Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Properties of quark matter and quark stars at zero temperature or under strong magnetic fields within MIT bag model

CHU Pengcheng WANG Jiaojiao LIU Yuheng LIU He LIU Hongming

Citation:

Properties of quark matter and quark stars at zero temperature or under strong magnetic fields within MIT bag model

CHU Pengcheng, WANG Jiaojiao, LIU Yuheng, LIU He, LIU Hongming
cstr: 32037.14.aps.74.20250898
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this work, we investigate the properties of strange quark matter (SQM) and color-flavor-locked (CFL) quark matter under zero temperature or strong magnetic fields within MIT bag model. We find that the thermodynamical properties of CFL quark matter are strongly affected by pairing energy gap Δ and magnetic field. The sound velocity of CFL quark matter and the tidal deformability of CFL quark stars both increase with Δ increasing, while the central baryon density of the maximum star mass in CFL state decreases with Δ. Specifically, the equation of state (EOS) of the CFL quark matter becomes stiffer with the increase of Δ, and the pressure becomes anisotropic when considering the magnetic field in the CFL quark matter. Our results indicate that the mass-radius relations of the CFL quark matter within the MIT bag model can describe the recent observations of pulsars, and that the maximum mass of CFL quark star increases with the increase of Δ. Moreover, the research results indicate that the mass of CFL quark star depends on the magnetic field strength and its orientation distributions within the magnetars, and the polytropic index of CFL quark matter decreases with the increase of star mass.
      Corresponding author: CHU Pengcheng, kyois@126.com ; LIU He, liuhe@qut.edu.cn ; LIU Hongming, liuhongming13@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12575134, 11975132, 12205158, 11505100), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2022JQ04, ZR2021QA037, ZR2019YQ01), and the Natural Science Foundation of Qingdao, China (Grant No. project 25-1-1-4-zyyd-jch).
    [1]

    Glendenning N K 2000 Compact Stars (2nd Ed.) (New York: Spinger-Verlag, Inc.

    [2]

    Weber F 1999 Pulsars as Astrophyical Laboratories for Nuclear and Particle Physics (London: IOP Publishing Ltd.

    [3]

    Lattimer J M, Prakash M 2004 Science 304 536Google Scholar

    [4]

    Steiner A W, Prakash M, Lattimer J M, Ellis P J 2005 Phys. Rep. 410 325

    [5]

    Demorest P 2010 Nature 467 1081

    [6]

    Antoniadis J 2013 Science 340 6131

    [7]

    Shahbaz T, Casares J 2018 Astrophys. J. 859 54

    [8]

    Thankful H, Cromartie 2020 Nat. Astron. Lett. 4 72

    [9]

    Fonseca E, Cromartie H T, Pennucci T T, et al. 2021 Astrophys. J. Lett. 915 L12

    [10]

    Miller M C, Lamb F K, Dittmann A J, et al. 2021 Astrophys. J. Lett. 918 L28Google Scholar

    [11]

    Miller M C, Lamb F K, Dittmann A J, et al. 2019 Astrophys. J. Lett. 887 L24

    [12]

    Nattila J, Lamb F K, Dittmann A J, et al. 2017 A&A 608 A31

    [13]

    Doroshenko V 2022 Nature Astronomy 6 1444Google Scholar

    [14]

    Abbott R 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [15]

    Ivanenko D, Kurdgelaidze D F 1969 Lett. Nuovo Cimento 2 13Google Scholar

    [16]

    Itoh N 1970 Prog. Theor. Phys. 44 291Google Scholar

    [17]

    Bodmer A R 1971 Phys. Rev. D 4 1601Google Scholar

    [18]

    Witten E 1984 Phys. Rev. D 30 272

    [19]

    Farhi E, Jaffe R L 1984 Phys. Rev. D 30 2379

    [20]

    Holdom B 2018 Phys. Rev. L 120 22001Google Scholar

    [21]

    Zhang C, Mann R B 2021 Phys. Rev. D 103 063018Google Scholar

    [22]

    Yuan W L, Li A, Miao Z Q, Zuo B J, Bai Z 2022 Phys. Rev. D 105 123004

    [23]

    Alcock C, Farh E, Olinto A 1986 Astrophy. J. 310 261Google Scholar

    [24]

    Weber F 2005 Prog. Part. Nucl. Phys. 54 193Google Scholar

    [25]

    Bombaci I, Parenti I, Vidana I 2004 Astrophy. J. 614 314Google Scholar

    [26]

    Staff J, Ouyed R, Bagchi M 2007 Astrophy. J. 667 340Google Scholar

    [27]

    Herzog T M, RÖpke F K 2011 Phys. Rev. D 84 083002Google Scholar

    [28]

    Stephanov M A, Rajagopal K, Shuryak E V 1998 Phys. Rev. Lett. 81 4816Google Scholar

    [29]

    Terazawa H 1979 INS-Report (Tokyo: Univ. of Tokyo) 336

    [30]

