.edu.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U22A2008), the Research Foundation for Basic Research of Jilin Province, China (Grant No.YDZJ202301ZYTS394), and the Key Laboratory of Underwater Acoustic Countermeasure Technology Development Fund, China (Grant No.CX-2022-032).
    [1]

    姚天甫, 范晨晨, 郝修路, 李阳, 黄善旻, 张汉伟, 许将明, 叶俊, 冷进勇, 周朴 2024 中国激光 51 1901010Google Scholar

    Yao T P, Fan C C, Hao X L, Li Y, Huang S W, Zhang H W, Xu J M, Ye J, Leng J Y, Zhou P 2024 Chin. J. Lasers. 51 1901010Google Scholar

    [2]

    张帆, 李健, 李璐磊, 曹康怡, 薛晓辉, 张明江 2025 红外与激光工程 54 289

    Zhang F, Li J, Li L L, Cao K Y, Xue X H, Zhang M J 2025 Infrared Laser Eng. 54 289

    [3]

    张鹏, 田春林, 乔勇, 吕栋栋 2018 激光与光电子学进展 55 061901Google Scholar

    Zhang P, Tian C L, Qiao Y, Lyu D D 2018 Laser Optoelectron. Prog. 55 061901Google Scholar

    [4]

    张鹏, 田春林 2016 光学学报 36 0819001Google Scholar

    Zhang P, Tian C L 2016 Acta Opt. Sin. 36 0819001Google Scholar

    [5]

    毛昕蓉, 寇召飞, 张建华 2017 激光与光电子学进展 54 080601Google Scholar

    Mao X R, Kou Z F, Zhang J H 2017 Laser Optoelectron. Prog. 54 080601Google Scholar

    [6]

    郑也, 倪庆乐, 张琳, 刘小溪, 王军龙, 王学锋 2021 中国激光 48 0701005Google Scholar

    Zheng Y, Ni Q L, Zhang L, Liu X X, Wang J L, Wang X F 2021 Chin. J. Lasers 48 0701005Google Scholar

    [7]

    隋皓, 朱宏娜, 贾焕玉, 欧洺余, 李祺, 罗斌, 邹喜华 2023 中国激光 50 1101011Google Scholar

    Sui H, Zhu H N, Jia H Y, Ou M Y, Li Q, Luo B, Zou Xi H 2023 Chin. J. Lasers. 50 1101011Google Scholar

    [8]

    张丽丽, 栗相如, 刘佳辉, 房启志 2025 中国激光 52 1309002Google Scholar

    Zhang L L, Li X R, Liu J H, Fang Q Z 2025 Chin. J. Lasers. 52 1309002Google Scholar

    [9]

    李志强, 谭晓瑜, 段忻磊, 张敬义, 杨家跃 2022 物理学报 71 247803Google Scholar

    Li Z Q, Tan X X, Duan X L, Zhang J Y, Yang J Y 2022 Acta Phys. Sin. 71 247803Google Scholar

    [10]

    方泽, 潘泳全, 戴栋, 张俊勃 2024 物理学报 73 145201Google Scholar

    Fang Z, Pan Y Q, Dai D, Zhang J B 2024 Acta Phys. Sin. 73 145201Google Scholar

    [11]

    金治成, 贾可, 李涵鑫, 许昌源, 王文润, 周记 2025 计算机技术与发展 35 165Google Scholar

    Jin Z C, Jia K, Li H X, Xu C Y, Wang W R, Zhou J 2025 Comput. Technol. Dev. 35 165Google Scholar

    [12]

    王燕, 王振宇 2024 兰州理工大学学报 50 87

    Wang Y, Wang Z Y 2024 J. Lanzhou Univ. Technol. 50 87

    [13]

    丁亚茜, 贾明, 顾劭忆, 邱佳欣, 陈光辉 2024 中国激光 51 1901011Google Scholar

    Ding Y X, Jia M, Gu S Y, Qiu J X, Chen G H 2024 Chin. J. Lasers. 51 1901011Google Scholar

    [14]

    蔡冰涛, 黄文涛, 肖力敏, 陈小宝 2025 中国激光 52 1006004Google Scholar

    Cai B T, Huang W T, Xiao L M, Chen X B 2025 Chin. J. Lasers. 52 1006004Google Scholar

    [15]