    Alford M, Reddy S 2003 Phys. Rev. D 67 074024Google Scholar

    [31]

    Alford M, Jotwani P, Kouvaris C, Kundu J, Rajagopal K 2005 Phys. Rev. D 71 114011Google Scholar

    [32]

    Baldo M 2003 Phys. Lett. B 562 153Google Scholar

    [33]

    Ippolito N D, Ruggieri M, Rischke D H, Sedrakian A, Weber F 2008 Phys. Rev. D 77 023004Google Scholar

    [34]

    Lai X Y, Xu R X 2011 Res. Astron. Astrophys. 11 687Google Scholar

    [35]

    Avellar M G B de, Horvath J E, Paulucci L 2011 Phys. Rev. D 84 043004Google Scholar

    [36]

    Bonanno L, Sedrakian A 2012 A&A 539 A16

    [37]

    Chu P C, Wang B, Jia Y Y, Dong Y M, Wang S M, Li X H, Zhang L, Zhang X M, Ma H Y 2016 Phys. Rev. D 94 123014Google Scholar

    [38]

    Chu P C, Li X H, Wang B, Dong Y M, Jia Y Y, Wang S M, Ma H Y 2017 Eur. Phys. J. C 77 512Google Scholar

    [39]

    Chu P C, Zhou Y, Chen C, Li X H, Ma H Y 2020 J. Phys. G: Nucl. Part. Phys. 47 085201Google Scholar

    [40]

    Bailin D, Love A 1984 Phys. Rep. 107 325

    [41]

    Alford M G, Rajagopal K, Reddy S, Wilczek F 2001 Phys. Rev. D 64 074017Google Scholar

    [42]

    Shovkovy I A 2005 Found. Phys. 35 1309

    [43]

    Rajagopal K and Wilczek F 2001 Phys. Rev. L 86 3492

    [44]

    Alford M G, Rajagopal K, Schaefer T and Schmitt A 2008 Rev. Mod. Phys. 80 1455

    [45]

    Lugones G and Horvath J E 2003 Astron. Astrophys. 403 173

    [46]

    Horvath J E and Lugones G 2004 Astron. Astrophys. 422 L1

    [47]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, Wang N, Peng Q H 2016 Int. J. Mod. Phys. D 25 1650002

    [48]

    Deng Z L, Gao Z F, Li X D, Shao Y 2020 Astrophys. J. 892 4Google Scholar

    [49]

    Yan F Z, Gao Z F, Yang W S, Dong A J 2021 Astron. Nachr. 342 249Google Scholar

    [50]

    Wang H, Gao Z F, Jia H Y, Wang N, Li X 2020 Universe 6 63Google Scholar

    [51]

    Li B P, Gao Z F 2023 Astron. Nachr. 344 e20220111

    [52]

    Li B P, Ma W Q, Gao Z F 2024 Astron. Nachr. 345 e20230167

    [53]

    Gao Z F, Omar N, Shi X C, Wang N 2019 Astron. Nachr. 340 1030Google Scholar

    [54]

    Lander S K 2023 Astrophys. J. 947 L16

    [55]

    Mihara T A 1990 Nature 346 250Google Scholar

    [56]

    Chanmugam G 1992 Annu. Rev. Astron. Astrophys. 30 143Google Scholar

    [57]

    Lai D, Shapiro S L 1991 Astrophys. J. 383 745Google Scholar

    [58]

    Ferrer E J, Incera V, Keith J P, Portillo I, Springsteen P L 2010 Phys. Rev. C 82 065802

    [59]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys Rev. Lett. 79 2176Google Scholar

    [60]

    Bandyopadhyay D, Pal S, Chakrabarty S 1998 J. Phys. G: Nucl. Part. Phys. 24 1647Google Scholar

    [61]

    Menezes D P, Pinto M, Benghi, Avancini S, Providência C 2009 Phys. Rev. C 79 035807Google Scholar

    [62]

    Menezes D P, Pinto M, Benghi, Avancini S, Providência C 2009 Phys. Rev. C 80 065805Google Scholar

    [63]

    Ryu C Y, Kim K S, Cheoun Myung-Ki 2010 Phys. Rev. C 82 025804Google Scholar

    [64]

    Ryu C Y, Cheoun Myung-Ki, Kajino T, Maruyama T, Mathews Grant J 2012 Astropart. Phys. 38 25Google Scholar

    [65]

    Gao Z F, Li B P, de Andrade, Garcia L C 2025 Eur. Phys. J. C 85(4) 433

    [66]

    Fu G Z, Xing C C, Wang N 2020 Eur. Phys. J. C 80 582Google Scholar

    [67]

    Li B P, Gao Z F, Ma W Q, Cheng Q 2025 Front. Astron. Space Sci. 12 1625459Google Scholar

    [68]

    Ma W Q, Gao Z F, Li B P, Niu C H, Yao J M, Wang F Y 2025 Astrophys. J. 981 24

    [69]

    Wang Z, Wen Z G, Yuan J P, et al. 2025 Astrophys. J. 987 43

    [70]

    Wen Z G, Yuan J P, Wang N, et al. 2022 Astrophys. J. 928 71Google Scholar

    [71]

    Schertler K, Greiner C, Thoma M H, Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659Google Scholar

    [72]

    Pisarski R D 1989 Nucl. Phys. A 498 423Google Scholar

    [73]

    Wen X J 2009 J. Phys. G: Nucl. Part. Phys. 36 025011Google Scholar

    [74]

    Zhang Z, Chu P C, Li X H, Liu H, Zhang X M 2021 Phys. Rev. D 103 103021Google Scholar

    [75]

    Chu P C, Chen L W 2014 Astrophys. J. 780 135

    [76]

    Chu P C 2018 Phys. Lett. B 778 447Google Scholar

    [77]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 103001Google Scholar

    [78]

    Chodos A, Jaffe R L, Ohnson K, Thorn C B, Weisskopf V F 1974 Phys. Rev. D 9 3471Google Scholar

    [79]

    Alford M, Braby M, Paris M, Reddy S 2005 Astrophy. J. 629 969Google Scholar

    [80]

    Rehberg P, Klevansky S P, Hüfner J 1996 Phys. Rev. C 53 410

    [81]

    Hanauske M, Satarov L M, Mishustin I N, Stocker H, Greiner W 2001 Phys. Rev. D 64 043005Google Scholar

    [82]

    Rüster S B, Rischke D H 2004 Phys. Rev. D 69 045011Google Scholar

    [83]

    Menezes D P, Providencia C, Melrose D B 2006 J. Phys. G 32 1081Google Scholar

    [84]

    Chao J Y, Chu P C, Huang M 2013 Phys. Rev. D 88 054009Google Scholar

    [85]

    Chu P C, Wang X, Chen L W, Huang M 2015 Phys. Rev. D 91 023003Google Scholar

    [86]

    初鹏程, 刘鹤, 杜先斌 2024 物理学报 73 052101Google Scholar

    Chu P C, Liu H, Du X B 2024 Acta Phys. Sin. 73 052101Google Scholar

    [87]

    Chu P C, Wang B, Ma H Y, Dong Y M, Chang S L, Zheng C H, Liu J T, Zhang X M 2016 Phys. Rev. D 93 094032Google Scholar

    [88]

    Chu P C, Chen L W, Wang X 2014 Phys. Rev. D 90 063013Google Scholar

    [89]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 083019Google Scholar

    [90]

    Roberts C D, Williams A G 1994 Prog. Part. Nucl. Phys. 33 477Google Scholar

    [91]

    Zong H S, Chang L, Hou F Y, Sun W M, Liu Y X 2005 Phys. Rev. C 71 015205Google Scholar

    [92]

    Peng G X, Chiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201Google Scholar

    [93]

    Peng G X, Chiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801

    [94]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [95]

    Li A, Peng G X, Lu J F 2011 Res. Astron. Astrophys. 11 482Google Scholar

    [96]

    Schertler K, Greiner C, Sahu P K, Thoma M H 1998 Nucl. Phys. A 637 451Google Scholar

    [97]

    Alford M, Rajagopal K, Wilczek F 1999 Nucl. Phys. B 537 443Google Scholar

    [98]

    Shovkovy I A, Wijewardhana L C 1999 Phys. Lett. B 470 189Google Scholar

    [99]

    Chu P C, Gao Q, Liu H, et al. 2023 Eur. Phys. J. C 83 858Google Scholar

    [100]

    Chu P C, Liu H, Liu H M, Li X H, Ju M, Wu X H, Zhou Y 2024 Phys. Rev. D 110 123031Google Scholar

    [101]

    Chu P C, Liu H, Ju M, Wu X H, Liu H M, Zhou Y, Liu H, Lu S Y, Li X H 2024 Phys. Rev. D 110 043032Google Scholar

    [102]

    Chu P C, Liu H, Li X H, Ju M, Wu X H, Zhang X M 2024 J. Phys. G: Nucl. Part. Phys. 51 065202Google Scholar

    [103]

    Ferrer E J, Vivian de la Incera 2005 Phys. Rev. Lett. 95 152002Google Scholar

    [104]

    Ferrer E J, Vivian de la Incera, Cristina Manuel 2006 Nucl. Phys. B 747 88Google Scholar

    [105]

    Sun G W, He D L, Ma W L, Zhu D J 2025 Astron. Nachr. doi. 10.1002/asna.70030.