    姚光杰, 李家成, 刘华展, 马超杰, 洪浩, 刘开辉 2025 中国激光 52 0501006Google Scholar

    Yao G J, Li J C, Liu H Z, Ma C J, Hong H, Liu K H 2025 Chin. J. Lasers. 52 0501006Google Scholar

    [16]

    尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 智川 2021 物理学报 70 087801Google Scholar

    Shang X J, Li S L, Ma B, Chen Y, He X W, Ni H Q, Zhi C 2021 Acta Phys. Sin. 70 087801Google Scholar

    [17]

    侯悦, 项水英, 邹涛, 黄志权, 石尚轩, 郭星星, 张雅慧, 郑凌, 郝跃 2025 物理学报 74 148701Google Scholar

    Hou Y, Xiang S Y, Zou T, Huang Z Q, Shi S X, Guo X X, Zhang Y H, Zheng L, Hao Y 2025 Acta Phys. Sin. 74 148701Google Scholar

    [18]

    伍静, 崔春凤, 欧阳滔, 唐超 2023 物理学报 72 047201Google Scholar

    Wu J, Cui C F, Ou Y T, Tang C 2023 Acta Phys. Sin. 72 047201Google Scholar

    [19]

    刘圆凯, 侯云龙, 杨宜霖, 侯刘敏, 李渊华, 林佳, 陈险峰 2025 物理学报 74 140303Google Scholar

    Liu Y K, Hou Y L, Yang Y L, Hou L M, Li Y H, Lin J, Chen X F 2025 Acta Phys. Sin. 74 140303Google Scholar

    [20]

    覃俭 2023 物理学报 72 050302Google Scholar

    Qin J 2023 Acta Phys. Sin. 72 050302Google Scholar

    [21]

    王翔, 周义深, 张轩阁, 陈希浩 2025 物理学报 74 084202Google Scholar

    Wang X, Zhou Y S, Zhang X G, Chen X H 2025 Acta Phys. Sin. 74 084202Google Scholar

    [22]

    卫祎昕, 杨昌钢, 卫阿敏, 张国峰, 秦成兵, 陈瑞云, 胡建勇, 肖连团, 贾锁堂 2025 物理学报 74 064208Google Scholar

    Wei Y X, Yang C G, Wei A M, Zhang G F, Qin C B, Chen R Y, Hu J Y, Xiao L T, Jia S T 2025 Acta Phys. Sin. 74 064208Google Scholar

  • 图 1  高峰值功率Nd3+: YAG脉冲激光器泵浦单模光纤产生非线性效应实验装置 (a) 实验装置原理图, 其中1为激光对准器, 2为1064 nm高反射镜, 3为1/4载玻片, 4为磷酸二氢钾晶体(KDP), 5为布儒斯特板, 6为脉冲氙灯, 7为Nd3+: YAG晶体棒腔, 8为输出镜, 9为磷酸氧钛钾晶体(KTP), 10为偏振片, 11为全反射镜, 12为聚焦透镜, 13为光纤法兰盘, 14为单模硅光纤, 15为接收仓, 16为光谱仪, 17为计算机; (b) 装置启动前; (c) 装置启动后

    Figure 1.  Experimental setup for nonlinear effects generated by pumping single-mode fiber with high peak power Nd3+: YAG pulse laser: (a) Experimental device schematic, where 1 represents laser aligner, 2 represents 1064 nm high reflecting mirror, 3 represents 1/4 glass slide, 4 represents Potassium dihydrogen phosphate crystal (KDP), 5 represents brewster plate, 6 represents pulse Xenon lamp, 7 represents Nd3+: YAG crystal rod cavity, 8 represents output mirror, 9 represents potassium titanyl phosphate crystal (KTP), 10 represents polaroid plate, 11 represents total reflective mirror, 12 represents focusing len, 13 represents optical fiber flange plate, 14 represents single mode silicon fiber, 15 represents receiving magazine, 16 represents spectrometer, 17 represents computer; (b) before start of the device; (c) after start of the device.

    图 2  MSRA-Net和MSPC-Net模型架构图

    Figure 2.  MSRA-Net and MSPC-Net model architecture diagram.

    图 3  250 m 光纤非线性光谱

    Figure 3.  250 m fiber nonlinear spectrum.

    图 4  500 m 光纤非线性光谱

    Figure 4.  500 m fiber nonlinear spectrum.

    图 5  250 m 光纤训练表现

    Figure 5.  Training performance of 250 m optical fiber.

    图 6  500 m 光纤训练表现

    Figure 6.  Training performance of 500 m optical fiber.