    [106]

    Wang Z, Wen Z G, Yuan J P, et al. 2024 Astrophys. J. 968 169

    [107]

    Isayev A A, Yang J 2011 Phys. Rev. C 84 065802

    [108]

    Isayev A A, Yang J 2012 Phys. lett. B 707 163Google Scholar

    [109]

    Wang Z, Wen Z G, Yuan J P, et al. 2024 Astrophys. J. 968 109

    [110]

    董爱军, 高志福, 杨晓峰, 王娜, 刘畅, 彭秋和 2023 物理学报 72 030502Google Scholar

    Dong A J, Gao Z F, Yang X F, Wang N, Liu C, Peng Q H 2023 Acta Phys. Sin. 72 030502Google Scholar

    [111]

    Oppenheimer J R, Volkoff G M 1939 Phys. Rev. 33 374

    [112]

    Abbott B P 2017 Phys. Rev. Lett. 119 161101Google Scholar

    [113]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [114]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

    [115]

    Chu P C, Liu H, Liu H M, et al. 2025 Phys. Rev. D 111 123045

    [116]

    Chu P C, Liu H, Liu H M, Ju M, Wu X H, Zhou Y, Li X H 2025 Eur. Phys. J. C 85 466Google Scholar

    [117]

    Chu P C, Jiang Y Y, Liu H, et al. 2021 Eur. Phys. J. C 81 569

    [118]

    Chu P C, Zhou Y, Jiang Y Y, et al. 2021 Eur. Phys. J. C 81 93

    [119]

    Wu X H, Chu P C, Ju M, Liu H, et al. 2025 Eur. Phys. J. C 85 362Google Scholar

  • 图 1  零温情况下基于MIT袋模型的奇异夸克物质与色味锁夸克物质的每核子能量与相应的压强随重子数密度的变化

    Figure 1.  The energy per baryon and corresponding pressure as functions of baryon densityof SQM and CFL quark matter within MIT bag model.

    图 2  奇异夸克物质与色味锁夸克物质的声速平方随重子数密度的变化

    Figure 2.  The sound velocity square of SQM and CFL quark matter as functions of baryon density.

    图 3  奇异夸克物质与CFL夸克物质的多方指数随重子数密度的变化

    Figure 3.  The polytropic index of SQM and CFL quark matter as a function of $ n_{\mathrm{B}} $.

    图 4  夸克星最大质量随能隙常数的变化规律

    Figure 4.  The maximum mass of quark stars as a function of Δ

    图 5  色味锁夸克星引力波潮汐形变随能隙常数的变化规律

    Figure 5.  Tidal deformability of the CFL quark stars as a function of Δ.

    图 6  不同袋常数下色味锁夸克星最大质量对应的中心密度随Δ的变化

    Figure 6.  The central density of the maximum mass of CFL quark stars as a functions of Δ with different bag constant.

    图 7  奇异夸克星与色味锁夸克星在不同Δ的质量半径关系

    Figure 7.  Mass-radius lines of strange quark stars and CFL quark stars with different Δ.

    图 8  强磁场下MCFL夸克物质的每核子能量与压强随重子数密度变化关系

    Figure 8.  The energy per baryon and pressure as functions of $ n_{\mathrm{B}} $ under strong magnetic fields.

    图 9  基于MIT袋模型下的MCFL磁星的质量半径关系

    Figure 9.  Mass-radius relation of MCFL magnetars within MIT bag model.

    图 10  横向磁场与径向磁场下, MCFL态夸克物质的多方指数随重子数密度的变化关系

    Figure 10.  The polytropic index as a function of baryon number density with transverse magnetic field and longitudinal magnetic field.

  • [1]

    Glendenning N K 2000 Compact Stars (2nd Ed.) (New York: Spinger-Verlag, Inc.

    [2]

    Weber F 1999 Pulsars as Astrophyical Laboratories for Nuclear and Particle Physics (London: IOP Publishing Ltd.

    [3]

    Lattimer J M, Prakash M 2004 Science 304 536Google Scholar

    [4]

    Steiner A W, Prakash M, Lattimer J M, Ellis P J 2005 Phys. Rep. 410 325

    [5]

    Demorest P 2010 Nature 467 1081

    [6]

    Antoniadis J 2013 Science 340 6131

    [7]

    Shahbaz T, Casares J 2018 Astrophys. J. 859 54

    [8]

    Thankful H, Cromartie 2020 Nat. Astron. Lett. 4 72

    [9]

    Fonseca E, Cromartie H T, Pennucci T T, et al. 2021 Astrophys. J. Lett. 915 L12

    [10]

    Miller M C, Lamb F K, Dittmann A J, et al. 2021 Astrophys. J. Lett. 918 L28Google Scholar

    [11]

    Miller M C, Lamb F K, Dittmann A J, et al. 2019 Astrophys. J. Lett. 887 L24

    [12]

    Nattila J, Lamb F K, Dittmann A J, et al. 2017 A&A 608 A31

    [13]

    Doroshenko V 2022 Nature Astronomy 6 1444Google Scholar

    [14]

    Abbott R 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [15]

    Ivanenko D, Kurdgelaidze D F 1969 Lett. Nuovo Cimento 2 13Google Scholar

    [16]

    Itoh N 1970 Prog. Theor. Phys. 44 291Google Scholar

    [17]

    Bodmer A R 1971 Phys. Rev. D 4 1601Google Scholar

    [18]

    Witten E 1984 Phys. Rev. D 30 272

    [19]

    Farhi E, Jaffe R L 1984 Phys. Rev. D 30 2379

    [20]

    Holdom B 2018 Phys. Rev. L 120 22001Google Scholar

    [21]

    Zhang C, Mann R B 2021 Phys. Rev. D 103 063018Google Scholar

    [22]

    Yuan W L, Li A, Miao Z Q, Zuo B J, Bai Z 2022 Phys. Rev. D 105 123004

    [23]

    Alcock C, Farh E, Olinto A 1986 Astrophy. J. 310 261Google Scholar

    [24]

    Weber F 2005 Prog. Part. Nucl. Phys. 54 193Google Scholar

    [25]

    Bombaci I, Parenti I, Vidana I 2004 Astrophy. J. 614 314Google Scholar

    [26]

    Staff J, Ouyed R, Bagchi M 2007 Astrophy. J. 667 340Google Scholar

    [27]

    Herzog T M, RÖpke F K 2011 Phys. Rev. D 84 083002Google Scholar

    [28]

    Stephanov M A, Rajagopal K, Shuryak E V 1998 Phys. Rev. Lett. 81 4816Google Scholar

    [29]

    Terazawa H 1979 INS-Report (Tokyo: Univ. of Tokyo) 336

    [30]

    Alford M, Reddy S 2003 Phys. Rev. D 67 074024Google Scholar

    [31]

    Alford M, Jotwani P, Kouvaris C, Kundu J, Rajagopal K 2005 Phys. Rev. D 71 114011Google Scholar

    [32]

    Baldo M 2003 Phys. Lett. B 562 153Google Scholar

    [33]

    Ippolito N D, Ruggieri M, Rischke D H, Sedrakian A, Weber F 2008 Phys. Rev. D 77 023004Google Scholar

    [34]

    Lai X Y, Xu R X 2011 Res. Astron. Astrophys. 11 687Google Scholar

    [35]

    Avellar M G B de, Horvath J E, Paulucci L 2011 Phys. Rev. D 84 043004Google Scholar

    [36]

    Bonanno L, Sedrakian A 2012 A&A 539 A16

    [37]

    Chu P C, Wang B, Jia Y Y, Dong Y M, Wang S M, Li X H, Zhang L, Zhang X M, Ma H Y 2016 Phys. Rev. D 94 123014Google Scholar

    [38]

    Chu P C, Li X H, Wang B, Dong Y M, Jia Y Y, Wang S M, Ma H Y 2017 Eur. Phys. J. C 77 512Google Scholar

    [39]

    Chu P C, Zhou Y, Chen C, Li X H, Ma H Y 2020 J. Phys. G: Nucl. Part. Phys. 47 085201Google Scholar

    [40]

    Bailin D, Love A 1984 Phys. Rep. 107 325

    [41]

    Alford M G, Rajagopal K, Reddy S, Wilczek F 2001 Phys. Rev. D 64 074017Google Scholar

    [42]

    Shovkovy I A 2005 Found. Phys. 35 1309

    [43]

    Rajagopal K and Wilczek F 2001 Phys. Rev. L 86 3492

    [44]

    Alford M G, Rajagopal K, Schaefer T and Schmitt A 2008 Rev. Mod. Phys. 80 1455

    [45]

    Lugones G and Horvath J E 2003 Astron. Astrophys. 403 173

    [46]

    Horvath J E and Lugones G 2004 Astron. Astrophys. 422 L1

    [47]

    Li X H, Gao Z F, Li X D, Xu Y, Wang P, Wang N, Peng Q H 2016 Int. J. Mod. Phys. D 25 1650002

    [48]

    Deng Z L, Gao Z F, Li X D, Shao Y 2020 Astrophys. J. 892 4Google Scholar

    [49]

    Yan F Z, Gao Z F, Yang W S, Dong A J 2021 Astron. Nachr. 342 249Google Scholar

    [50]

    Wang H, Gao Z F, Jia H Y, Wang N, Li X 2020 Universe 6 63Google Scholar

    [51]

    Li B P, Gao Z F 2023 Astron. Nachr. 344 e20220111

    [52]

    Li B P, Ma W Q, Gao Z F 2024 Astron. Nachr. 345 e20230167

    [53]

    Gao Z F, Omar N, Shi X C, Wang N 2019 Astron. Nachr. 340 1030Google Scholar

    [54]

    Lander S K 2023 Astrophys. J. 947 L16

    [55]

    Mihara T A 1990 Nature 346 250Google Scholar

    [56]

    Chanmugam G 1992 Annu. Rev. Astron. Astrophys. 30 143Google Scholar

    [57]

    Lai D, Shapiro S L 1991 Astrophys. J. 383 745Google Scholar

    [58]

    Ferrer E J, Incera V, Keith J P, Portillo I, Springsteen P L 2010 Phys. Rev. C 82 065802