    图 7  误差增幅对比

    Figure 7.  Comparison of error increase.

    图 8  光纤长度对最终RMSE的影响

    Figure 8.  Effect of fiber length on the final RMSE.

    图 9  训练效率与收敛特性图

    Figure 9.  Training efficiency and convergence characteristic diagram.

    图 10  噪声鲁棒性图

    Figure 10.  Noise robustness diagram.

    图 11  分步傅里叶法

    Figure 11.  Split-step Fourier method.

    图 12  频移预测误差对比

    Figure 12.  Frequency shift prediction error.

    图 13  频移预测相关性分析

    Figure 13.  Prediction correlation analysis.

    表 1  250 m光纤模型性能对比

    Table 1.  Performance comparison of 250 m optical fiber model.

    参数 CNN BiLSTM 250 m
    MSPC-Net
    SRS重构RMSE 0.014 0.0189 0.0098
    次峰定位误差/nm 0.18 0.15 0.05
    频移预测偏差/nm 0.38 0.24 0.03
    噪声下识别率/% 67.5 63.8 95.3
    训练时间e/s 95 128 87
    DownLoad: CSV

    表 2  500 m光纤模型性能对比

    Table 2.  Performance comparison of 500 m optical fiber model.

    参数 CNN BiLSTM 500 m
    MSPC-Net
    SRS重构RMSE 0.0173 0.024 0.012
    次峰定位误差/nm 0.20 0.17 0.06
    频移预测偏差/nm 0.61 0.60 0.04
    噪声下识别率/% 61.8 78.2 94.1
    训练时间/s 96 128 87
    DownLoad: CSV

    表 3  物理参数反演精度对比

    Table 3.  Comparison of physical parameter inversion accuracy.

    参数MSPC-Net(500 m)CNN(500 m)BiLSTM(500 m)
    $ {\beta }_{2} $<4.2%>22%>18%
    $ \gamma $<5%>30%>25%
    DownLoad: CSV
  • [1]

    姚天甫, 范晨晨, 郝修路, 李阳, 黄善旻, 张汉伟, 许将明, 叶俊, 冷进勇, 周朴 2024 中国激光 51 1901010Google Scholar

    Yao T P, Fan C C, Hao X L, Li Y, Huang S W, Zhang H W, Xu J M, Ye J, Leng J Y, Zhou P 2024 Chin. J. Lasers. 51 1901010Google Scholar

    [2]

    张帆, 李健, 李璐磊, 曹康怡, 薛晓辉, 张明江 2025 红外与激光工程 54 289

    Zhang F, Li J, Li L L, Cao K Y, Xue X H, Zhang M J 2025 Infrared Laser Eng. 54 289

    [3]

    张鹏, 田春林, 乔勇, 吕栋栋 2018 激光与光电子学进展 55 061901Google Scholar

    Zhang P, Tian C L, Qiao Y, Lyu D D 2018 Laser Optoelectron. Prog. 55 061901Google Scholar

    [4]

    张鹏, 田春林 2016 光学学报 36 0819001Google Scholar

    Zhang P, Tian C L 2016 Acta Opt. Sin. 36 0819001Google Scholar

    [5]

    毛昕蓉, 寇召飞, 张建华 2017 激光与光电子学进展 54 080601Google Scholar

    Mao X R, Kou Z F, Zhang J H 2017 Laser Optoelectron. Prog. 54 080601Google Scholar

    [6]

    郑也, 倪庆乐, 张琳, 刘小溪, 王军龙, 王学锋 2021 中国激光 48 0701005Google Scholar

    Zheng Y, Ni Q L, Zhang L, Liu X X, Wang J L, Wang X F 2021 Chin. J. Lasers 48 0701005Google Scholar

    [7]

    隋皓, 朱宏娜, 贾焕玉, 欧洺余, 李祺, 罗斌, 邹喜华 2023 中国激光 50 1101011Google Scholar

    Sui H, Zhu H N, Jia H Y, Ou M Y, Li Q, Luo B, Zou Xi H 2023 Chin. J. Lasers. 50 1101011Google Scholar

    [8]

    张丽丽, 栗相如, 刘佳辉, 房启志 2025 中国激光 52 1309002Google Scholar

    Zhang L L, Li X R, Liu J H, Fang Q Z 2025 Chin. J. Lasers. 52 1309002Google Scholar

    [9]