    [59]

    Bandyopadhyay D, Chakrabarty S, Pal S 1997 Phys Rev. Lett. 79 2176Google Scholar

    [60]

    Bandyopadhyay D, Pal S, Chakrabarty S 1998 J. Phys. G: Nucl. Part. Phys. 24 1647Google Scholar

    [61]

    Menezes D P, Pinto M, Benghi, Avancini S, Providência C 2009 Phys. Rev. C 79 035807Google Scholar

    [62]

    Menezes D P, Pinto M, Benghi, Avancini S, Providência C 2009 Phys. Rev. C 80 065805Google Scholar

    [63]

    Ryu C Y, Kim K S, Cheoun Myung-Ki 2010 Phys. Rev. C 82 025804Google Scholar

    [64]

    Ryu C Y, Cheoun Myung-Ki, Kajino T, Maruyama T, Mathews Grant J 2012 Astropart. Phys. 38 25Google Scholar

    [65]

    Gao Z F, Li B P, de Andrade, Garcia L C 2025 Eur. Phys. J. C 85(4) 433

    [66]

    Fu G Z, Xing C C, Wang N 2020 Eur. Phys. J. C 80 582Google Scholar

    [67]

    Li B P, Gao Z F, Ma W Q, Cheng Q 2025 Front. Astron. Space Sci. 12 1625459Google Scholar

    [68]

    Ma W Q, Gao Z F, Li B P, Niu C H, Yao J M, Wang F Y 2025 Astrophys. J. 981 24

    [69]

    Wang Z, Wen Z G, Yuan J P, et al. 2025 Astrophys. J. 987 43

    [70]

    Wen Z G, Yuan J P, Wang N, et al. 2022 Astrophys. J. 928 71Google Scholar

    [71]

    Schertler K, Greiner C, Thoma M H, Schertler K, Greiner C, Thoma M H 1997 Nucl. Phys. A 616 659Google Scholar

    [72]

    Pisarski R D 1989 Nucl. Phys. A 498 423Google Scholar

    [73]

    Wen X J 2009 J. Phys. G: Nucl. Part. Phys. 36 025011Google Scholar

    [74]

    Zhang Z, Chu P C, Li X H, Liu H, Zhang X M 2021 Phys. Rev. D 103 103021Google Scholar

    [75]

    Chu P C, Chen L W 2014 Astrophys. J. 780 135

    [76]

    Chu P C 2018 Phys. Lett. B 778 447Google Scholar

    [77]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 103001Google Scholar

    [78]

    Chodos A, Jaffe R L, Ohnson K, Thorn C B, Weisskopf V F 1974 Phys. Rev. D 9 3471Google Scholar

    [79]

    Alford M, Braby M, Paris M, Reddy S 2005 Astrophy. J. 629 969Google Scholar

    [80]

    Rehberg P, Klevansky S P, Hüfner J 1996 Phys. Rev. C 53 410

    [81]

    Hanauske M, Satarov L M, Mishustin I N, Stocker H, Greiner W 2001 Phys. Rev. D 64 043005Google Scholar

    [82]

    Rüster S B, Rischke D H 2004 Phys. Rev. D 69 045011Google Scholar

    [83]

    Menezes D P, Providencia C, Melrose D B 2006 J. Phys. G 32 1081Google Scholar

    [84]

    Chao J Y, Chu P C, Huang M 2013 Phys. Rev. D 88 054009Google Scholar

    [85]

    Chu P C, Wang X, Chen L W, Huang M 2015 Phys. Rev. D 91 023003Google Scholar

    [86]

    初鹏程, 刘鹤, 杜先斌 2024 物理学报 73 052101Google Scholar

    Chu P C, Liu H, Du X B 2024 Acta Phys. Sin. 73 052101Google Scholar

    [87]

    Chu P C, Wang B, Ma H Y, Dong Y M, Chang S L, Zheng C H, Liu J T, Zhang X M 2016 Phys. Rev. D 93 094032Google Scholar

    [88]

    Chu P C, Chen L W, Wang X 2014 Phys. Rev. D 90 063013Google Scholar

    [89]

    Chu P C, Chen L W 2017 Phys. Rev. D 96 083019Google Scholar

    [90]

    Roberts C D, Williams A G 1994 Prog. Part. Nucl. Phys. 33 477Google Scholar

    [91]

    Zong H S, Chang L, Hou F Y, Sun W M, Liu Y X 2005 Phys. Rev. C 71 015205Google Scholar

    [92]

    Peng G X, Chiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201Google Scholar

    [93]

    Peng G X, Chiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801

    [94]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [95]

    Li A, Peng G X, Lu J F 2011 Res. Astron. Astrophys. 11 482Google Scholar

    [96]

    Schertler K, Greiner C, Sahu P K, Thoma M H 1998 Nucl. Phys. A 637 451Google Scholar

    [97]

    Alford M, Rajagopal K, Wilczek F 1999 Nucl. Phys. B 537 443Google Scholar

    [98]

    Shovkovy I A, Wijewardhana L C 1999 Phys. Lett. B 470 189Google Scholar

    [99]

    Chu P C, Gao Q, Liu H, et al. 2023 Eur. Phys. J. C 83 858Google Scholar

    [100]

    Chu P C, Liu H, Liu H M, Li X H, Ju M, Wu X H, Zhou Y 2024 Phys. Rev. D 110 123031Google Scholar

    [101]

    Chu P C, Liu H, Ju M, Wu X H, Liu H M, Zhou Y, Liu H, Lu S Y, Li X H 2024 Phys. Rev. D 110 043032Google Scholar

    [102]

    Chu P C, Liu H, Li X H, Ju M, Wu X H, Zhang X M 2024 J. Phys. G: Nucl. Part. Phys. 51 065202Google Scholar

    [103]

    Ferrer E J, Vivian de la Incera 2005 Phys. Rev. Lett. 95 152002Google Scholar

    [104]

    Ferrer E J, Vivian de la Incera, Cristina Manuel 2006 Nucl. Phys. B 747 88Google Scholar

    [105]

    Sun G W, He D L, Ma W L, Zhu D J 2025 Astron. Nachr. doi. 10.1002/asna.70030.

    [106]

    Wang Z, Wen Z G, Yuan J P, et al. 2024 Astrophys. J. 968 169

    [107]

    Isayev A A, Yang J 2011 Phys. Rev. C 84 065802

    [108]

    Isayev A A, Yang J 2012 Phys. lett. B 707 163Google Scholar

    [109]

    Wang Z, Wen Z G, Yuan J P, et al. 2024 Astrophys. J. 968 109

    [110]

    董爱军, 高志福, 杨晓峰, 王娜, 刘畅, 彭秋和 2023 物理学报 72 030502Google Scholar

    Dong A J, Gao Z F, Yang X F, Wang N, Liu C, Peng Q H 2023 Acta Phys. Sin. 72 030502Google Scholar

    [111]

    Oppenheimer J R, Volkoff G M 1939 Phys. Rev. 33 374

    [112]

    Abbott B P 2017 Phys. Rev. Lett. 119 161101Google Scholar

    [113]

    Gao Z F, Li X D, Wang N, Yuan J P, Wang P, Peng Q H, Du Y J 2016 Mon. Not. R. Astron. Soc. 456 55Google Scholar

    [114]

    Gao Z F, Wang N, Peng Q H, Li X D, Du Y J 2013 Mod. Phys. Lett. A 28 1350138

    [115]

    Chu P C, Liu H, Liu H M, et al. 2025 Phys. Rev. D 111 123045

    [116]

    Chu P C, Liu H, Liu H M, Ju M, Wu X H, Zhou Y, Li X H 2025 Eur. Phys. J. C 85 466Google Scholar

    [117]

    Chu P C, Jiang Y Y, Liu H, et al. 2021 Eur. Phys. J. C 81 569

    [118]

    Chu P C, Zhou Y, Jiang Y Y, et al. 2021 Eur. Phys. J. C 81 93

    [119]