    李志强, 谭晓瑜, 段忻磊, 张敬义, 杨家跃 2022 物理学报 71 247803Google Scholar

    Li Z Q, Tan X X, Duan X L, Zhang J Y, Yang J Y 2022 Acta Phys. Sin. 71 247803Google Scholar

    [10]

    方泽, 潘泳全, 戴栋, 张俊勃 2024 物理学报 73 145201Google Scholar

    Fang Z, Pan Y Q, Dai D, Zhang J B 2024 Acta Phys. Sin. 73 145201Google Scholar

    [11]

    金治成, 贾可, 李涵鑫, 许昌源, 王文润, 周记 2025 计算机技术与发展 35 165Google Scholar

    Jin Z C, Jia K, Li H X, Xu C Y, Wang W R, Zhou J 2025 Comput. Technol. Dev. 35 165Google Scholar

    [12]

    王燕, 王振宇 2024 兰州理工大学学报 50 87

    Wang Y, Wang Z Y 2024 J. Lanzhou Univ. Technol. 50 87

    [13]

    丁亚茜, 贾明, 顾劭忆, 邱佳欣, 陈光辉 2024 中国激光 51 1901011Google Scholar

    Ding Y X, Jia M, Gu S Y, Qiu J X, Chen G H 2024 Chin. J. Lasers. 51 1901011Google Scholar

    [14]

    蔡冰涛, 黄文涛, 肖力敏, 陈小宝 2025 中国激光 52 1006004Google Scholar

    Cai B T, Huang W T, Xiao L M, Chen X B 2025 Chin. J. Lasers. 52 1006004Google Scholar

    [15]

    姚光杰, 李家成, 刘华展, 马超杰, 洪浩, 刘开辉 2025 中国激光 52 0501006Google Scholar

    Yao G J, Li J C, Liu H Z, Ma C J, Hong H, Liu K H 2025 Chin. J. Lasers. 52 0501006Google Scholar

    [16]

    尚向军, 李叔伦, 马奔, 陈瑶, 何小武, 倪海桥, 智川 2021 物理学报 70 087801Google Scholar

    Shang X J, Li S L, Ma B, Chen Y, He X W, Ni H Q, Zhi C 2021 Acta Phys. Sin. 70 087801Google Scholar

    [17]

    侯悦, 项水英, 邹涛, 黄志权, 石尚轩, 郭星星, 张雅慧, 郑凌, 郝跃 2025 物理学报 74 148701Google Scholar

    Hou Y, Xiang S Y, Zou T, Huang Z Q, Shi S X, Guo X X, Zhang Y H, Zheng L, Hao Y 2025 Acta Phys. Sin. 74 148701Google Scholar

    [18]

    伍静, 崔春凤, 欧阳滔, 唐超 2023 物理学报 72 047201Google Scholar

    Wu J, Cui C F, Ou Y T, Tang C 2023 Acta Phys. Sin. 72 047201Google Scholar

    [19]

    刘圆凯, 侯云龙, 杨宜霖, 侯刘敏, 李渊华, 林佳, 陈险峰 2025 物理学报 74 140303Google Scholar

    Liu Y K, Hou Y L, Yang Y L, Hou L M, Li Y H, Lin J, Chen X F 2025 Acta Phys. Sin. 74 140303Google Scholar

    [20]

    覃俭 2023 物理学报 72 050302Google Scholar

    Qin J 2023 Acta Phys. Sin. 72 050302Google Scholar

    [21]

    王翔, 周义深, 张轩阁, 陈希浩 2025 物理学报 74 084202Google Scholar

    Wang X, Zhou Y S, Zhang X G, Chen X H 2025 Acta Phys. Sin. 74 084202Google Scholar

    [22]

    卫祎昕, 杨昌钢, 卫阿敏, 张国峰, 秦成兵, 陈瑞云, 胡建勇, 肖连团, 贾锁堂 2025 物理学报 74 064208Google Scholar

    Wei Y X, Yang C G, Wei A M, Zhang G F, Qin C B, Chen R Y, Hu J Y, Xiao L T, Jia S T 2025 Acta Phys. Sin. 74 064208Google Scholar

  • [1] Hu Sheng-Run, Ji Xue-Qiang, Wang Jin-Jin, Yan Jie-Yun, Zhang Tian-Yue, Li Pei-Gang. Ultralow switching threshold optical bistable devices based on epsilon-near-zero Ga2O3-SiC-Ag multilayer structures. Acta Physica Sinica, 2024, 73(5): 054201. doi: 10.7498/aps.73.20231534
    [2] Guo Qi-Qi, Chen Yi-Hang. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons. Acta Physica Sinica, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [3] Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui. Effect of edge on nonlinear optical property of graphene quantum dots. Acta Physica Sinica, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [4] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] Bai Rui-Xue, Yang Jue-Han, Wei Da-Hai, Wei Zhong-Ming. Research progress of low-dimensional semiconductor materials in field of nonlinear optics. Acta Physica Sinica, 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [6] Xu Xin, Jin Xue-Ying, Hu Xiao-Hong, Huang Xin-Ning. Spatiotemporal evolution and spectral character of second harmonic generation in optical microresonator. Acta Physica Sinica, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] Deng Jun-Hong, Li Gui-Xin. Nonlinear photonic metasurfaces. Acta Physica Sinica, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [8] Chen Wei-Jun, Lu Ke-Qing, Hui Juan-Li, Zhang Bao-Ju. Propagation and interactions of Airy-Gaussian beams in saturable nonliear medium. Acta Physica Sinica, 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [9] Xu Di-Hu, Hu Qing, Peng Ru-Wen, Zhou Yu, Wang Mu. Plasmonic propagation and spectral splitting in nanostructured metal wires. Acta Physica Sinica, 2015, 64(9): 097803. doi: 10.7498/aps.64.097803
    [10] Zhang Long, Han Hai-Nian, Hou Lei, Yu Zi-Jiao, Zhu Zheng, Jia Yu-Lei, Wei Zhi-Yi. Supercontinuum generation in photonic crystal fiber and tapered single-mode fiber. Acta Physica Sinica, 2014, 63(19): 194208. doi: 10.7498/aps.63.194208
    [11] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Separating the Z-pinch plasma X-ray radiation and attaining the electron temperature. Acta Physica Sinica, 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [12] Lu Jing-Jing, Feng Miao, Zhan Hong-Bing. Preparation of graghene oxide/chitosan composite films and investigations on their nonlinear optical limiting effect. Acta Physica Sinica, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [13] Su Qian-Qian, Zhang Guo-Wen, Pu Ji-Xiong. The propagation characteristics of a Gaussian beam passing through the thick nonlinear medium with defects. Acta Physica Sinica, 2012, 61(14): 144208. doi: 10.7498/aps.61.144208
    [14] Zhao Lei, Sui Zhan, Zhu Qi-Hua, Zhang Ying, Zuo Yan-Lei. Improvement and precision analysis of the split-step Fourier method in solving the general nonlinear Schr?dinger equation. Acta Physica Sinica, 2009, 58(7): 4731-4737. doi: 10.7498/aps.58.4731
    [15] Huang Xiao-Ming, Tao Li-Min, Guo Ya-Hui, Gao Yun, Wang Chuan-Kui. Theoretical studies of nonlinear optical properties of a novel double-conjugated-segment molecule. Acta Physica Sinica, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [16] Yang Guang, Chen Zheng-Hao. Large optical nonlinearities in Ag-doped BaTiO3 nanocomposite films. Acta Physica Sinica, 2007, 56(2): 1182-1187. doi: 10.7498/aps.56.1182
    [17] Liang Xiao-Rui, Zhao Bo, Zhou Zhi-Hua. Ab initio study on the second-order nonlinear optical properties of some coumarin derivatives. Acta Physica Sinica, 2006, 55(2): 723-728. doi: 10.7498/aps.55.723
    [18] Zhang Ming-Xin, Wu Ke-Chen, Liu Cai-Ping, Wei Yong-Qin. Computational study on the exchange-correlation function in density functional theory and optical nonlinearity of transition-metal complexes. Acta Physica Sinica, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [19] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Zhang Chun-Ping, Zhang Guang-Yin, Wang Zhao-Qi. . Acta Physica Sinica, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
    [20] MA JIN-YI, QIU XI-JUN. INTERACTION BETWEEN AN ELECTRONIC SYSTEM AND MULTIPHOTONS IN A STRONG LASER FIELD. Acta Physica Sinica, 2001, 50(3): 416-421. doi: 10.7498/aps.50.416
Metrics
  • Abstract views:  465
  • PDF Downloads:  6
  • Cited By: 0
Publishing process
  • Received Date:  20 June 2025
  • Accepted Date:  02 September 2025
  • Available Online:  05 September 2025
  • Published Online:  20 October 2025
  • /

    返回文章
    返回