    Wu X H, Chu P C, Ju M, Liu H, et al. 2025 Eur. Phys. J. C 85 362Google Scholar

  • [1] LAN Heng, LI Jiadong, CAO Yuhao, SHEN Junfeng, LI Jiacheng, XU Yuhong, SUN Tengfei, HE Mengyuan, FENG Yuxuan, WU Danni, CHENG Jun, LIU Haifeng, SHIMIZU Akihiro, WANG Xianqu, XUAN Weimin, ZHANG Meiyong, ZOU Qian, LUO Jun, YANG Quan, ZHANG Xin, LIU Hai, HUANG Jie, HU Jun, SHAO Junren, LI Wei, LI Yucai, ZHOU Hong, WANG Jie, SU Xiang, TANG Changjian. Development and preliminary application of high-frequency magnetic probe array on quasi-axisymmetric stellarator CFQS-T. Acta Physica Sinica, 2025, 74(17): 175202. doi: 10.7498/aps.74.20250957
    [2] LI Dan, LIU Haifeng. Influence of coil deformation on magnetic topology structure in Chinese first quasi-toroidally symmetric stellarator. Acta Physica Sinica, 2025, 74(5): 055203. doi: 10.7498/aps.74.20241606
    [3] XU Jianfeng, WANG Jingtao, XIA Chengjun. Research on u-d quark stars and their tidal deformaions under new mass scaling. Acta Physica Sinica, 2025, 74(16): 162101. doi: 10.7498/aps.74.20250535
    [4] CHU Pengcheng, LIU Yuheng, LIU He, LIU Hongming, YANG Yonghang. Phenomenological model of color-flavor-locked quark star under strong magnetic fields at finite temperatures. Acta Physica Sinica, 2025, 74(14): 142101. doi: 10.7498/aps.74.20250451
    [5] Xing Ye, Li Na, Yang Ling-Bin, Hu Xiao-Hui. Production of single charm pentaquark based on molecular configuration. Acta Physica Sinica, 2024, 73(13): 131401. doi: 10.7498/aps.73.20240447
    [6] Chu Peng-Cheng, Liu He, Du Xian-Bin. Quark matter and quark star in color-flavor-locked phase. Acta Physica Sinica, 2024, 73(5): 052101. doi: 10.7498/aps.73.20231649
    [7] Su Xiang, Wang Xian-Qu, Fu Tian, Xu Yu-Hong. Suppression mechanism of equilibrium magnetic islands in CFQS low-$\boldsymbol \beta$ plasma. Acta Physica Sinica, 2023, 72(21): 215205. doi: 10.7498/aps.72.20230546
    [8] Dong Ai-Jun, Gao Zhi-Fu, Yang Xiao-Feng, Wang Na, Liu Chang, Peng Qiu-He. Modified pressure of relativistic electrons in a superhigh magnetic field. Acta Physica Sinica, 2023, 72(3): 030502. doi: 10.7498/aps.72.20220092
    [9] Wang Yi-Nong, Chu Peng-Cheng, Jiang Yao-Yao, Pang Xiao-Di, Wang Sheng-Bo, Li Pei-Xin. Proto-magnetars within quasiparticle model. Acta Physica Sinica, 2022, 71(22): 222101. doi: 10.7498/aps.71.20220795
    [10] Gong Wu-Kun, Guo Wen-Jun. Hadron-quark deconfinement phase transition in hybrid stars. Acta Physica Sinica, 2020, 69(24): 242101. doi: 10.7498/aps.69.20200925
    [11] Chen Jian-Ling, Wang Hui, Jia Huan-Yu, Ma Zi-Wei, Li Yong-Hong, Tan Jun. Conductivity of neutron star crust under superhigh magnetic fields and Ohmic decay of toroidal magnetic field of magnetar. Acta Physica Sinica, 2019, 68(18): 180401. doi: 10.7498/aps.68.20190760
    [12] Jirimutu, Aodeng, Xue Kang. Construction of Breit quark potential in coordinate space and mass splits of meson and quarkonium. Acta Physica Sinica, 2018, 67(9): 091201. doi: 10.7498/aps.67.20172155
    [13] Liu Xiang-Yuan, Qian Xian-Mei, Zhu Wen-Yue, Liu Dan-Dan, Fan Chuan-Yu, Zhou Jun, Yang Huan. Numerical calculation and discussion on return photons of polychromatic laser guide stars by a laser beam with 330 nm wavelength. Acta Physica Sinica, 2018, 67(1): 014205. doi: 10.7498/aps.67.20171025
    [14] Huang Jin-Shu, Luo Peng-Hui, Lu Gong-Ru. Bottom quark pair production in γγ collision. Acta Physica Sinica, 2009, 58(12): 8166-8173. doi: 10.7498/aps.58.8166
    [15] Lai Xiang-Jun, Luo Zhi-Quan, Liu Jing-Jing, Liu Hong-Lin. Quark phase transition in supernova and the effect of quark mass on the process. Acta Physica Sinica, 2008, 57(3): 1535-1541. doi: 10.7498/aps.57.1535
    [16] Chen Hong, Mei Hua, Shen Peng-Nian, Jiang Huan-Qing. Heavy quarkonium mass spectra in a relativistic quark model. Acta Physica Sinica, 2005, 54(3): 1136-1141. doi: 10.7498/aps.54.1136
    [17] DAI ZI-GAO, LU TAN. COOLING OF A STRANGE STAR. Acta Physica Sinica, 1994, 43(2): 198-204. doi: 10.7498/aps.43.198
    [18] DAI ZI-GAO, LU TAN, PENG QIU-HE. PHASE TRANSITION OF NONSTRANGE-STRANGE QUARK MATTER IN THE INTERIOR OF A NEUTRON STAR. Acta Physica Sinica, 1993, 42(8): 1210-1215. doi: 10.7498/aps.42.1210
    [19] XIE FENG-XIAN. CALCULATION OF THE SPECTRA FOR TOPPONIUM WITH A NONZERO GLUON EFFECTIVE MASS. Acta Physica Sinica, 1987, 36(6): 778-784. doi: 10.7498/aps.36.778
    [20] WANG QING-DE, LU TAN. DAMPING EFFECTS OF WEAK PROCESSES IN PION CONDENSATE ON NEUTRON STAR VIBRATION. Acta Physica Sinica, 1985, 34(7): 892-900. doi: 10.7498/aps.34.892
Metrics
  • Abstract views:  605
  • PDF Downloads:  14
  • Cited By: 0
Publishing process
  • Received Date:  09 July 2025
  • Accepted Date:  05 August 2025
  • Available Online:  25 August 2025
  • Published Online:  20 October 2025
  • /

    返回文章
    返回